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Quality assessment of Chinese 
liquor with different ages and 
prediction analysis based on gas 
chromatography and electronic 
nose
M. L. Xu1,2, S. M. Zhu1,2 & Y. Yu1,2

The economic value of Chinese liquor is closely related with its age. Results from gas chromatograph 
(GC) analysis indicated that 8 dominant compounds were decreased with the increase of liquor age  
(0 to 5 years) while ethyl lactate was found to be the most stable dominant compound as no significant 
change was observed in it during the aging process. Liquor groups with different ages were well-
discriminated by principal component analysis (PCA) based on electronic nose signals. High-accurate 
identification of liquor ages was realized using linear discriminant analysis (LDA) with the accuracy of 
98.3% of the total 120 samples from six age groups. Partial least squares regression (PLSR) exhibited 
satisfying ability for liquor age prediction (R2: 0.9732 in calibration set and 0.9101 in validation set). The 
feasibility of volatile compounds prediction using PLSR combined with electronic nose was also verified 
by this research. However, the accuracies of PLSR models can be further promoted in future researches, 
perhaps by using more suitable sensors or modeling approaches.

Chinese liquor is one kind of traditional alcoholic beverages with a long history of over 6000 years1. The sales vol-
ume of Chinese liquor reached 82 billion dollars in 2015 which played an important role in the national economic 
development. Though small differences may exist in the manufacturing techniques of various liquors depending 
on the producing area and flavor type, three essential processes are generally involved: fermentation, distillation 
and aging2. Newly distilled liquors (young liquors) are often subjected to several months to years of aging to 
remove the undesired pungent flavor. During this aging process, a series of complex physicochemical reactions 
such as oxidation, esterification and hydrolysis can take place along with the possible permeation of small and 
polar molecules through the ceramic jar3, 4. Since the economic value of Chinese liquor is highly associated with 
its age, some dishonest producers counterfeit their younger products as several years aged liquors to get a higher 
selling price. Thus, the discrimination of liquor age and related predictive analysis are urgently needed to safe-
guard the market order and to protect consumer rights.

The current strategies which have been used to identify liquor age can be divided into two categories: sensorial 
evaluation and instrumental analysis. Sensorial evaluations are usually conducted by well-trained analysts to 
grade Chinese liquor according to characteristics of color, aroma, taste and overall quality5, 6. It is obvious that 
the evaluation result is lack of objectivity and reproducibility to some extent, since it can be easily affected by 
external conditions of the environment and internal physical and mental status of the analysts7. As for the instru-
mental analysis, gas chromatography8 or a combination of gas chromatography and mass spectrometry9, high 
performance liquid chromatography10, atomic absorption spectroscopy11 and spectrograph technique12 have been 
widely applied to analyze flavor characteristics of Chinese liquor based on their volatile compounds. However, 
in order to acquire accurate results, sophisticated pretreatment, long experimental period and skilled operating 
technician are usually needed, which causes much problem to research work. Above all, it’s of great importance 

1College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. 2Key 
laboratory of Equipment and Information in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, 
310058, China. Correspondence and requests for materials should be addressed to Y.Y. (email: yyuzju@zju.edu.cn)

Received: 18 May 2017
Accepted: 19 June 2017
Published online: 26 July 2017

OPEN

mailto:yyuzju@zju.edu.cn


www.nature.com/scientificreports/

2SCIEntIfIC REPOrts | 7: 6541 | DOI:10.1038/s41598-017-06958-7

to find out an ideal method to characterize flavor features of Chinese liquor precisely and conveniently in relation 
to the determination of liquor age.

During the last decades, more and more attention has been focused on the development of electronic nose, 
a non-destructive and rapid method used for detecting aroma characteristics of food matrix. The core com-
ponent of electronic nose system is the sensor array; each sensor generates specific response to corresponding 
aroma substance exists in the headspace of food samples, with the purpose of simulating human nose. Then a 
data-collection unit is usually used to acquire response values of the sensor array, after that, discrimination and 
prediction analysis can be realized by using multivariate statistical techniques. Apart from low cost and timesav-
ing features, electronic nose has also been proved to perform well in volatile compounds analysis of various foods, 
including fruit juices13, 14, alcoholic beverages15, 16 and green tea17.

Chinese liquors with different ages were used in this study, and nine dominant volatile compounds were 
selected and researched. The main objectives of this study were: (1) to investigate the possibility of using elec-
tronic nose combined with principal component analysis (PCA) and linear discriminant analysis (LDA) to dis-
criminate Chinese liquor with different ages; (2) to realize prediction analysis of liquor age and the contents of 
main volatile compounds in Chinese liquor based on response values and partial least squares regression (PLSR).

Results
Quantification of volatile compounds.  Although hundreds of volatile compounds have been found in 
Chinese liquor by previous researchers, only the dominant compounds were selected in this work, since the main 
objective of this research was to explore the possibility of predicting volatile compounds contents using electronic 
nose signals. As shown in Table 1, within the nine dominant compounds, 2 aldehydes, 4 alcohols, 2 esters and 1 
acid were included, and changes of them during aging were also characterized.

Aldehydes are generally formed by the oxidization of alcohols present in food and are usually described as 
having the odor of overripe apples18, 19. As presented in Table 1, concentrations of acetaldehyde and acetal were 
decreased rapidly during the first year of aging with the rate of 35% and 47% (P < 0.05), respectively, and no sig-
nificant change was found in the following three years. However, a slight decrease (P < 0.05) was both observed 
in the fifth year, which could conduce to human health since high concentration of acetal can cause damage to 
liver. Alcohols are mainly produced by deamination of amino acids under anaerobic conditions and/or decarbox-
ylation reactions of sugars under aerobic conditions during the fermentation process20. As can be seen, methanol 
and 1-propanol decreased significantly in the first year and maintained at the same level (P > 0.05) in the follow-
ing years, while the reduction of isoamylol and isobutanol contents (P < 0.05) were only observed in the fifth 
year. It should be noted that the control of methanol level is of great importance in the manufacturing process 
of Chinese liquor due to its toxicity, though the content is generally much lower than other abundant alcohols. 
As for esters, the content of ethyl acetate was reduced to 40% within the first two years and then kept at the same 
level (P > 0.05) in the next three years, however, further reduction was found in the fifth year with the rate of 30%. 
As an exception, ethyl lactate seems to be the most stable compound since no significant change was observed 
throughout the researched aging process from the first year to fifth year. This relative stable content of ethyl lactate 
can conduce to the mellow sensorial properties of Chinese liquor. The concentration of acetic acid was 1194 mg/L, 
which contributed more than 90% of the acidity of Chinese liquor. In the first year, a 41% decline from 1194 to 
701 mg/L was found, after that, no significant change was observed until the fifth year. Acids in Chinese liquor 
can have impact on sensory characteristics, contribute to color stability and increase antioxidant power of the 
products21.

Above all, eight compounds were found to decrease during the aging process except for ethyl acetate. Besides 
the complicated physicochemical reactions, it can be inferred that volatilization and the possible permeation 
might also have played an indispensable role during this process.

Electronic nose analysis and selection of response values.  The response value of sensors was calcu-
lated as G/G0, where G0 is defined as the electric conductivity of nitrogen (cleaning gas), and G is defined as the 
electric conductivity of tested samples. Typical response curves of the sensor array during the detection period of 
liquor samples are given in Fig. 1. The initial response values of ten sensors were all around 1, which means that 
the sensor array was well-calibrated before the detection. This process went on for about five seconds, and then 
response values of almost all sensors diverged from 1 and gradually tended to be stable after 40 s except for S2. 

Number Compounds Young One year Two years Three years Four years Five years

1 Acetaldehyde 237.81 ± 11.87a 152.99 ± 12.67b 148.14 ± 6.34b 144.73 ± 13.72b 153.67 ± 5.76b 118.96 ± 4.53c

2 Methanol 79.79 ± 3.46a 46.75 ± 2.06b 41.09 ± 1.66b 44.62 ± 3.97b 44.68 ± 2.35b 39.86 ± 1.11b

3 Ethyl acetate 1741.48 ± 87.52a 694.23 ± 36.17b 677.85 ± 44.60b 692.20 ± 164.33b 627.80 ± 32.33b 446.29 ± 20.55c

4 Acetal 519.72 ± 30.60a 275.31 ± 22.76b 260.37 ± 11.09b 267.91 ± 23.17b 255.42 ± 18.14b 183.57 ± 6.46c

5 1-Propanol 338.84 ± 16.54a 261.24 ± 20.35b 247.04 ± 7.04b 267.68 ± 23.10b 270.81 ± 13.65b 341.57 ± 10.96a

6 Isobutanol 637.67 ± 39.72a 593.72 ± 48.15a 573.37 ± 29.01a 551.78 ± 39.16a 549.03 ± 35.42a 390.93 ± 22.71b

7 Isoamylol 800.53 ± 41.79a 793.02 ± 38.19a 766.17 ± 19.15a 740.56 ± 52.14a 744.52 ± 44.75a 588.39 ± 18.53b

8 Ethyl lactate 446.38 ± 30.40a 465.10 ± 31.16a 445.73 ± 27.98a 450.21 ± 19.36a 454.67 ± 31.46a 443.85 ± 23.94a

9 Acetic acid 1194.00 ± 91.82a 701.73 ± 40.19b 688.29 ± 37.69b 673.71 ± 44.96b 676.13 ± 38.74b 570.52 ± 30.31c

Table 1.  Concentration of major volatile compounds in different aged Chinese liquors. All values are expressed 
as means (mg/L) ± standard deviation (SD). Different letters indicate significant differences (p < 0.05).
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Considering the continuous decrease of S2, the response values of all sensors at the 70th second were chosen as 
the original data. As can be seen from Table 2, low RSD values and significant differences (p < 0.001) obtained 
for all sensors among six liquor groups with different ages indicated that response values of the sensor array were 
stable and credible when exposed to liquor samples, and all the 10 sensors were closely related with liquor ages. 
Thus, response values of all sensors (S1 to S10) were used as the data matrix for the following discrimination and 
prediction analysis.

Classification based on principal components analysis (PCA).  As shown in the scores plot (Fig. 2), 
the first two principal components (PC1 & PC2) were taken as coordinate axes, which explained the total variance 
of 90.36% (82.65% for PC1 and 7.71% for PC2). It showed that liquor samples clustered closely together within 
group and separated clearly from each other between groups. Specifically, young liquors without aging were 
grouped on the negative side of PC2 while the other five aged groups were clustered on the positive side of PC2. 
It seemed that PC2 played a dominant role in discriminating liquors with and without aging process rather than 
PC1. As for the five aged groups, one-year-aged and two-year-aged groups were located on the negative side of 
PC1 while the other three aged groups were situated on the positive side.

Young liquors clustered individually as one category suggested the existence of big overall differences between 
young and aged liquors. The overlapped region between one-year and two-year aged liquors were resulted from 
the similar volatile composition in these two groups. During the second year of aging, only small changes were 
observed in the main volatile compounds, and as a consequence, similar response values were obtained in these 
two liquor groups, thus it can be hard to completely discriminate one-year-aged liquor from two-year-aged one 
based on the response values of electronic nose. Similar phenomenon was also observed between three-year 
and four-year aged samples, which was caused by the same reason as previously stated. Only three samples from 
five-year-aged liquors were distributed within the region of four-year-aged group indicating a satisfying separa-
tion, and this was mainly due to the further significant changes that took place in the fifth year of aging. These 
findings can be verified by the results of gas chromatography analysis. As stated previously, the concentrations of 
volatile compounds in two-year and three-year aged liquors were similar to each other, but quite unexpectedly, 

Figure 1.  Typical responding curves of liquor samples obtained from electronic nose.

Sensors
Young 
(%)

One 
(%)

Two 
(%)

Three  
(%)

Four 
(%)

Five 
(%) F value P value

S1 2.21 1.96 2.76 2.04 2.29 2.08 73.088 <0.001

S2 4.19 3.07 4.60 3.50 2.44 3.00 39.975 <0.001

S3 2.47 1.93 2.51 2.10 2.32 2.16 22.989 <0.001

S4 1.51 1.91 1.84 1.86 2.25 1.03 104.818 <0.001

S5 2.40 1.84 2.39 2.02 2.14 1.91 20.253 <0.001

S6 5.47 3.80 6.19 4.37 4.28 3.86 34.211 <0.001

S7 2.70 1.97 3.77 2.80 2.81 2.29 8.283 <0.001

S8 7.12 5.36 7.66 5.82 4.23 3.52 59.781 <0.001

S9 3.42 3.01 3.58 2.71 2.69 2.52 25.731 <0.001

S10 1.08 0.80 1.30 0.97 0.94 0.47 46.629 <0.001

Table 2.  Results of RSD test and One Way ANOVA of response values. Each RSD value was obtained from 
20 samples of each group. One Way ANOVA of each sensor was performed with 120 samples (20 replicates 
multiply by 6 groups).
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these two groups were located on the different side of PC1, namely, two-year for the negative side while three-year 
for the positive side, which elucidated the existence of big overall gaps between them. This might have been 
caused by some undetected substance which strongly affected the sensor responses of electronic nose; however, 
further research should be carried out to investigate what exactly happened during the third year of aging.

Identification based on linear discriminant analysis (LDA).  As discussed before, classification based 
on PCA presented some partial overlaps between groups, thus, LDA was carried out to realize a better discrimi-
nation as it has been proved to perform well in the identification of Chinese liquor with different aroma charac-
teristics22 and green tea produced in various areas23. Mahalanobis Distance Stepwise method was used and the F 
value of 3.84 was set as the joining condition of all sensors, therefore, only sensors with F values higher than 3.84 
could be chosen as subsequent discriminating factors. As a result, S5, S7 and S8 were removed since the F values 
of them were lower than 3.84 (1.93, 3.10 and 1.56, respectively).

Figure 3 displays the distribution of six groups based on discriminant functions. The first discriminant func-
tion (DF1) and the second discriminant function (DF2) were selected as coordinate axes, which explained 94.0% 
of the total variance (78.7% for DF1 and 15.3% for DF2). The classification results of 120 liquor samples are pre-
sented in Table 3. As can be seen, only two liquor samples were wrongly identified, one from two-year-aged group 
was recognized as three-year-aged liquor, the other one from four-year-aged group was graded as five-year-aged 

Figure 2.  PCA results of liquor samples with different age based on response values.

Figure 3.  LDA results of liquor samples with different ages based on response values.
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liquor. This also could be observed from Fig. 3, the unexpected distributions of these two samples might have 
been caused by the fluctuations of one or several sensors. Beyond that, the rest of 118 liquor samples were all cor-
rectly classified, and reached a total accuracy of 98.3%. These results confirmed the feasibility of using LDA based 
on electronic nose to realize a highly accurate identification of Chinese liquor with different ages. In addition, 
the better identification results achieved by LDA in comparison with PCA indicated the importance of sensor 
optimization, since all sensors were used in PCA while less relevant sensors (S5, S7 and S8) were excluded in LDA.

Prediction of liquor age.  The prediction analysis of liquor age was performed by PLSR. Responses values 
of Chinese liquor with different ages obtained from 10 sensors were used as the raw database; these values were 
directly applied to the prediction model as independent variables, while liquor ages were applied as dependent 
variables. 120 samples (20 from each group) were randomly divided into two sub-groups, one for calibration and 
the other one for validation. The calibration set consisted of 90 samples (15 from each group) and the validation 
set contained 30 samples (5 from each group).

To isolate a few potential sensor values that provide a good prediction work, a PLSR model was firstly fitted 
using the 90 samples from validation set, as a result, ten factors were extracted. After that, leave-one-out technique 
was carried out for the cross validation in order to choose the suitable number of factors. During that process, 90 
samples from the calibration set was randomly divided into several sub-groups, all the sub-groups were used to fit 
a PLSR model except one, then the capability of the fitted model to predict response values for the omitted group 
was evaluated. The above process was then repeated for each sub-group, and the overall capability of a given form 
of the model could be measured by comparing the predicted residual sum of squares (PRESS) based on the resid-
uals generated by this process. The minimum PRESS of 0.1980 was acquired with six extracted factors; however, 
PRESS values obtained with three, four and five factors (0.2536, 0.2039 and 0.2092) were close to the one of six 
factors, which suggested that six factors might not be the best choice. To verify this conjecture, a statistical model 
comparison suggested by van der Voet24 was performed to test whether the differences were significant. The p 
value of 0.544 in comparing the cross-validated residuals from models with six and four factors indicated that the 
difference between the two models was insignificant, while the one with six and three was significant. Therefore, 
four factors were finally confirmed as the smallest number of factors with the minimum PRESS. The selected four 
factors accounted for 95.6% of the total variances for the model (85.9%, 5.8%, 2.4% and 1.4%, respectively) and 
96.8% for the dependent variables (58.3%, 32.5%, 4.6% and 1.3%, respectively). We hereto acquired a four-factor 
PLSR model for predicting liquor ages based on response values obtained from electronic nose.

The calibration and validation results are displayed in Fig. 4(a) and (b) with the form of scatter diagram. The 
fitting degree of PLSR model (R2) was calculated based on the actual liquor age and the PLSR predicted liquor 
age. What should be emphasized was that the regression coefficient (R2) of the liner regression model between 
the actual and predicted liquor ages was not the same one as PLSR model; so it can only be used to express the 
fitting degree of the liner regression model, not the PLSR model, and that was the reason why scatter diagram 
was used rather than liner fitting diagram. As for the calibration set, the regression coefficient R2 between the 

Actual 
age

Predicted age

Accuracy0 1 2 3 4 5

0 20 100%

1 20 100%

2 19 1 95%

3 20 100%

4 19 1 95%

5 20 100%

Table 3.  Classification results of six age groups based on LDA. The total accuracy of the 120 samples is 98.3%.

Figure 4.  PLSR results for the prediction of liquor age. (a): calibration set, (b): validation set.
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actual liquor age and predicted liquor age was 0.9732, which exhibited a good correlation. The root mean square 
error (RMSE) of the calibration set was 0.2794. In order to have a further understanding of the calibration results, 
RMSE values of different groups (15 samples for each group) were separately calculated and compared. RMSE 
values for young liquor, one-year-aged, two-year-aged, three-year-aged, four-year-aged and five-year-aged liquors 
were 0.3076, 0.2793, 0.2945, 0.3013, 0.1736 and 0.2970, respectively. All values were around the average RSME 
(0.2794) except for four-year-aged liquors, it could be concluded that the most accurate prediction was achieved 
with four-year-aged liquor in the calibration set, since the RMSE values of other five groups were quite higher 
when compared with four-year-aged one. As for the validation set, only 30 liquor samples were used. The regres-
sion coefficient R2 between the actual liquor age and predicted liquor age in validation set was 0.9101, which 
logically explained a satisfying prediction ability of the liquor age. The RSME of validation set was calculated as 
0.5120, which was much higher than calibration set. That was reasonable because the correlation between liquor 
age and sensor response in calibration set was inevitably different with the one for validation set, so the calibration 
set generally fitted the model better than the validation set. Similar, the RSME values of each group (5 samples 
for each group) in validation set were also separately calculated and compared. RMSE values for young liquor, 
one-year-aged, two-year-aged, three-year-aged, four-year-aged and five-year-aged liquors were 0.5887, 0.3074, 
0.8787, 0.4407, 0.3440 and 0.2180, respectively. Unlike the calibration set, the minimum RSME of validation set 
was obtained with five-year-aged liquor, in addition, RSME of one-year-aged and four-year-aged liquors were also 
much lower than the average value.

Prediction of volatile compounds content.  As previously discussed, of all the nine compounds 
researched, the content of ethyl lactate was kept in the range of 443 to 446 mg/L from the beginning to the end 
of the aging, and no significant difference was observed among six liquor groups with different ages. Based on 
that, the prediction of ethyl lactate content was meaningless at least during the first five years of aging, thus only 
eight compounds were studied in this part. For all the prediction modeling of eight compounds, 90 samples (15 
samples for each group) were randomly selected as calibration set and the other 30 samples (5 samples for each 
group) were used as validation set. After the extraction of factors, cross-validation was also performed using 
leave-one-out technique to choose the optimized number of factors used for the subsequent modeling.

Calibration and validation results are listed in Table 4. The regression coefficient R2 between the actual and 
predicted values and the RMSE of each compounds were given. The total sum of the square was consisted of 
regression sum of square and residual sum of square, and the fitting degree (R2) of the PLSR model was calculated 
by the regression sum of square versus the total sum of square. Regression coefficients (R2) of eight PLSR models 
in calibration set were within the range from 0.8602 to 0.9379, which demonstrated a good correlation between 
the actual and predicted values. As for the validation set, the prediction ability of 1-propanol PLSR model was 
found to be poor with a quite low R2 of 0.5439, while R2s of other seven compounds were ranged from 0.7053 
to 0.7614. As can be seen from Table 4, in the calibration set, R2s of 1-propanol, isobutanol and isoamylol were 
0.8602, 0.8935 and 0.8775, respectively, while other five compounds were all around 0.9300. Furthermore, the 
relatively lower R2s were also obtained with these three compounds when compared with other five compounds, 
in validation set. It seemed that the response values of the studied sensors and modeling technique had disadvan-
tages in predicting alcohols contents, except for methanol. Beyond that, the established method performed well 
in the prediction of acetaldehyde, ethyl acetate, acetal and acetic acid.

Conclusions
This research revealed the close relationship between main volatile compounds of Chinese liquor and the 
response values obtained from electronic nose. Based on the response values, the identification of liquor ages 
was achieved by LDA with the total accuracy of 98.3% among 120 liquor samples, and PCA also performed well 
in liquor age discrimination. In addition, the possibility of using electronic nose combined with PLSR to predict 
liquor age and volatile compounds contents was finally confirmed. Our present findings provided a convenient 
alternative technique in quality assessment of Chinese liquor; however, more efforts should be made to work out 
an optimal combination of appropriate sensors and multivariate methods to promote the accuracy of the results.

Compounds

Calibration set Validation set

R2 RMSE R2 RMSE

Acetaldehyde 0.9327 9.60 0.7459 18.63

Methanol 0.9379 3.43 0.7603 6.74

Ethyl acetate 0.9304 111.79 0.7542 210.13

Acetal 0.9343 27.04 0.7614 51.54

1-Propanol 0.8602 14.12 0.5439 25.50

Isobutanol 0.8935 25.08 0.7106 41.35

Isoamylol 0.8775 24.81 0.7053 38.49

Acetic acid 0.9354 55.51 0.7574 99.89

Table 4.  Prediction results of volatile compounds based on PLSR. R2: correlation coefficient, RMSE: root mean 
square error. The larger R2 and the lower RMSE are, the better the prediction model is.
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Materials and Methods
Liquor samples and chemicals.  Chinese liquor was provided by “Junchang” Liquor Factory, a very pop-
ular local brand located in Sichuan Province. Young liquor and liquors aged for 1, 2, 3, 4, and 5 years were used. 
All liquor samples were stored in sealed pottery at normal temperature before use. All reagents used for gas 
chromatography analysis were of analytical grade and bought from Donglilong Information Technology Co. Ltd., 
Lanzhou, China.

Gas chromatography.  Gas chromatography was performed using an Agilent 7890A gas chromatography 
(GC) unit equipped with a flame ionization detector (FID). All samples were analyzed on a LZP-950 column 
(50 m × 0.32 mm i.d., 1.0 μm film thickness), which is a specialty column for Chinese liquor gas chromatographic 
analysis. Pure reagents were firstly diluted with ethanol to give solution to ethanol ratio of 1:0, 1:1, 1:3, 1:7, 1:15, 
1:31, 1:63 and 1:99, respectively, this series of diluted solution was used for the protraction of standard curves. 
Before the injection, all samples were filtered into a 2 mL autosampler vial using filtering membrance with the 
pore diameter of 0.45 μm to remove impurities. Then a measurement volume (1 μL) of the test sample was injected 
into GC from the autosampler vial with a split ratio of 1:1. The column carrier gas was nitrogen delivered at 
constant flow rate of 1 mL/min. The oven temperature was held at 65 °C for 8 min, then raised to 200 °C at a 
rate of 5 °C/min, and held at 200 °C for 50 min; injector and detector temperature were set at 230 °C and 250 °C 
respectively.

The identification analysis was made by comparing the retention times of volatile compounds in liquor sam-
ples with those corresponding reference compounds, and the quantification analysis was made using the estab-
lished calibration curves. In order to eliminate the error caused by sample injection, amyl acetate was added 
into all samples as an internal standard substance, and the final quantification results were corrected using this 
internal standard. All liquor samples were analyzed and calculated in five replicates and the values were averaged.

Electronic nose analysis.  A PEN2 portable electronic nose (Airsense Analytics, Germany) was used in the 
experiment. The sensor array of this system was composed of 10 metal oxide semiconductors (MOS) type of sen-
sors with different chemical compositions and thicknesses; each sensor generated specific response when exposed 
to corresponding volatile substances25. Namely, S1 (W1C, aromatic compounds), S2 (W5S, nitrogen oxides), S3 
(W3C, ammonia), S4 (W6S, hydrogen), S5 (W5C, alkanes, less polar compounds), S6 (W1S, methane), S7 (W1W, 
sulphur compounds), S8 (W2S, alcohols), S9 (W2W, sulphur organic compounds) and S10 (W3S, high concentra-
tions of methane). A data acquisition instrument was also equipped for collecting and recording response values.

3 mL of liquor sample was firstly diluted with deionized water to 300 mL, and then 5 mL of the diluted solu-
tion was transferred into a 500 mL beaker. After that, the beaker was sealed by preservative film and placed for 
15 minutes to get the headspace reached equilibration. Detection time was set as 80 s, which was long enough for 
all sensors to reach stable response values. Afterwards, 100 s of cleaning (nitrogen) was executed to make sure 
the sensor array was normalized to the initial state. All liquor samples (20 replicates multiply by 6 groups) were 
detected under the same conditions at ambient temperature (25 °C).

Statistical analysis.  Relative standard deviation (RSD) of response values was calculated in order to assess 
their repeatability. One Way ANOVA was applied to select the most relevant sensors which were closely associ-
ated with liquor age. Only the high stable and relevant sensors were chosen as the database for the subsequent 
discrimination and prediction analysis. Since the original data of electronic nose was rather complicated, PCA 
was applied to reduce the dimensionality of the database, and scores plot was used for the grouping of liquor sam-
ples with different ages26. LDA has been proved to perform well in maximizing the variance between groups and 
minimizing the variance within groups27, therefore, it was employed in this research to investigate the accuracy 
of liquor age classification based on response values. PLSR is an effective regression method which incorporates 
the advantages of PCA, correlation analysis and multiple linear regressions28. In this research, PLSR was applied 
to predict liquor age and concentrations of volatile compounds using response values.

RSD, One Way ANOVA analysis, PCA and LDA were carried out using IBM SPSS Statistics 21.0. PLSR was 
performed using SAS 9.1.3.
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