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Cross-species transmission 
potential between wild pigs, 
livestock, poultry, wildlife, and 
humans: implications for disease 
risk management in North America
Ryan S. Miller   1, Steven J. Sweeney1, Chris Slootmaker2, Daniel A. Grear3, Paul A. Di Salvo1, 
Deborah Kiser1 & Stephanie A. Shwiff2

Cross-species disease transmission between wildlife, domestic animals and humans is an increasing 
threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health 
threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild 
pigs using a network approach. We assess the risk to agricultural and human health by evaluating the 
status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 
(87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. 
On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in 
other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). 
Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. 
The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all 
farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of 
wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk 
for cross-species transmission.

Diseases transmitted between humans, wildlife, and domestic animals are increasingly challenging public and 
veterinary health systems1, 2. In North America, it is estimated that at least 79% of reportable domestic animal 
diseases have a putative wildlife component associated with the transmission, maintenance, or life cycle of the 
pathogen and at least 40% are zoonotic3. Similarly three-fourths of all emerging infectious diseases (EIDs) of 
humans are zoonotic with most originating from wildlife reservoirs4, 5. Therefore, diseases that arise from the 
livestock–wildlife interface are of paramount importance and must be an area of focus for public and veterinary 
health systems6. Despite this importance cross-species transmission is one of the least studied aspects of disease 
ecology7, 8.

Wild pigs (Sus scrofa), that include feral domestic pigs (Sus scrofa domestica), Eurasian wild boar (Sus scrofa 
linnaeus), and hybrids between the two, are the most abundant free-ranging, exotic ungulates in North America9. 
Recently, wild pigs in North America have become of increasing concern as a potential veterinary and public 
health threat for cross-species transmission9, 10. Research and policy addressing wild pig disease has received 
increased attention in recent years9–11. This is driven, in part, by substantial range expansion, increasing ecological 
and agricultural damage, and increased involvement of wild pigs in disease transmission9. In North America, wild 
pigs have expanded their range to at least 41 states in the United States and three provinces in Canada since the 
1960s9, 10, 12 and recent modeling indicates that their potential range may be far greater13.
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In some parts of the world, wild pigs have been identified as an important reservoir for epidemic diseases, such 
as classical swine fever virus and African swine fever virus, that have the potential for serious socio-economic 
consequences14–16. These diseases, often termed transboundary animal diseases, can cause high morbidity and 
mortality in susceptible animal populations constituting a threat to national economies17. The cost of an outbreak 
of foot and mouth disease (FMD) involving wild pigs is estimated to range from USD$11.9 million to USD$5.8 
billion18, 19. In addition disease risks posed by wild pigs to other domestic animals (i.e. cattle) are increasingly 
identified9, 10, 20–22. The potential for disease outbreaks to impact international trade may also be important23.

In addition to agricultural impacts, wild pigs are associated with a diversity of public health issues. Wild pigs 
have been implicated in the transmission of zoonotic viruses such as hepatitis E virus (HEV)24, trichinellosis25, 26, 
swine influenza virus27, and Japanese encephalitis virus28. In addition to direct transmission, wild pigs have been 
identified as a contributor to O157:H7 Escherichia coli contamination in watersheds29. Interest in the role that 
wild pigs may play in foodborne illness has also increased after recent outbreaks of Salmonella spp. in spinach and 
other leafy greens were traced back to farms in areas with wild pig populations29, 30.

The threats posed by diseases in wild pigs have been recognized in North America as well as globally for some 
pathogen-host systems9. A recent evaluation of 80,000 publications addressing wildlife-livestock diseases found 
that only 18% of the publications addressed the domestic swine interface and that this may be an important 
knowledge gap given global increases in swine production31. While there have been numerous system specific 
studies investigating the role of wild pigs in pathogen transmission these studies are primarily limited to diseases 
of concern for domestic swine production14, 16 or human health25, 26. As a result there is not currently an assess-
ment across all economically important pathogens known to infect swine (domestic and wild) and the potential 
transmission of these pathogens between wild pigs, livestock, poultry, wildlife, and humans. Here, our objec-
tives are three fold. First, we identify economically important pathogens (bacterial, viral, and parasitic) that are 
potentially shared between wild pigs, livestock, poultry, cervids, and humans. Second, we evaluate the reported 
prevalence of these pathogens in North American wild pig populations to assess any potential gaps in knowledge. 
Third, to illustrate the importance of disease risk management, we investigate the number of farms potentially at 
risk in the United States.

To achieve these objectives we used a common risk identification methodology to identify wild pig pathogens 
that can be shared between livestock, wildlife, and humans by evaluating susceptibility to these pathogens1, 3, 32, 33. 
We then used these data describing pathogen susceptibility by species to develop transmission potential networks 
that describe the potential for pathogen sharing between species8, 34. Network metrics were used to identify spe-
cies that had the highest potential for sharing of pathogens and identify pathogens that were most common across 
species. We identify gaps in knowledge required to inform surveillance, risk assessments, scientific studies, and 
risk mitigations for diseases of wild pigs and provide a discussion of these in the context of wild pig range overlap 
with agriculture in the United States.

Methods
Assessment and identification of shared pathogens.  First we considered 84 World Organisation for 
Animal Health (OIE) terrestrial pathogens that were listed beginning in 2013 (bee diseases were excluded)35. 
Each of these 84 pathogens was evaluated using the published literature to determine its reported ability to infect 
swine (wild and domestic), cattle, sheep, goats, horses, poultry, cervids (North American deer and elk species 
only), and humans. A priori we identified and used nine susceptibility categories to characterize the outcome 
of infection in each of these host species (Table 1). Using these susceptibility categories the scientific literature 
was reviewed for each pathogen and based on this literature each host was assigned to the a-priori categories. A 
detailed description of the search criteria used are included in the supplemental. The final set of classified path-
ogens by host was then reviewed independently by five veterinary epidemiologists to achieve consensus based 
on the supporting evidence for each assigned category (details also provided in the supplemental material). This 
independent review reduced potential bias that maybe associated with the literature search. Where possible, we 
used literature to confirm whether wild and domestic swine were equally susceptible to pathogens. When litera-
ture was unavailable to discern any differences between wild and domestic swine (the case with most pathogens) 
we assumed that domestic swine and wild pigs were similarly affected. We summarized these data to describe the 
number of pathogens each species was susceptible.

Transmission potential networks.  To investigate the species (hosts) and pathogens with the great-
est potential to be involved in transmission we determined the degree of association among hosts with 
“transmission-potential networks” (TPN), where hosts were network nodes (swine, sheep, goat, cattle, cervid, 
poultry, equine, human) that were connected via edges defined by similarity in pathogen susceptibility7, 34. Thus 
edges are not equivalent to networks based on contact patterns. Edges in our transmission networks depict the 
potential for transmission between host species based on known etiology and host range for the pathogen rather 
than pathogen co-occurrence in space and time34, 36, 37. We define transmission potential to mean the likelihood 
that a given host species group will infect another species group, relative to other species in the network, based 
on species susceptibility to the pathogen. Thus, connected species form part of the same transmission chain7, 34, 

37. Using methods similar to Pilosof, et al.34 we generated TPNs for two general cases, 1) host pairs were both 
clinically susceptible and 2) host pairs were clinically or subclinically susceptible. For the first case, TPNs defined 
edges if two host types were clinically susceptible to the same pathogen and were constructed for all pathogens, 
and separately for bacterial pathogens, viral pathogens, and parasitic pathogens resulting in four TPNs. For the 
second case, TPNs defined edges if two host types were clinically or subclinically affected by the same pathogen 
and were also generated for all pathogens, bacterial pathogens, viral pathogens, and parasitic pathogens resulting 
in four TPN.
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The structural characteristics of these networks were evaluated using both edge and node level statistics. Edge 
weights in the TPNs where calculated for bacterial, viral and parasitic pathogens using the Jaccard index38, assum-
ing a positive relationship of pathogen infections shared by species and the likelihood that a pathogen would 
infect them both. Thus, an edge received its minimum value of zero when the species did not share any pathogens 
and its maximum value of 1 when the pair of species was susceptible to the exact same pathogens. Index values 
closer to 1 indicate greater potential for transmission of pathogen types while values close to zero indicate no or 
limited potential transmission.

Eigenvalue centrality (EC) was used to quantify the importance of a host species (node) in terms of promot-
ing pathogen transmission potential among all host species. With EC, a species group’s importance is increased 
when it has more connections to other species that are themselves important39. EC thus enables quantification of 
the transmission potential of a species group among all species in the network40, 41. We also generated node level 
statistics for individual pathogens to evaluate the relative importance of individual pathogens in the networks. 
We used normalized degree centrality (DC) and EC metrics among the TPNs defined by each group of pathogens 
(bacterial, viral, parasitic and all pathogens considered together). DC increases as more species are susceptible 
and received its maximum value of 1 when all species were susceptible (i.e. clinical or subclinical depending on 
the network) to the pathogen42. EC for pathogens can be interpreted in the same way as host species.

Assessment of current status of pathogens in North America.  To generate data describing the cur-
rent status of OIE listed pathogens in wild pigs in North America, we developed a method to sample from the 
scientific literature. Our approach is based on PRISMA (Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) method of systematic literature review43, 44. Our objective was not to identify all papers reporting 
pathogen findings but rather to generate a representative sample that could be used to determine pathogens that 
have existing surveillance studies. To achieve this objective, first we used keywords to search three databases 
(PubMed, Scopus, and Web of Science) for papers reporting surveillance results, pathology, and case reports for 
wild pigs for any pathogen43, 45, 46. We confined our search to the literature published in English since 1900. All 
scientific peer reviewed literature describing any wild pig pathogens in North America was considered eligible 
(details regarding the search criteria are included in the supplemental material). We assumed that these papers 
represented the known status of pathogens in swine in North America. Once all relevant sources were identified 
and retrieved, we reviewed each paper to ensure relevance. The numbers of papers reporting pathogen findings in 
wild pigs were tallied by pathogen to determine variability in known pathogen occurrence in wild pigs. We report 
the number of studies and the range of reported prevalence for pathogens in the North America.

Assessment of farms and rural populations potentially at risk.  To illustrate the potential risk to 
agriculture and humans resulting from exposure to wild pigs, we examined the co-occurrence of wild pigs, farms, 
and rural human population. Because data describing the distribution of wild pigs is not available for Canada and 
Mexico our analysis was restricted to the United States. A measure of the annual co-occurrence was developed 
using three data sources. Data reporting the number of farms by agricultural commodity and county was com-
piled from the National Agricultural Statistics Service (NASS) Quick Stats database47. We restricted our inves-
tigation to the livestock commodities (species) listed in Table 2 (i.e. domestic swine, cattle, sheep, goat, cervids, 
equine, and poultry). The county-level number of farms is available at a national scale for 2002, 2007, and 2012. 
For completeness, we included rural human population as a proxy for potential human-wild pig interaction. 
County-level estimates of rural human population are available from the 2010 census48. The county level distri-
bution (presence/absence) of wild pigs, were compiled from the Southeast Cooperative Wildlife Disease Study 
(SCWDS)49. The SCWDS data represent the known distribution of wild pig populations from 1982 until present. 
These data were merged to generate a database describing at the county-level the number of farms, rural human 
population size, and the presence or absence of wild pigs. We used only the 2010 census because it was closest to 
the mid-point of the wild pig data and changes in rural populations were small (mean = 0.29%) and bounded zero 
(range −0.07 to 0.74%) from 2012 to 2013 providing a good approximation of rural populations50. The national 

Category Code Description

Clinical C Capable of developing clinical disease but can also be subclinical 
in some circumstances.

Subclinical SC Can be infected but does not develop clinical disease.

Affected A Species group is known to be susceptible (including seropositive) 
however it is unclear if they become clinical or subclinical hosts.

Occasional O Occasionally reported, but is rare or atypical in species group.

Uncertain U Some evidence suggests the species may be affected; however 
scientific evidence is currently unclear, lacking, or anecdotal.

Experimental EX Species group can become experimentally infected however 
natural infection is unknown or not reported.

Definitive Host DH Species group is considered the definitive host for the parasite.

Intermediate Host IH Species group is considered the intermediate host for the parasite.

Dead-end Host DEH Species group is considered a dead-end host for the parasite.

Table 1.  Susceptibility categories used to describe infection in the host species. Categories were established 
a-priori and used to denote the potential impact in each of these species based on available scientific literature.
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Pathogen Status
Wild pig 
Prevalence

Prevalence 
Study

Wild 
Pig

Domestic 
Swine Cattle Sheep Goat Poultry Cervid Equine Human

Supporting 
Citations

Bacterial
Bacillus anthracis Yes C C C C C C C C C 103–108
Brucella abortus Yes 35% 109 C C C C C C C C 104, 105, 110
Brucella melitensis 1999 C C C C C C 105, 107, 108

Brucella suis Yes 0–68.8% 20, 109, 
111–114 C C SC O O C C 107, 108

Coxiella burnetii Yes 50% 115 A A C C C A A A C 106
Ehrlichia ruminantium NR C C C EX 108, 116

Francisella tularensis Yes 1.3% 117 C C C C C U A C C 104, 107, 108, 
118

Leptospira† Yes 8–87% 119, 120 C C C C C C C C 104, 105, 121
Mycobacterium avium Yes C C C C C U C EX U 104–106

Mycobacterium bovis Yes 2–85% 122, 123 C C C C C U C C C 1, 3, 104, 105, 
124

Pasteurella multocida Yes C C C C C C 107, 108, 125
Viral
African swine fever virus NR C C 107, 108
Alcelaphine gammaherpesvirus† Yes C C SC SC C 104, 105, 108
Bluetongue virus Yes SC C C C O 108
bovine herpesvirus 1 Yes C C C A 104

Bovine viral diarrhea virus Yes 0% 119 C C SC SC SC 104, 105, 126, 
127

Classical swine fever virus 2015 0% 128 C C 104, 107, 108
Crimean-Congo hemorrhagic fever virus NR SC SC SC SC SC C 108
Eastern equine encephalomyelitis virus Yes 16.5% 129, 130 C C C C C C C C C 131–133
Ehrlichia ruminantium NR C C C EX 108, 116
Epizootic hemorrhagic disease virus Yes C EX C 108, 134, 135
Foot and mouth disease virus 1947 C C C C C C C 107, 108
Influenza (avian) virus Yes 1–14.4% 27, 73 C C A SC SC C SC C C 136–141
Influenza (equine) virus Yes C EX A U C C 142, 143

Japanese encephalitis virus NR C SC SC SC SC C C
105, 107, 108, 
131, 132, 144, 
145

Nipah virus NR C U C C C 105, 107, 108
Peste des petits ruminants virus NR EX SC C C EX 107, 108, 146
Porcine epidemic diarrhea virus† Yes C 137, 147

Porcine repro. and resp. synd. virus† Yes 1–3% 76, 148, 
149 C C 76, 104

Rabies lyssavirus Yes C C C C C C C 107, 108
Rift Valley fever virus NR A C C C A C 108, 150
Rinderpest morbillivirus NR C C C C 151, 152

Suid herpesvirus 1 Yes 7–61% 14, 77, 113, 
153 C C C C C U C O 104, 105, 107, 

108
Swine vesicular disease virus NR C 107, 108
Transmissible Gastroenteritis Coronavirus Yes 0% 148, 154 C C 104
Venezuelan equine encephalomyelitis virus 1971 C C C C SC C C 107, 108

Vesicular stomatitis virus Yes 0–100% 57, 155, 
156 C C C C C A, EX A C C 104, 107, 108, 

157

West Nile virus Yes 16.1–
32.1% 158 SC SC SC C SC C C C C 108, 159–162

Parasitic

Echinococcus sp. Yes C, IH C, IH C, IH C, IH C, 
IH C, IH C, IH C, IH 108, 163–167

Leishmania sp. NR SC, DEH C C C C C 107, 108
New world screwworm 1990 C C C C C C C C 107, 108
Old world screwworm NR C C C C C C C C 107, 108

Taenia solium Yes 42–59.2% 76, 168, 
169 C, IH C, IH O, IH O, IH C, DH, 

IH 107, 108

Trichinella sp. Yes 13.3% 170 C C SC C 107, 171, 172
Trypanosoma evansi NR C C O O C C O 107, 108
Trypanosoma sp. NR C C C C U C C 108

Table 2.  Susceptibility of seven host species to OIE listed swine pathogens. The table presents the results of 
the host susceptibility classification for 45 pathogens known to impact swine. In addition, the known status 
(present/absent) of the pathogens in North American wild pigs along with the reported prevalence range are 
included. If the pathogen was historically present but has been eradicated from North America the year of 
eradication is provided and pathogens never reported are indicated as NR. Wild pigs are included specifically to 
identify gaps in available scientific data for differences in susceptibility between domestic swine and wild pigs. 
Pathogens noted with † were not OIE listed at the time of analysis however are included here for completeness 
and were not included in network analyses.
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proportion of farms and rural populations co-occurring with wild pigs was then calculated for the years 2002, 
2007, and 2012. We estimated the increase in the number of farms and human populations co-occurring with 
wild pigs using linear regression.

Implementation of analytical methods.  All statistical and network analyses were implemented in the 
R computing environment51. Network analyses were implemented using the Network Analysis and Visualization 
(igraph) package52. Linear regression and descriptive statistics were calculated using base functions in R. Standard 
deviations and confidence intervals of proportions were calculated using the score interval approximation 
method53.

Results
Identification of shared pathogens.  Our assessment using a structured literature review and expert panel 
identified 39 (46%) of the 84 OIE terrestrial pathogens as those that can affect swine, with 22 (56%) viral, 9 (23%) 
bacterial, and 8 (21%) parasitic pathogens (Table 2). Of these 39 pathogens affecting swine, 33 (85%) caused clin-
ical disease while only a few (4; 10%) were categorized as causing asymptomatic (or subclinical) infection or had 
documented natural infections in swine with unknown consequences in (2; 5%). Our assessment of all species’ 
susceptibility to pathogens of swine found that of these 39 pathogens, 34 (87.2%) caused clinical or sub-clinical 
disease in at least one other species. On average 70% (±25%; ±StDev) of swine pathogens could infect other 
species (Table 3). Specifically, non-swine hosts were susceptible (clinical, subclinical, affected, and occasionally 
affected) to 80% (±32%) of bacterial, 56% (±13%) of viral, and 73% (±24%) of swine parasitic pathogens. All 
species except for poultry were susceptible to greater than 75% of bacterial pathogens. All species except poultry 
and cervids were susceptible to more than 75% of parasites; humans had the greatest number, being susceptible to 
100% of parasites evaluated. Susceptibility to swine viral pathogens was the lowest among other host species with 
Bovidae (cattle, sheep, goat) being the most susceptible (>60%) to swine viral pathogens (see Table 2). On aver-
age 73% (±29%) of bacterial, 39% (±13%) of viral, and 63% (±20%) of swine parasitic pathogens caused clinical 
disease in other species. All species except poultry and cervids had greater than 75% of swine bacterial pathogens 
causing clinical disease. Humans accounted for the greatest proportion of swine viral pathogens causing clinical 
disease (88%) while cattle, humans, and horses accounted for the greatest number of parasitic pathogens causing 
clinical disease. We also documented studies that specifically investigated wild pigs for susceptibility to domestic 
swine diseases. Nearly all 8 (80%) of the bacterial diseases had been investigated using wild pigs. Only 10 (37%) of 
the viral pathogens and 3 (37%) of the parasitic pathogens had been investigated in wild pigs.

Transmission potential.  Transmission potential, measured using the Jaccard index, between swine and 
other species demonstrated heterogeneity. Figure 1 illustrates the transmission potential between swine and other 
species. Members of the family Bovidae were important (upper 75th quartile Jaccard index) for all but parasitic 
pathogens causing clinical disease. When all pathogens were considered together cattle was the only species group 
in the upper 75th quartile. Transmission potential between swine and multiple species was greatest for bacterial 
pathogens with cattle, sheep, goat, and horse all having Jaccard index values in the upper 75th quartile. Viral 
pathogen transmission with swine was greatest for cattle and goats. In our study parasitic pathogen transmission 
potential with swine was highest for humans. In networks considering all types of susceptibility cattle, sheep, 
and goat had the greatest relative transmission potential with swine. There was little difference between bacterial 
pathogen networks for clinical susceptibility and all susceptibilities. Parasitic transmission potential with swine 
increased with sheep, horse and humans all in the upper 75th quartile.

Centrality for species demonstrated less heterogeneity (Tables 3 and 4). Cattle, sheep and goat consistently 
had the greatest centralities (mean EV = 0.99; 0.98–1; min-max) while poultry had lower network centrality 
(EV = 0.40; 0.17–0.65) across all networks and had the lowest centrality (EV = 0.17) for bacterial pathogens. 
Human centrality (EV = 0.85; 0.77–0.99) was also low for all but the network considering all potential species 
susceptibilities to parasitic pathogens, in which it had the largest centrality (EV = 0.99).

Pathogen centrality had greater heterogeneity when compared to species centrality (see Supplemental 
Table S4). Twenty four (70.6%) pathogens had eigenvector centralities greater than 0.5 and normalized degree 
centralities greater than 0.5, indicating they could be transmitted to at least half of the species considered. Only 
nine (26.5%) of the pathogens had centrality values below 0.5. Bacterial pathogens on average had greater 

Cattle Sheep Goats Horse Cervids Poultry Humans Mean StdDev

% Shared

Bacterial 100 100 100 100 75 12.5 75 80.4 32.2

Viral 75 87.5 75 87.5 62.5 25 100 73.2 24.4

Parasitic 66.7 61.9 71.4 52.4 47.6 33.3 57.1 55.8 12.8

All 75.7 75.7 78.4 70.3 56.8 27 70.3 64.9 18.1

Eigenvalue Centrality Mean Min/Max

Bacterial 1 1 1 1 0.80 0.17 0.80 0.82 0.17–1

Viral 0.99 0.98 1 0.88 0.78 0.65 0.92 0.89 0.65–1

Parasitic 0.98 1 0.98 0.97 0.77 0.42 0.99 0.87 0.42–1

All 1 0.99 1 0.92 0.79 0.46 0.90 0.87 0.46–1

Table 3.  All swine pathogens causing clinical and sub-clinical disease in livestock, poultry, cervids and humans.

http://S4
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centrality (EV = 0.86; 0.58–1; DG = 0.78; 0.5–1) than viral (EV = 0.58; 0.17–0.96; DG = 0.52; 0.13–0.88) and par-
asitic pathogens (EV = 0.73; 0.30–1; DG = 0.68; 0.26–1). The upper 75th quartile of centralities were composed of 
three bacterial pathogens (Bacillus anthracis, M. tuberculosis, B. abortus), three parasitic pathogens (Chrysomya 
putoria, Cochliomyia hominivorax, Echinococcosis sp.), and one virus (Lyssavirus sp.) (Table S2). Pathogens with 
the smallest centralities were largely viral, with the lower 25th quartile of centralities composed of six viruses 
(Equine influenza, Asfivirus sp., Pestivirus sp., Arterivirus sp., Enterovirus B, Alphacoronavirus 1), and two parasites 
(Trichinella spp, Taenia solium).

Current status of pathogens in North America.  Sampling of the literature for surveillance studies in 
North American wild pigs identified 72 publications reporting studies for 48 pathogens. The majority of studies 
70 (97%) described surveillance findings from wild pig populations in the United States. We identified one study 
reporting surveillance results for six pathogens from Sierra La Laguna Biosphere Reserve in Mexico54. There 
was also a single study from the Canadian province of Saskatchewan that reported surveillance results for twelve 
pathogens55. The earliest publication we identified was from 1962 describing epidemiological findings for lepto-
spirosis in wild pigs in Georgia56 while the majority (61%) of publications were from the last 20 years. Ten path-
ogens accounted for 64% of the scientific studies with two, Brucella suis and Suid herpesvirus (Aujeszky’s disease 
virus), accounting for 30% of studies (Fig. 2; Table S5). Viral pathogens accounted for the largest number (49%) 
of surveillance studies while bacterial pathogens accounted for 35%. Thirteen parasites had surveillance studies 
and Toxoplasma gondii accounted for 33% of these studies. Only 49% of OIE listed swine diseases (Table 2) had 
published surveillance studies reporting findings (positive or negative) in wild pigs and 41% of studies described 
surveillance results for non-OIE listed pathogens. For pathogens of swine that cause clinical disease in other 
species 15 (45%) had surveillance studies published. Reported prevalence for these 18 pathogens ranged from 0% 

Figure 1.  Transmission potential networks used in this study created by connecting two host species if they 
were susceptible to the same pathogen causing clinical or subclinical disease in swine. Top row are pathogens 
causing clinical disease in non-swine hosts and the bottom row are all pathogens affecting non-swine hosts. 
Edge weight between two species is the similarity in the parasites infecting a pair of individuals calculated with 
the Jaccard index. Red edges denote Jaccard index in the upper 75th quartile, while light gray are edges in the 
lower 25th quartile. Node size indicates the relative centrality of the species group in the transmission network, 
calculated using the eigenvalue centrality – more central nodes are larger.

Cattle Sheep Goats Horse Cervids Poultry Humans Mean StdDev

% Shared

Bacterial 87.5 87.5 87.5 100 62.5 12.5 75 73.2 29.3

Viral 75 62.5 62.5 75 50 25 87.5 62.5 20.4

Parasitic 42.9 42.9 47.6 42.9 28.6 14.3 52.4 38.8 13

All 59.5 56.8 59.5 62.2 40.5 16.2 64.9 51.4 17.4

Eigenvalue Centrality Mean Min/Max

Bacterial 1.00 1.00 1.00 0.98 0.77 0.20 0.77 0.82 0.20–1

Viral 0.91 1.00 0.98 0.83 0.77 0.42 0.88 0.83 0.42–1

Parasitic 1.00 0.98 0.98 1.00 0.77 0.53 0.85 0.87 0.53–1

All 0.98 1.00 0.99 0.93 0.77 0.37 0.84 0.84 0.37–1

Table 4.  Swine pathogens that cause clinical disease in livestock, poultry, cervids and humans.

http://S2
http://S5
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to 100%, with vesicular stomatitis virus having the highest reported prevalence (100%) for a single population on 
Ossobaw island, Georgia57.

Farms and rural populations potentially at risk.  The co-occurrence of wild pigs and farms for all 
commodities increased across the ten years investigated (Fig. 3). For the year 2012 on average 47.7% (range 
56.5–36.5%) of all farms were in counties with wild pigs representing 46.6% (range 77.3–11.3%) of all domestic 
animals. The geographic co-occurrence for 2012 is illustrated in Fig. 4 and shows high densities of concordance 
in the Midwestern states of Texas, Oklahoma, Arkansas, western states of California and Oregon, and eastern 
states of South Carolina, North Carolina and Florida. Farmed cervids had the largest increase resulting in a 66.6% 
increase in co-occurrence across the ten years. In 2012, 56.5% of all cervid farms representing 77.3% of all ani-
mals were in counties where wild pigs were present. Four of the seven agricultural commodities investigated had 
over 40% of farms in counties with wild pigs. Domestic swine, an agricultural commodity of concern for disease 
transmission from wild pigs, had a 58% increase in co-occurrence and an annual rate of increase of 1.3% (95% 
CI = 1.0–1.7%), with 36.5% farms and 11.3% of animals in counties with wild pigs. Rural human populations had 
a 29.9% increase in co-occurrence with wild pigs and an annual rate of increase of 1.07% (95% CI = 0.5–1.7%). In 
2012 an estimated 46.5% of all rural U.S. citizens lived in counties with wild pigs.

Discussion
Properties of the transmission potential networks provide an increased understanding of the potential risks of 
pathogen sharing among species. The majority (87%) of swine pathogens can be transmitted to other species; 
however this transmission potential was not evenly distributed across species. Both the co-occurrence of wild 
pigs with family Bovidae (cattle, sheep, goat) and the importance of these species in the transmission networks 
indicate a risk for transmission between Bovidae species and wild pigs. Bovidae had the highest network metrics 
indicating greater relative importance among the species and across all swine pathogens. Central nodes are often 
interpreted in epidemiological networks as being important for network wide transmission7, 58, 59, and the same 
may be true in transmission networks based on pathogen susceptibility34. This suggests that the family Bovidae, 
particularly cattle, may be important for transmitting pathogens between swine and other species. Commingling 
of wild pigs with cattle, sheep and goats is common throughout North America where domestic and wild rumi-
nants share pasture resources1, 60. Based on our analysis of wild pig occurrence data, greater than 50% of all U.S. 
cattle, sheep and goat co-occur in a county with wild pigs. Commingling of livestock, particularly cattle, with 
wildlife has been associated with the introduction of several pathogens into wildlife populations61, 62.

In addition to species heterogeneity, pathogens demonstrated heterogeneity that may be important for trans-
mission among host species. Vector borne pathogens made up less than 23% of pathogens indicating that those 
pathogens with direct transmission or transmission via fomites may be more likely to cross between species. Yet, 
despite their low overall frequency, vector borne pathogens were among the highest centralities for viral patho-
gens. The high potential for cross species transmission and the potential for expanding vector populations due to 
climate change63 highlights the potential risk posed by these pathogens. Vector borne pathogens can be among 
the most difficult to control once established64 and often cause long term challenges for disease risk mitigation.
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Figure 2.  Number of scientific peer reviewed publications (n = 72) reporting results of prevalence studies for 
wild pigs in North America. Dots along top margin indicate OIE listed swine pathogens (n = 19) of the total 
number of pathogens (n = 48) with studies.
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Excluding vector borne pathogens, fourteen pathogens accounted for 77% of the pathogen network centrality, 
with greater than two thirds of these being bacterial and parasitic. In the case of bacterial pathogens, B. abortus 
and M. bovis had the highest centrality, when B. anthracis a pathogen commonly transmitted in the environment, 
was excluded. These two pathogens have challenged disease control programs in North America for over a cen-
tury. More recently wild pigs have been established as a maintenance host for M. bovis in several populations 
globally65, 66 and may pose a risk for transmission in North America67. Cross species transmission may be of par-
ticular concern in regions with increased commingling of at-risk cattle with wild pigs60 and in regions such as the 
state of Michigan or Riding Mountain National park in Canada where M. bovis is endemic in wildlife68. Broadly 
our network centrality findings were similar to an inventory of known livestock pathogens that found 77% infect 
multiple hosts69, a study of human pathogens that found 73% are zoonotic70, and a study of OIE domestic animal 
pathogens that found 79% can be transmitted between wildlife and domestic animals3.

Non-vector borne viral pathogens with the largest transmission potential between wild pigs and other species 
included avian influenza virus, foot-and-mouth disease virus and Suid herpesvirus 1. Interestingly for some path-
ogens, particularly avian influenza virus, there was a high transmission potential in the pathogen networks (see 
Table S4 in supplemental material) and a relatively low transmission potential for the primary host (poultry) in 
the host networks. There are several potential explanations for this apparent incongruity. Avian influenza viruses’ 
natural host is wild waterfowl that were not included in our networks. This may indicate that other wildlife species 
such as waterfowl may have important connections across a diversity of hosts. More importantly this incongruity 
may indicate that some pathogens have a greater risk for cross species transmission despite low host connectance.

Pathogens, such as avian influenza virus and many of the bacterial pathogens have large host ranges often being 
able to adapt relatively quickly to new hosts and our approach highlights this characteristic. Our results also clarify 
which pathogens might be of greater concern requiring additional surveillance. For example the recent emergence 
of highly pathogenic avian influenza in North America71, the potential for swine (domestic or wild) to influence 
antigenic changes in the virus72, and serologic evidence of wild pigs being exposed to influenza27, 73, highlights the 
potential importance of influenza surveillance in domestic and wild pigs. In North America, wild pigs have been 
documented as actively infected with and having contributed to the transmission of only a fraction of the pathogens 
we investigated and their contribution to the persistence of these pathogens is still largely uncharacterized9. Given 
the large number of swine pathogens we found that might be transmitted among species, the potential for wild pigs 
to become an unmonitored reservoir for many pathogens is a concern requiring further inquiry and monitoring.

Despite effort to establish prevalence estimates for wild pigs (see supplemental Table S5), there are gaps for 
pathogens of interest for human, wildlife, and livestock health. We found discordance between the available sur-
veillance studies and the pathogens that can be shared across species. More than 50% of pathogens that cause 
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Figure 3.  Increase in the proportion of United States farms co-occurring with wild pigs over the ten years we 
investigated. Boxplots represent the interquartile range (gray box) with the median noted as a solid line, and the 
whiskers indicate the minimum and maximum of the data.

http://S4
http://S5


www.nature.com/scientificreports/

9SCIENtIFIC RePorTS | 7: 7821  | DOI:10.1038/s41598-017-07336-z

a) Cattle b) Domestic swine

c) Sheep d) Poultry

e) Goat f) Equine

g) Cervid h) Rural Population

Figure 4.  County level co-occurrence of wild pigs, agricultural commodities, and rural human populations in 
the contiguous United States for 2012. Red shading denotes by quartile the absolute farms density (farms per 
km2) or rural human population density (people per km2) within counties co-occurring with wild pigs while 
blue shading indicates counties without wild pigs. Maps were generated by combining publically available data 
(see methods) describing wild pig distribution from Southeast Cooperative Wildlife Disease Study (SCWDS), 
agriculture data from National Agricultural Statistics Service (NASS) Quick Stats database, and rural human 
population data available from the United States Census Bureau. Maps were created using the maptools package 
version 0.9.2101 in R version 3.3.0102.
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clinical disease in other species did not have any North American studies of prevalence in wild pigs. This contrasts 
with the potential exposure of livestock to wild pigs; domestic animals such as cattle and sheep, that are largely 
pasture raised in North America, have a potential for coming into contact (directly or indirectly) with wild pigs74, 

75 and share nearly 90% (see Table 4) of swine pathogens causing clinical infection. Those studies that do report 
prevalence are generally limited to local or regional investigations76, 77. While providing important data, local 
studies may not represent regional or national prevalence. We found only a few studies20, 78 that report prevalence 
and epidemiological patterns of infection at national or near national scales. Pathogens that did have multiple 
studies in different regions (e.g. leptospirosis, pseudorabies virus, swine brucellosis, and bovine tuberculosis) had 
prevalence estimates that ranged from 0–87% indicating spatial heterogeneity in prevalence and transmission 
risks likely occur. This result may be complicated by true and false detection errors that few studies addressed 
when reporting findings79 and can have large effects on estimated disease prevalence in wildlife80. Comprehensive 
surveillance systems that integrate livestock, wildlife, and human components have been previously identified as 
a need81. Explicitly accounting for the transmission potential and historic geospatial distribution of pathogens to 
prioritize surveillance (both livestock and wildlife) may offer benefits and reduce knowledge gaps for pathogens 
of concern for human, wildlife, and livestock health82. Developing a comprehensive national monitoring system 
that integrates domestic and wild animal surveillance, prioritizes pathogens based on transmission risk, potential 
consequences, and knowledge of occurrence could yield economic benefits for livestock health by reducing spill-
over events through early detection and risk mitigation83, 84.

Incomplete knowledge of the presence of pathogens in wild pig populations and the transmission poten-
tial we found may pose risks for foreign animal diseases in North America where wild pigs are potential 
hosts. The potential economic impacts resulting from disease outbreaks that include wildlife can be large18, 

85–87 and have long lasting effects on economies and production systems86, 88. Livestock production in the 
United States, that is increasingly interconnected and concentrated89, 90, is also becoming more globally 
reliant91, 92. The importance of exports in sustaining market opportunities for United States agriculture has 
increased, with over 20% of production value exported in 201293. As a result, disease threats to food safety or 
livestock health that may originate in wildlife have the potential to impact economies4, 94, 95. Despite potential 
economic impacts, assessments that explicitly link disease outbreaks involving wildlife and livestock with 
changes in export value are currently unavailable. Methods that link disease risk at the wildlife-livestock 
interface and compare the benefits and costs of risk management (e.g. surveillance, bio-security, etc) in both 
livestock, wildlife have been proposed3, 96, 97, however they have not been extended to risk management at a 
macro-economic scale.

Further, the expansion of wild pigs has resulted in a large portion of agriculture production and human pop-
ulations occurring in regions where wild pigs are present (Fig. 4). For the livestock commodities we investigated 
all had large proportions of farms in regions with wild pigs and none had declines in co-occurrence with wild 
pig populations. This large proportion of overlap of agricultural and rural populations is increasing as wild pig 
populations expand in North America98. Pathogen exposure risk to both agriculture and humans, along with the 
potential economic impacts99, highlight the need for quantitative analysis and consequence assessments of the 
risks wild pigs pose to agriculture and human health3. Recent analysis by Tompkins, et al.100 found that disease 
emergence at the wildlife-livestock interface is often driven by human-induced activities and exposure to domes-
tic animals. Further, Jones, et al.2 estimated that the rate of future zoonotic disease emergence/reemergence will 
be closely linked to changes in the agricultural-wildlife nexus. Several studies2, 3, 100 have also found that available 
research and tools inadequately addresses these complex problems limiting prediction, prevention, and mitiga-
tion. Given the findings of these studies together with ours, it would be broadly useful to develop approaches 
for the wildlife-livestock interface that link risk assessments and economic consequence assessments allowing 
evaluation of the relative benefits and costs of surveillance and risk mitigation, not only for invasive wild pigs, but 
for a diversity of wildlife-agricultural disease conflicts.

Our transmission networks highlight the potential for cross species transmission between wild pigs, livestock, 
cervids, and humans. They also highlight heterogeneity in both species and pathogens indicating some species 
are more important and that some pathogens maybe more frequently transmitted. Additional work is needed 
to establish the risk of exposure and transmission for pathogens of concern to humans and livestock and may 
necessitate surveillance studies elucidating potential risks for pathogens of greatest transmission potential. While 
a complete picture of the risks of wild pig associated diseases is not currently possible, the risk assessment process 
is valuable for prioritizing knowledge gaps. Evaluation of potential, but unstudied, impact of wild pigs on the 
consequences of disease (e.g. outbreak duration, extent, effectiveness of disease management) maybe warranted. 
As the first comprehensive assessment of cross-species diseases associated with wild pigs, these results are an early 
step to characterize and prioritize the disease risks as wild pig populations expand.
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