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Inter-Patient ECG Heartbeat 
Classification with Temporal VCG 
Optimized by PSO
Gabriel Garcia1, Gladston Moreira2, David Menotti3 & Eduardo Luz2

Classifying arrhythmias can be a tough task for a human being and automating this task is highly 
desirable. Nevertheless fully automatic arrhythmia classification through Electrocardiogram (ECG) 
signals is a challenging task when the inter-patient paradigm is considered. For the inter-patient 
paradigm, classifiers are evaluated on signals of unknown subjects, resembling the real world scenario. 
In this work, we explore a novel ECG representation based on vectorcardiogram (VCG), called temporal 
vectorcardiogram (TVCG), along with a complex network for feature extraction. We also fine-tune 
the SVM classifier and perform feature selection with a particle swarm optimization (PSO) algorithm. 
Results for the inter-patient paradigm show that the proposed method achieves the results comparable 
to state-of-the-art in MIT-BIH database (53% of Positive predictive (+P) for the Supraventricular ectopic 
beat (S) class and 87.3% of Sensitivity (Se) for the Ventricular ectopic beat (V) class) that TVCG is a richer 
representation of the heartbeat and that it could be useful for problems involving the cardiac signal and 
pattern recognition.

Problems related to the rhythm of the heart, called arrhythmias, can be studied and analyzed by inspecting an 
Electrocardiogram (ECG). To provide an effective treatment for arrhythmias, an early diagnosis is important. 
Although, the process of identifying and classifying arrhythmias can be tough for a human being because it often 
demands a thorough analysis for each heartbeat of the ECG signal acquired during hours or even days. Therefore, 
it is highly desirable to automate the task.

A completely automatic system for arrhythmia classification from ECG signals can be divided into four steps: 
(1) ECG signal preprocessing; (2) heartbeat segmentation; (3) feature extraction; and (4) learning/classification. 
The first two steps of such classification system (ECG signal preprocessing and heartbeat segmentation) have been 
widely explored in the literature1. However, there is room for improvements in the steps related to classification 
(feature extraction and selection).

There are two paradigms for evaluating arrhythmia classification systems1: the intra-patient and inter-patient 
paradigm. In the inter-patient paradigm, heartbeats from a set of individuals are reserved exclusively for method 
evaluation and heartbeats from different individuals are employed during training of the classification models. 
In the inter-patient paradigm, classification models do not have contact with heartbeats of individuals from eval-
uation set. Contrasting to that, for the intra-patient paradigm, both evaluation and train sets have heartbeats 
from the same individuals. Report results only on the intra-patient paradigm is a serious problem found in the 
literature since the usage of heartbeats from the same patient for both the training and the testing makes the 
evaluation process biased2. This bias happens because models tend to learn the particularities of the individual’s 
heartbeats during the training, obtaining expressive numbers during evaluation (very close to 100%) as previously 
discussed1–4. As can be seen in Fig. 1, heartbeats from the same individual tend to be grouped in clusters that, 
clearly show the individual dependence4.

To report results aligned with real world scenarios, it is recommended to follow the Association for the 
Advancement of Medical Instrumentation (AAMI) standard5 and an inter-patient paradigm evaluation protocol 
such as proposed in ref. 2.

According to the AAMI standard5, the Massachusetts Institute of Technology - Beth Israel Hospital 
(MIT-BIH) Arrhythmia Database is the one recommended for evaluating automatic arrhythmia classification 
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systems. According to AAMI, the heartbeats of this database could be separated into 5 groups or superclasses, 
and they are: Normal (N), Supraventricular ectopic beat (S), Ventricular ectopic beat (V), Fusion beat (F) and 
Unknown beat (Q). Many works make use of MIT-BIH Arrhythmia Database, however, few of them follow the 
AAMI class division scheme and a more realistic evaluation protocol (inter-patient paradigm). Table 1 summa-
rizes recent works on MIT-BIH that evaluate their methods only for the intra-patient paradigm. As one can see in 
Table 1, it is difficult to assess which technique contribute to arrhythmia classification, since methods with differ-
ent approaches achieve very high (>98%) accuracies, such as in Chen et al.6 where 100% accuracy is reported by 
using only cardiac frequency (RR-interval) information. Such results cannot be taken into consideration from a 
clinical point of view since the reported values are probably different in a real life scenario concerning accuracy7.

In this work, we present a new heartbeat representation, called the temporal vectorcardiogram (TVCG) 
and an optimized feature extraction process with complex networks8, 9 and particle swarm optimization (PSO). 
Preliminary results10, 11 showed the feasibility of TVCG and complex networks. This work consolidates and 
extends the approach by introducing the state-of-the-art evolutionary algorithm PSO for feature selection and 
classifier tuning aiming to improve fully automatic arrhythmia classification. In our view, state-of-the-art meth-
ods are presented in Table 2, where all authors follow the same inter-patient paradigm for evaluation as well as 
AAMI recommendations. For a fair comparison with literature, in this work, the same evaluation approach is 
followed and our method overcomes state-of-the-art methods, with respect to the Positive predictive (+P) for the 
Supraventricular ectopic beat (S) class and the Sensitivity (Se) for the Ventricular ectopic beat (V) class.

Figure 1.  Two principal components of raw ECG heartbeats from patients of MIT-BIH. Each individual is 
plotted in one color. Adapted4.

Work # Classes Feature set Classifier Effectiveness

Cristov & Bortonal, 200433 2 Heartbeat-Intervals, VCG NN Acc = 99%

Özbay et al., 200634 10 Raw-wave MLP, Fuzzy Cluster, FCNN Acc = 99%

Bortolan et al., 200735 2 VCG and Morphological hyperbox + GA Fuzzy Clustering Acc = 99%

Ubeyli, 200736 4 DWT SVM, ECOC Acc = 99%

Yu & Chen, 200712 5 ICA, RR-interval PNN Acc = 99%

Yu & Chen, 200712 6 Wavelet (statistics), RR-interval PNN Acc = 99%

Minhas & Arif, 200837 6 Wavelet, RR-interval, PCA kNN Acc = 99%

Asl et al., 200838 6 HVR, GDA SVM Acc = 100%

Chen et al., 20146 6 RR-intervals SVN, NN Acc = 100%

Mert et al., 201439 6 RR-intervals, HOS, Bagged Decision Tree Acc = 99%

2nd order LPC coeff.

Alickovic & Subasi, 201540 5 autoregressive (AR) modeling SVM, MLP, RBF, kNN Acc = 99%

Li et al., 201741 6 WPD GA-BPNN Acc = 99%

Table 1.  Methods which used the Intra-patient paradigm. Neural Network (NN); Principal Component 
Analysis (PCA); Generalized Discriminant Analyses(GDA); Error correcting output codes (ECOC); 
Independent Component Analysis (ICA); Probabilistic neural Network (PNN); Continues Wavelet Transform 
(CWT); Discrete Wavelet Transform (DWT); Discrete Cosine Transform (DCT); Higher order statistics (HOS); 
Linear Discriminants (LD); wavelet packet decomposition (WPD). Abbreviations: Acc: Accuracy.
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Results
Database setup.  Experimental analysis is conducted with the MIT-BIH database, following the inter-par-
adigm protocol proposed by de Chazal2: the database is split into two groups: DS1 and DS2. DS1 is used for 
training and DS2 for evaluation.

In order to perform the evolution of the system in an unbiased way, it is also important to use different data for the 
evaluation in the optimization stages. For this, the DS1 group was divided into two new subgroups, DS11 and DS12, 
for training and evaluation, respectively. In agreement with the suggestions of Luz et al.1, in both separations, the 
heartbeats of each patient remained in only one group. The groups are divided seeking a balance in the representation 
of classes. In Table 3 records partitions are shown, as well as the number of heartbeats for each class. Also, to comply 
with the AAMI standard5, four records related to patients wearing an electronic pacemaker are disregarded.

Metric evaluation.  The metrics recommended by AAMI for arrhythmia classification methods are: 
Sensitivity (Se), Positive predictive (+P), False positive rate (FPR) and Overall accuracy (Acc). Overall accuracy 
can be strongly distorted by majority class figures. Therefore, the first three metrics are the most relevant for 
comparing the methods, since the classes for heartbeat types are extremely imbalanced in MIT-BIH database.

Fig. 4 illustrates metric calculation definitions. Note that in sections (a), (b), and (c) of Fig. 4, formulas and 
schemes to compute Se, +P, FPR and Acc are given for the V, S and N classes, respectively.

Work Feature set Classifier Effectiveness

de Chazal et al., 20042 ECG-Intervals, Morphological Weighted LD Acc = 83%; SeN = 87%; SeS = 76%; SeV = 77% 
+ PN = 99%; + PS = 38%; + PV = 82%

Soria & Martinez, 200942 RR-Intervals, VCG,  
morphological  + FFS Weighted LD Acc = 90%; SeN = 92%; SeS = 88%; SeV = 90% 

+ PN = 85%; + PS = 93%; + PV = 92%

Llamedo & Martinez, 20113* Wavelet, VCG  + SFFS Weighted LD Acc = 93%; SeN = 95%; SeS = 77%; SeV = 81% 
+ PN = 98%; + PS = 39%; + PV = 87%

Mar et al., 201143 Temporal Features, Morphological,  
statistical features + SFFS

Weighted LD  
MLP

Acc = 89%; SeN = 89%; SeS = 83%; SeV = 86% 
+ PN = 99%; + PS = 33%; + PV = 75%

Ye et al., 201244 Morphological, Wavelet, RR interval,  
ICA, PCA SVM Acc = 86.4% SeN = 88%; SeS = 60%; SeV = 

81% + PN = 97%; + PS = 53%; + PV = 63%

Lin & Yang, 201445* normalized RR-interval morphological  
features weighted LD Acc = 93%; SeN = 91%; SeS = 81%; SeV = 86% 

+ PN = 99%; + PS = 31%; + PV = 73%

Huang et al., 201446** Random projection RR-intervals Ensemble of SVM SeN = 99%; SeS = 91%; SeV = 94% + PN = 
95%; + PS = 42%; + PV = 91%

Table 2.  Methods which used the Inter-patient paradigm. Artificial Neural Network (ANN); Principal 
Component Analysis (PCA); Floating Feature Selection (FFS); Independent Component Analysis (ICA); Back 
Propagation Neural Network (BPNN); Linear Discriminants (LD); Sequential forward floating search (SFFS); 
*Authors optimize their result for 3 classes (N), (S), (V); **Where confusion matrix was not given, some values 
could not be computed. Abbreviations: (N): Normal heartbeat; (S): Supraventricular ectopic heartbeat; (V): 
Ventricular ectopic heartbeat; Acc: Accuracy; +P: Positive predictive; Se: Sensitivity.

Figure 2.  Proposed method flow.
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Proposed Method Flow.  The proposed method flow is depicted in Fig. 2.

	 1.	 Complex network optimization - TVCG is an electrical activity in a 3D-plot, wherein two leads are consid-
ered, MLII and V1, along with time as a new axis. From this 3D-plot (See Fig. 3) features for the classification 
step are extracted using complex networks8, 9. The complex networks parameters are estimated by the state-
of-the-art evolutionary algorithm called Particle Swarm Optimization (PSO). The PSO’s task is to find best 
complex network parameter combination (T0, TQ and m), in the range from 1 to 10; 0.001 to 0.2; 0.1 to 1, re-
spectively. To accomplish this, PSO parameters are defined as: 100 particles and 50 generations. At first stage, 
TVCG features from the complex network are combined with the RR interval and fed to the SVM classifier, 
with fixed weights (w1 = 6, w2 = 100 and w3 = 15) to compensate database imbalance10. For this and the two 
next optimization processes, the training was carried out in DS11 and the tests in DS12, and all data was used 
without any preprocessing filter. The best complex network parameters are used in the following step.

Partition Registers Class (N) Class (S) Class (V)

DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,  
124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230 45543 782 3469

DS11 101, 106, 108, 109, 114, 115, 116, 119, 122, 209, 223 22249 474 1615

DS12 112, 118, 124, 201, 203, 205, 207, 208, 215, 220, 230 23294 308 1854

DS2 100, 103, 105, 11, 113, 117, 121, 123, 200, 202, 210,  
212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234 44049 1808 3143

Total 89592 2590 6612

Table 3.  Records used and number of representatives of each class for each of the partitions.
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Figure 3.  (a) Lead A (MLII); (b) Lead B (V1); (c) VCG; (d) TVCG. Ten heartbeats and mean heartbeat of 3 
classes (N, S and V) from records 116, 215 and 220 of the MIT-BIH.
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	 2.	 SVM weights optimization - Once TVCG features are extracted, two other sets of features are included in 
the feature vector, morphological features2, and wavelet based features12, resulting in a vector of size 178. 
Those features are known to be efficient for arrhythmia classification problem and they are considered here 
to promote competition in the feature selection stage. The 178 dimension feature vector is used to fine-tune 
SVM weights and for this task, the PSO is executed with 100 individuals and 100 generations, and the 
objective is to search for the best configuration of w1, w2 and w3 in the range of 1 to 5; 10 to 200; 5 to 100, 
respectively. The SVM is configured with RBF kernel, and hard margin (C = 1 and γ = 1

number of features
).

	 3.	 Feature selection - With the tuned SVM, a wrapper feature selection is performed. Evaluating all possible fea-
ture vector combinations would be unfeasible. Thus, a PSO is used to reduce computational cost. In this case, 
binary PSO is employed (BPSO). The BPSO initial population is setup to include all features of the vector and 
then gradually reduces the vector size. The BPSO is executed during 100 iterations with 300 particles.
The best feature vector combination, according to feature selection algorithm proposed here, includes 64 
features from a list of 178. Among them, 50 morphological2, 5 from ECG intervals2, 4 statistical features 
calculated on wavelet coefficients12 and all 5 features from TVCG.

	 4.	 Final evaluation - The best SVM model selected in the last step is considered for final evaluation. The final 
evaluation is performed with training (DS1) and test (DS2) datasets on three different preprocessings: No 
Filter, de Chazal Filter and Common Filter.

Discussion
As can be seen in Table 4, preprocessing has a great impact on final classification and more attention should be 
given in the literature to the preprocessing stage. To the best of our knowledge, there is no systematic study of 
different filters/pre-processing techniques, following an inter-patient scheme and the AAMI recommendations. 
Such a study could shed light on how the filtering process impact the classification of arrhythmic classes.

As shown in Table 5, the proposed method achieves results comparable to state-of-the-art methods, with a 
global accuracy of 92.4% when Common filters are applied. In Table 5 we also show the result of the proposed 
methodology with conventional VCG. As can be seen in Fig. 3(c) and (d), the time axis allows the signal to be 
disentangled and therefore offers more information. With the TVCG, the differentiation of the heartbeats type 
is more apparent. The heartbeats of class N are less confused to other classes and thus, the positive predictive is 

Figure 4.  Calculations for metric evaluations. (a), (b), and (c) highlight the calculation of metrics for V, S, 
and N, respectively. Source2. Abbreviations: Acc: Accuracy; F: Fusion heartbeat group (superclass); FPR: 
False positive rate; N: Normal heartbeat group (superclass); +P: Positive predictivity; Q: Unknown heartbeat 
group (superclass); Se: Sensitivity; Sp: Specificity; S: Supraventricular ectopic heartbeat group (superclass); V: 
Ventricular ectopic heartbeat group (superclass); TN: True negative; and TP: True positive.

Filters Acc Class (N) Class (S) Class (V)

Se +P FPR Se +P FPR Se  + P FPR

de Chazal 85,8 87,6 96,6 27,6 28,7 24,4 3,4 92,6 42,2 8,7

Common 92,4 94,0 98,0 17,4 62,0 53,0 2,1 87,3 59,4 4,1

Without filter 83,1 84,1 97,1 22,6 50,8 13,0 13,1 88,6 74,0 2,1

Table 4.  Test results (DS2) of the best parameters configuration. Se, +P and FPR stands for Sensitivity, Positive 
Predictive Value and False Positive Rate, respectively.
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higher with TVCG as well as the false positive rate (See Table 6). The excessive false alarm is a major problem for 
clinical use since it diminishes operator confidence in the algorithm/equipment. As one can see in Table 5, our 
method with TVCG has a more balanced positive predictive rate, compared to the literature.

The proposed feature selection aims at reducing the size of the feature vector in order to reduce the compu-
tational cost and increase the generalization power of the method. Also, the BPSO objective function maximizes 
the F-score metric, tending to promote a balance between Se and +P of the classes. Results showed that PSO is 
an outstanding tool for feature selection in the arrhythmia classification problem. In this context, all five features 
extracted with complex networks from TVCG have been chosen.

Results presented herein corroborate the efficiency of the new ECG representation proposed in this work, 
TVCG, along with the complex network’s method for feature extraction. However, the analysis has two limi-
tations due to the MIT-BIH database. According to Schulte-Frohlinde et al.13, some types of arrhythmias may 
have an intrinsic periodicity and long-term analysis (12 to 24 hours) is desirable to investigate these patterns14. 
Though MIT-BIH database has records of only a 30 minutes duration which hinders the investigation of patterns 
associated to long term periodicity. Only a few studies have considered the dynamical properties of the ECG in 
detail for the long term, and the lack of a benchmark database could be the problem. The MIT-BIH database is 
also limited regarding the number of leads. Currently, medical diagnostic systems make use of 12 leads and new 
databases, that cover these issues, should be proposed in the literature and recommended by AAMI. Time series 
forecasting models15 could provide interesting insight on modeling the dynamical arrhythmias features of the 
ECG signal and could be an promising research path.

The new heartbeat representation could be further explored in the literature and a promising direction would 
be to explore the TVCG for QRS detection and detection of other ECG fiducial points since it is a richer view of 
the heartbeat signal. TVCG would also be suited to other data representation methods such as based on Deep 
Learning, that today represents the state-of-the-art data representation methods on several machine learning and 
computer vision tasks16.

Methods
In this work a novel heartbeat representation is explored, the temporal vectorcardiogram (TVCG), along with an 
efficient feature extraction technique for TVCG called Complex Networks10. In addition to that, an optimization 
stage based on particle swarm optimization is employed to select best features and fine-tune the classifier. Also, 
two popular preprocessing techniques are evaluated on a popular benchmark database.

MIT-BIH Database.  The MIT-BIH database was created to be representative and provide real clini-
cal situations/scenarios. This database is presented in majority of the publications found in the literature. The 
MIT-BIH database consists of 48 annotated records obtained from 47 patients studied by the Beth Israel Hospital 
Arrhythmia Laboratory in Boston, USA, between 1975 and 1979. Each record has 30 minutes ECG acquisition of 
two leads sampled at 360 Hz. In total, the database has more than 109.000 heartbeats and each one is labeled as 
a heartbeat type. In the majority of the records the principal lead (lead A) is a modification of lead II (electrodes 
on the chest). The other lead (lead B) is usually lead V1, modified, but in some records, this lead is known to be 
V2, V5 or V4. Generally, lead A is used to detect heartbeats, since the QRS complex is more prominent in this 
lead. Lead B favors the arrhythmic classification of the types SVEB and VEB17. More information regarding this 
database can be found in ref. 18.

Preprocessing.  In order to improve the quality of signals from the database and to remove excessive noise, 
preprocessing techniques could be used. Two preprocessing methods are applied and evaluated.

Work Acc

Class (N) Class (S) Class (V)

Se +P FPR Se +P FPR Se +P FPR

Proposed method 92.4 94.0 98.0 17.4 62.0 53.0 2.1 87.3 59.4 4.1

Proposed method on VCG 78.0 79.1 96.3 27.0 31.2 8.4 13.0 89.5 46.1 7.2

Lin & Yang, 201445 93.0 91.0 99.0 — 81.0 31.0 — 86.0 73.0 —

Llamedo & Martínez, 20113 93.0 95.0 98.0 — 77.0 39.0 — 81.0 87.0 —

Garcia et. al, 201610 91 95 96 28 30 26 3 85 66 3

Table 5.  Compared methods which used inter-patient paradigm and three classes (N), (S) and (V) for 
classification.

Predicted Classes

(n) (s) (v)

True Classes

(N) 41043 792 1834

(S) 657 1111 25

(V) 200 195 2724

Table 6.  Confusion matrix for best parameters configurations, Common Filter in Table 4.
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The first preprocessing method is proposed by de Chazal2 and contemplates two median filters (200-ms, 
600-ms), baseline removal and a 12 taps low-pass filter with 3 dB at 35 Hz2.

The second preprocessing is proposed by Queiroz et al.11, called Common Filter, and it is composed of two 
finite impulse response (FIR) filters. The first one is a 12 tap low pass filter with −3 dB at 35 Hz, while the second 
one is a high-pass filter with −3 dB at 1 Hz.

There is substantial evidence in the literature supporting the idea that the ECG signal has a fractal temporal 
structure19–21. Therefore the signal dynamics could be related to intrinsic properties of heart control mechanisms. 
Although, it could be difficult to differentiate, by looking at the ECG signal, what would be generated by external 
interference from components generated by the intrinsic heart control mechanism. To avoid accidentally filtering 
an important signal component, experiments are also performed with raw data (without the filtering process).

Feature Extraction.  Some major contribution of this work are the novel heartbeat representation, the 
TCVG, and an efficient feature extraction for the TVCG, based on complex networks. To promote competition 
during the feature selection, state-of-the-art features are also considered and detailed here: morphological fea-
tures2 and first order statistics along with wavelet coefficients12.

Temporal Vectorcardiogram and complex networks.  The Vectorcardiogram (VCG) is a two-dimensional rep-
resentation of the ECG that uses the signal of two distinct leads. Each lead is used as an axis of a 2D plot. The VCG 
representation was used for feature extraction in previous works (Llamedo and Martínez3 and Queiroz et al.11),  
presenting promising results. Nonetheless, the VCG representation discards time information, i.e, it loses the 
time correlation between samples. This work proposes the use of a new ECG representation method, which 
is based on VCG but also considers time as a third dimension, enriching conventional VCG and allowing the 
extraction of more relevant features for the arrhythmia classification task. Using the two ECG leads plus the time, 
a three-dimensional ECG representation is built, called Temporal Vectorcardiogram (TVCG) by the authors. In 
Fig. 3, there can be seen a heartbeat from three different representations, ECG, VCG and TVCG.

The complex networks theory is an intersection of two main areas, the graph theory and statistical analysis. In 
this work, the using of complex networks to extract features from the TVCG is proposed. To accomplish this the 
TVCG is considered as a set of points, = …V p p p[ , , , ]n1 2 v

, where each point pi = [xi, yi, zi] is a vector with com-
ponents xi, yi, zi representing the two leads and the time, respectively. The network is constructed by considering 
each point pi a vertex and the euclidean distance between each pair of points d(pi, pj) defined as the weight of each 
edge ei,j between these two points. The network corresponds to the graph G = (V, E), wherein E = {ei,j|i, j∈{1, …, nv}} 
and V are the set of edges and vertices. Finally, a square matrix W = (wij) is obtained, of order nv, i.e.

= − + − + −w x x y y z z( ) ( ) ( ) , (1)ij i j i j i j
2 2 2

wherein i, j ∈ {1, …, nv}. The next step, then, is the normalization of these values for the interval [0,1]. At this 
point, the graph is just a regular network, whereas all vertices are connected to each other. To make a complex 
network from our regular network, the dynamic evolution method is applied, where in each iteration, the vertices 
with weight wij greater than a limit Tl are removed from the network. Doing this, we have the complex network. 
From that complex network, five features are extracted based on their characteristics. To extract these features 
some variables are needed to be defined: the initial limit T0, the final limit TQ and the total number of iterations 
m. The limit Tl of the actual iteration is calculated by:

= +
−

−
T T l

T T
m

( )
( 1)

,
(2)l

Q
0

0

wherein T0, TQ and m will be defined in the optimization process9. Following that which has been previously 
proposed in the literature9, the five features extracted from the complex network are:

	 1.	 Mean connectivity degree.
	 2.	 Maximum connectivity degree.
	 3.	 Joint degree entropy.
	 4.	 Joint degree energy.
	 5.	 Mean joint degree.

The first two features are related to the number of vertices connected to each other and the other related to 
probabilities of a vertex being connected to another. Therefore, a vector with m × 5 features is used to feed the 
classifiers.

Morphological features.  Many features can be extracted with the aid of ECG fiducial points. The following fea-
tures2 are considered state-of-the-art in the literature and also considered here:

•	 RR-Interval: The R-point is often used to obtain information about the cardiac rhythm. Three features are 
calculated using the RR interval (the time between two R points), these are: pre-RR, the interval RR between 
the heartbeat concerned and its previous one; post-RR, between the concerned and its posterior one; and the 
local average, which is the RR interval average of the intervals surrounding the heartbeat.



www.nature.com/scientificreports/

8Scientific Reports | 7: 10543  | DOI:10.1038/s41598-017-09837-3

•	 Heartbeat Interval: three features are extracted per each lead, relative to: QRS complex duration, calculated 
between the beginning and the end of the QRS; T wave duration, calculated between the end of the QRS 
and the beginning of the T wave; and the presence or absence of the P-wave in the heartbeat. The beginning 
and end of QRS and T waves was detected by running ecgpuwave software (Source at https://physionet.org/
physiotools/ecgpuwave/).

•	 ECG morphological: A set of features extracted directly from ECG wave morphology: 10 samples between 
the QRS complex; 9 samples between the QRS and the T wave start; 10 samples between the FP-50ms and 
FP + 100ms; 8 samples between the FP + 150ms e FP + 500ms. A more detailed description can be seen in (de 
Chazal et al., 2004, Fig. 3)2. Both the normalized and absolute values of these features were used.

Wavelet and the autocorrelation function.  The discrete wavelet transform has been widely used for signal pro-
cessing in the last decades. Since the ECG signal is highly irregular and non-stationary, Wavelet transform can 
filter dominant features related to non-stationaries22 and could favors the appearance of hidden but important 
features for arrhythmia classification. Also, Wavelet transform preserves the Fourier phase information22. In this 
work, following the proposed in ref. 12, we applied the Haar Wavelet twice on lead A, getting the approximation 
A2 and the details D1 and D2. The autocorrelation was used to extract features from the three sub-bands resultant 
from the Discrete Wavelet Transform (DWT). A technique used to find repetitive patterns in signals, it can be 
considered as a measurement of the coherence between the signal x(n) and its shifted version. If x(n) has a size N, 
the autocorrelation function is expressed as

∑= −
=

− −

AC l x n x n l( ) ( ) ( )x
n i

N k 1

wherein l is the time shift index, i = l, k = 0 for l ≥ 0 and i = 0, k = l for l < 0. As used in ref. 12, for the experi-
ments we used l = 1. Other feature groups extracted from the DWT sub-bands are the relative amplitudes, calcu-
lated as x n

x n
min( ( ))
max( ( ))

. Despite it being in this section because it came from the wavelet, the relative amplitudes can be 
considered as a morphological feature. Yu and Chen12 proposed using the variance of the QRS samples as another 
morphological feature.

Classifier.  SVM23 is a very popular classifier in the literature for ECG-based arrhythmia classification meth-
ods. The SVM is a technique based on the principle of structural risk minimization24 aiming at establishing a 
separating function between two classes depending on input.

 → ±f : { 1}, (3)

Vapnik24 proposed hyperplanes in a dot product space , and also the Generalized Portrait learning algorithm 
for problems that can be separated by hyperplanes.

+ =bw x, 0, (4)

wherein ∈ ∈bw x, , , correspond to the decision function:

=  +f x bw x( ) s gn( , ), (5)

Aiming at that, Vapnik24 first considered that there must exists a unique optimal hyperplane distinguished by 
the maximum margin of separation between any training point and the hyperplane. Second, the over-fitting of 
the separating hyperplanes decreases with an increasing margin.

Therefore, to achieve the optimal hyperplane, it is necessary to solve:


τ =

∈ ∈
minimize w w( ) 1

2
,

(6)bw ,

2

subject to:

+ ≥  = ...y b i mw x( , ) 1 for all 1, , , (7)i i

in which the constraint in eq:constr should ensure that f(xi) will be +1 for yi = +1 and −1 for yi = −1, and also the 
scale of w should be fixed. A more detailed discussion of these parameters is provided by Schölkopf and Smola25.

The τ function in eq:mini is the objective function, and the inequality constraints are the ones in eq:constr. 
Thus, they form a constrained optimization problem. The separating function is a weighted combination of ele-
ments of the input (training dataset). These elements are named as Support Vectors and determine the boundary 
between classes.

In order to cope with possible nonlinearities on input data, the kernel trick could be used to improve perfor-
mance25. Although, some examples could violate eq:constr and to allow flexibility, the slack variables ξ ≥ 0 are 
introduced25, which leads to the constraints:

ξ+ ≥ − = ... .y b i mw x( , ) 1 forall 1, , (8)i ii

https://physionet.org/physiotools/ecgpuwave/
https://physionet.org/physiotools/ecgpuwave/
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Controlling both the margin (through ||w||) and slack variables ∑iξi is then possible to find a classifier that effi-
ciently generalizes by minimizing the objective function:

∑τ ξ ξ= +
=

Cw w( , ) 1
2

,
(9)i

m

i
2

1

subject to the constraint in eq:slconst2, in which the constant C > 0 determines a trade off between over-fitting and 
generalization. SVM approaches that rely on the tuning variable C are called C-Support Vector Classifiers (C-SVC)23.

In this work the well known libSVM26 is employed. The libSVM implementation provides a multi-class C-SVC 
by means of an one-against-one approach, in which for k classes, k(k − 1)/2 classifiers are trained for a pair of classes. 
The libSVM also provides a way to compensate the class imbalance by using different C constant values for each class.

Optimizing the complex networks and SVM.  A problem encountered many times when using tech-
niques such as complex networks, which have several parameters and whose efficiency depends on the correct 
choice of their values, is the difficulty in finding such parameters efficiently. In this proposed method, besides 
the values of T0, TQ and m of the complex networks, there are the weights w1, w2 and w3, corresponding to the 
weights of classes N, SVEB and VEB, respectively, used in the SVM to try to balance these classes. To find the best 
parameters and use the tools effectively, an optimization technique called particle swarm was applied.

Particle swarm optimization.  Particle Swarm Optimization (PSO) is an evolutionary algorithm based on group 
behavior, such as the movement of flocks, or shoals. It was first introduced in 1995 by Kennedy & Eberhart 
(1995)27. The PSO is similar to a genetic algorithm where the system is initialized with an initial population, 
treated in the PSO as a set of particles, each particle being a possible solution to the problem. From this initial 
population, a new population is generated at each iteration according to a function, called velocity, which is calcu-
lated based on the position of the best generation particle (called gbest) and the best position of the individual in 
question (called pbest). The idea is that this movement of particles in the space of solutions, in the sense of gbest 
and pbest, will cause each generation to move towards the optimum solution, simultaneously realizing a global 
search and a local search. In Settles (2005) there is a summary on the functioning of the PSO and variations of 
the algorithm are presented. For this work, we used the PSO with an inertia factor, which causes the algorithm to 
reduce the speed increase with the iterations so that the PSO starts to focus more on a local search at the end of its 
execution. Algorithm 1 shows the pseudo code of the algorithm used.

The velocity of the particles is calculated by:

γ γ= ∗ − + − − + − −v t w t v t c x t c x t( ) ( ) ( 1) (pbest ( 1)) (gbest ( 1)) (10)i
k

i
k

i i
k

i
k

i i
k

i
k

1 1 2 2

wherein v t( )i
k  is the i th component of the velocity of the k th particle, x t( )i

k  is the i th component of the position 
of the k th particle, in the t th step of the algorithm. The external parameters defined are: w(t) is the inertia weight, 
with decreased linearly from about 0.9 to 0.4 during a run; the acceleration constants c1 and c2, are usually set at 
2.0528; γ1 and γ2 represent a positive random number with uniform distribution between 0 and 1.

From the velocity and the previous position of the particle its new position is calculated:

= − +x t x t v t( ) ( 1) ( ) (11)i
k

i
k

i
k

The fitness used to evaluate the classification was the F-score29, that is a measure of a test’s accuracy based the 
harmonic mean of the Sensitivity and Positive Predictive, calculated by

⁎ ⁎
− =

+
+ +

F score Se P
Se P

2 ( )
( )

,
(12)

Since for each class an F-score is calculated, fitness is the arithmetic mean of the F-score of each of the three 
classes. A weighted mean can be used to prioritize the results of one class or another during evolution.

Algorithm 1.  PSO with inertia factor.
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Feature Selection.  This work aims to use features proposed in three different works, making the feature vec-
tor dimension quite high. Given the behavior of the classifier used, the SVM, characteristics that have little sep-
arability relationship between the classes can considerably decrease the performance of the classifier. Therefore, 
the selection of the most relevant characteristics for classification becomes an important step and may result in a 
significant increase in overall accuracy.

The groups of characteristics and their respective sizes, separated by the authors that propose them, are:

•	 Morphological Features2, - Results in 161 characteristics, of which 74 are extracted directly from the raw wave 
of both leads and another 13 from information about the fiducial points.

•	 Complex networks applied to TVCG10, - They can vary their size according to the number of iterations m, 
with each iteration generating 5 characteristics.

•	 Wavelet and autocorrelation function12, - Two values are extracted from each of the 3 bands added to a char-
acteristic of the QRS complex, totaling 7 features.

Considering the use of all characteristics presented, we have a feature vector with a dimension equal to or 
greater than 173.

Binary PSO.  The particle swarm optimization algorithm allows applications in binary problems,30. The char-
acteristic selection is a binary type problem, where one wants to find a vector of zeros and ones, saying whether 
or not the characteristic should be used. The binary PSO (BPSO) was proposed with the aim of finding the best 
characteristics in some works in the literature, as in refs 31, 32, in both cases having presented good results.

The proposed BPSO approach for feature selection problem basically follows the execution of the sequence of 
steps of the algorithm 1, update the position of the particle according to Equation 13:

=





<x s v1, rand() ( )
0 otherwise (13)

i
k i

k

wherein =
+ −

s v( )i
k 1

1 exp vi
k
, and rand() positive random number whose uniform distribution is between [0; 1.0]. In 

feature selection phase, we tested empirically the BPSO with linear decreasing inertia weight and no inertial weight. 
The BPSO with no inertial weight resulted in a better F-score compared when the inertial weight was used.

References
	 1.	 Luz, E. Jd. S., Schwartz, W. R., Cámara-Chávez, G. & Menotti, D. Ecg-based heartbeat classification for arrhythmia detection: A 

survey. Computer methods and programs in biomedicine 127, 144–164 (2016).
	 2.	 de Chazal, P., O’Dwyer, M. & Reilly, R. B. Automatic classification of heartbeats using ECG morphology and heartbeat interval 

features. IEEE Transactions on Biomedical Engineering 51, 1196–1206 (2004).
	 3.	 Llamedo, M. & Martnez, J. P. Heartbeat classification using feature selection driven by database generalization criteria. IEEE 

Transactions on Biomedical Engineering 58, 616–625 (2011).
	 4.	 Nunes, T. M. Classificação de arritmias cardacas em eletrocardiograma utilizando floresta de caminhos ótimos. Ph.D. thesis (2014).
	 5.	 ANSI/AAMI. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. American 

National Standards Institute, Inc. (ANSI), Association for the Advancement of Medical Instrumentation (AAMI), ANSI/AAMI/ISO 
EC57, 1998-(R)2008 (2008).

	 6.	 Chen, H., Cheng, B.-C., Liao, G.-T. & Kuo, T.-C. Hybrid classification engine for cardiac arrhythmia cloud service in elderly 
healthcare management. Journal of Visual Languages & Computing 25, 745–753 (2014).

	 7.	 Luz, E. & Menotti, D. How the choice of samples for building arrhythmia classifiers impact their performances. In Engineering in 
Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, 4988–4991 (IEEE, 2011).

	 8.	 Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
	 9.	 Backes, A. R., Casanova, D. & Bruno, O. M. A complex network-based approach for boundary shape analysis. Pattern Recognition 

42, 54–67 (2009).
	10.	 Garcia, G., Luz, E., Moreira, G. & Menotti, D. Improving automatic cardiac arrhythmia classification: Joining temporal-vcg, complex 

networks and svm classifier. In International Joint Conference on Neural Networks (IJCNN 2016) (IEEE, 2016).
	11.	 Queiroz, V., Luz, E., Moreira, G., Guarda, A. & Menotti, D. Automatic cardiac arrhythmia detection and classification using 

vectorcardiograms and complex networks. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International 
Conference of the IEEE, 5203–5206 (2015).

	12.	 Yu, S.-N. & Chen, Y.-H. Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. 
Pattern Recognition Letters 28, 1142–1150 (2007).

	13.	 Schulte-Frohlinde, V. et al. Noise effects on the complex patterns of abnormal heartbeats. Phys. Rev. Lett. 87, 068104 (2001).
	14.	 Schulte-Frohlinde, V. et al. Complex patterns of abnormal heartbeats. Physical Review E 66, 031901 (2002).
	15.	 Coelho, I. M. et al. A gpu deep learning metaheuristic based model for time series forecasting. Applied Energy (2017).
	16.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	17.	 Goldberger, A. L. et al. Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic 

signals. Circulation 101, e215–e220, doi:10.1161/01.CIR.101.23.e215 (2000).
	18.	 Moody, G. B. & Mark, R. G. The mit-bih arrhythmia database on cd-rom and software for use with it. In Computers in Cardiology 

1990, Proceedings., 185–188 (IEEE, 1990).
	19.	 Ivanov, P. C. et al. Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999).
	20.	 Amaral, L. A. N. et al. Behavioral-independent features of complex heartbeat dynamics. Physical Review Letters 86, 6026 (2001).
	21.	 Ivanov, P. C. et al. From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos: An Interdisciplinary Journal of Nonlinear 

Science 11, 641–652 (2001).
	22.	 Ivanov, P. C., Rosenblum, M. G., Peng, C.-K. & Mietus, J. et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based 

time-series analysis. Nature 383, 323 (1996).
	23.	 Cortes, C. & Vapnik, V. Support vector networks. Machine Learning 20, 273–297 (1995).
	24.	 Vapnik, V. N. An Overview of Statistical Learning Theory. IEEE Transactions on Neural Networks 10, 988–999 (1999).
	25.	 Schölkopf, B. & Smola, A. J. Learning with Kernels (MIT Press, 2002).

http://dx.doi.org/10.1161/01.CIR.101.23.e215


www.nature.com/scientificreports/

1 1Scientific Reports | 7: 10543  | DOI:10.1038/s41598-017-09837-3

	26.	 Chang, C.-C. & Lin, C.-J. LibSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 
2, 27:1–27:27 (2011). Software available at: http://www.csie.ntu.edu.tw/cjlin/libsvm.

	27.	 James, K. & Russell, E. Particle swarm optimization. In Proceedings of 1995 IEEE International Conference on Neural Networks, 
1942–1948 (1995).

	28.	 Eberhart & Shi, Y. Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 Congress on 
Evolutionary Computation 1, 81–86 (2001).

	29.	 Moreira, G. J., Paquete, L., Duczmal, L. H., Menotti, D. & Takahashi, R. H. Multi-objective dynamic programming for spatial cluster 
detection. Environmental and Ecological Statistics 22, 369–391 (2015).

	30.	 Kennedy, J. & Eberhart, R. C. A discrete binary version of the particle swarm algorithm. In Systems, Man, and Cybernetics, 1997. 
Computational Cybernetics and Simulation., 1997 IEEE International Conference on, vol. 5, 4104–4108 (IEEE, 1997).

	31.	 Cervante, L., Xue, B., Zhang, M. & Shang, L. Binary particle swarm optimisation for feature selection: A filter based approach. In 
2012 IEEE Congress on Evolutionary Computation, 1–8 (IEEE, 2012).

	32.	 Chuang, L.-Y., Li, J.-C. & Yang, C.-H. Chaotic binary particle swarm optimization for feature selection using logistic map. In 
Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1 (2008).

	33.	 Christov, I. & Bortolan, G. Ranking of pattern recognition parameters for premature ventricular contractions classification by neural 
networks. Phisyological Measurement 25, 1281–1290 (2004).

	34.	 Özbay, Y., Ceylan, R. & Karlik, B. A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers 
in Biology and Medicine 36, 376–388 (2006).

	35.	 Bortolan, G., Christov, I. I. & Pedrycz, W. Hyperbox classifiers for ECG beat analysis. In Computers in Cardiology, 145–148 (2007).
	36.	 Übeyli, E. D. ECG beats classification using multiclass support vector machines with error correcting output codes. Digital Signal 

Processing 17, 675–684 (2007).
	37.	 Minhas, F. A. & Arif, M. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Physiological 

Measurement 29, 555–570 (2008).
	38.	 Asl, B. M., Setarehdan, S. K. & Mohebbi, M. Support vector machine-based arrhythmia classification using reduced features of heart 

rate variability signal. Artificial Intelligence in Medicine 44, 51–64 (2008).
	39.	 Mert, A., Klç, N. & Akan, A. Evaluation of bagging ensemble method with time-domain feature extraction for diagnosing of 

arrhythmia beats. Neural Computing and Applications 24, 317–326 (2014).
	40.	 Alickovic, E. & Subasi, A. Effect of multiscale pca de-noising in ECG beat classification for diagnosis of cardiovascular diseases. 

Circuits, Systems, and Signal Processing 34, 513–533 (2015).
	41.	 Li, H., Yuan, D., Ma, X., Cui, D. & Cao, L. Genetic algorithm for the optimization of features and neural networks in ecg signals 

classification. Scientific Reports 7 (2017).
	42.	 Soria, M. L. & Martinez, J. P. Analysis of multidomain features for ECG classification. In Computers in Cardiology, 561–564 (2009).
	43.	 Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M. & Poll, R. Optimization of ECG classification by means of feature selection. IEEE 

Transactions on Biomedical Engineering 58, 2168–2177 (2011).
	44.	 Ye, C., Kumar, B. V. K. & Coimbra, M. T. Combining general multi-class and specific two-class classifiers for improved customized 

ECG heartbeat classification. In International Conference on Pattern Recognition (ICPR), 2428–2431 (2012).
	45.	 Lin, C.-C. & Yang, C.-M. Heartbeat classification using normalized RR intervals and morphological features. Mathematical Problems 

in Engineering 2014, 1–11 (2014).
	46.	 Huang, H., Liu, J., Zhu, Q., Wang, R. & Hu, G. A new hierarchical method for inter-patient heartbeat classification using random 

projections and RR intervals. Biomedical Engineering Online 13, 1–26 (2014).

Acknowledgements
The authors would like to thank UFOP, UFPR, ITV, FAPEMIG (APQ-#02825-14), CAPES and CNPq (Grant # 
307010/2014-7) for the financial support. The authors also would like NVIDIA for the donation of one GPU Titan 
Black and two GPU Titan X.

Author Contributions
G.G. and E.L. conceived the experiment(s), G.M. and G.G. conducted the experiment(s), D.M., E.L. and G.M. 
analyses the results. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Accession codes: Source code: www.decom.ufop.br/csilab
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.decom.ufop.br/csilab
http://creativecommons.org/licenses/by/4.0/

	Inter-Patient ECG Heartbeat Classification with Temporal VCG Optimized by PSO

	Results

	Database setup. 
	Metric evaluation. 
	Proposed Method Flow. 

	Discussion

	Methods

	MIT-BIH Database. 
	Preprocessing. 
	Feature Extraction. 
	Temporal Vectorcardiogram and complex networks. 
	Morphological features. 
	Wavelet and the autocorrelation function. 

	Classifier. 
	Optimizing the complex networks and SVM. 
	Particle swarm optimization. 

	Feature Selection. 
	Binary PSO. 


	Acknowledgements

	Figure 1 Two principal components of raw ECG heartbeats from patients of MIT-BIH.
	Figure 2 Proposed method flow.
	Figure 3 (a) Lead A (MLII) (b) Lead B (V1) (c) VCG (d) TVCG.
	Figure 4 Calculations for metric evaluations.
	Algorithm 1 PSO with inertia factor.
	Table 1 Methods which used the Intra-patient paradigm.
	Table 2 Methods which used the Inter-patient paradigm.
	Table 3 Records used and number of representatives of each class for each of the partitions.
	Table 4 Test results (DS2) of the best parameters configuration.
	Table 5 Compared methods which used inter-patient paradigm and three classes (N), (S) and (V) for classification.
	Table 6 Confusion matrix for best parameters configurations, Common Filter in Table 4.




