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Optimal surveillance strategies 
for bovine tuberculosis in a low-
prevalence country
Kimberly VanderWaal1, Eva A. Enns2, Catalina Picasso1, Julio Alvarez1, Andres Perez1, 
Federico Fernandez3, Andres Gil4, Meggan Craft1 & Scott Wells1

Bovine tuberculosis (bTB) is a chronic disease of cattle that is difficult to control and eradicate in part 
due to the costly nature of surveillance and poor sensitivity of diagnostic tests. Like many countries, 
bTB prevalence in Uruguay has gradually declined to low levels due to intensive surveillance and control 
efforts over the past decades. In low prevalence settings, broad-based surveillance strategies based on 
routine testing may not be the most cost-effective way for controlling between-farm bTB transmission, 
while targeted surveillance aimed at high-risk farms may be more efficient for this purpose. To 
investigate the efficacy of targeted surveillance, we developed an integrated within- and between-farm 
bTB transmission model utilizing data from Uruguay’s comprehensive animal movement database. 
A genetic algorithm was used to fit uncertain parameter values, such as the animal-level sensitivity 
of skin testing and slaughter inspection, to observed bTB epidemiological data. Of ten alternative 
surveillance strategies evaluated, a strategy based on eliminating testing in low-risk farms resulted in a 
40% reduction in sampling effort without increasing bTB incidence. These results can inform the design 
of more cost-effective surveillance programs to detect and control bTB in Uruguay and other countries 
with low bTB prevalence.

In many countries, bovine tuberculosis (bTB) causes substantial economic losses due to costly surveillance, cull-
ing of infected animals, and imposition of movement restrictions in affected regions1, 2. The disease also repre-
sents a major public health concern, particularly in developing economies and rural regions due to transmission 
to farm workers and consumption of unpasteurized milk3. Prerequisite for the design and implementation of 
bTB surveillance systems is their ability to detect infection in cattle as early as possible to minimize spread and 
to mitigate costs of control and eradication4. Active bTB surveillance programs are costly and are complicated 
by limited sensitivity and specificity of diagnostic tests used to detect infected animals. In regions or countries 
with low prevalence, adopting risk-based (targeted) surveillance may improve the cost-effectiveness of bTB man-
agement compared to conventional surveillance strategies. Risk-based surveillance focuses on the subset of the 
population with a higher risk of infection, thus improving surveillance system sensitivity and reducing funding 
and labor investments5.

A primary risk factor for bTB transmission is the introduction of infected cattle into herds through cattle 
movements6, 7. Spread of bTB via animal movements is particularly important in areas with low bTB incidence8–12. 
However, to optimize the implementation of surveillance and control measures, additional research is needed to 
clarify which herds and locations are associated with higher risk for disease introduction and transmission, and 
to develop methods to identify high-risk herds at an early stage of infection. Animal traceability systems, which 
have been implemented in many countries, provide an ideal opportunity to empirically assess movement-related 
bTB risk and to simulate the potential between-farm spread of bTB through the cattle industry11–14.

Social network analysis (SNA) has been used to characterize patterns of cattle movement, quantify the role of 
high-risk farms, and assess the vulnerability of livestock industries to epidemics in a variety of countries7, 15–21.  
For example, following the 2001 Foot-and-Mouth Disease (FMD) epidemic in the UK, between-herd cattle 
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movements were heavily scrutinized for their role in facilitating disease spread22–24. SNA provided a framework 
to assess the importance of these movements, develop mathematical models to predict the risk and severity of 
future outbreaks, and evaluate the efficacy of different surveillance strategies in preventing future epidemics22–24. 
However, network-based modeling approaches are challenging for bTB in part due to the chronic nature of the 
disease, characterized by long latent periods, low within-farm transmission rates, and limitations of diagnostic 
tests. The prevalence of bTB within herds is often low and highly variable. This heterogeneity is likely to impact 
the probability of between-farm transmission. Therefore, to more accurately estimate between-farm spread of 
bTB, transmission models must run over long time periods and incorporate within-farm dynamics, including 
changes in within-farm prevalence over time. Few between-farm models exist for bTB, many of which do not 
account for within-farm dynamics7. However, recent integrated within- and between-herd bTB models have been 
developed for the UK and Italy to assess alternative surveillance strategies for those countries13, 14.

Uruguay is a South American country with low bTB prevalence and a comprehensive animal traceability sys-
tem. Despite considerable investment in a test-and-cull program for the control of bTB, the incidence of the dis-
ease has increased since 2008 (~4 farms per year in the early 2000s to ~22 per year in 2012–2014), raising concern 
among stakeholders and animal health agencies11. No wildlife reservoir has been identified within Uruguay, and 
all detected cases have been in dairy farms. The current surveillance program includes a combination of active 
surveillance in dairy farms (annual intradermal tuberculin testing; caudal fold test -CFT- with confirmation 
via the comparative cervical test-CCT) and passive surveillance in all farms (slaughter inspection of carcasses 
for bTB-like lesions)11. Risk-based surveillance has the potential to optimize ongoing control programs in low 
prevalence countries such as Uruguay, balancing the efficacy of control efforts while minimizing investment of 
human and financial resources. An empirical assessment of risk factors for bTB, combined with computational 
network-based models to simulate the relative effectiveness of risk-based control measures, is critical for the 
development of risk-based surveillance in Uruguay.

The primary motivation of this work is to advance understanding of bTB transmission patterns and effective 
surveillance strategies for regions with low prevalence, yet persistent infection. To achieve this, we designed a 
within- and between-herd epidemiological model for bTB in the Uruguayan cattle industry, parameterized with 
real-world incidence data, that simulates observed epidemiological patterns. This model utilizes data available 
through Uruguay’s Ministry of Livestock, Agriculture and Fisheries from ~45,000 cattle farms, of which 10% are 
dairy farms, and 500,000 records on the movement of 18 million cattle available for a 5.5 year period25. Using 
this model, we explore alternative surveillance options for bTB to identify targeted strategies that simultaneously 
minimize surveillance effort and farm-level bTB incidence.

Results
We developed an integrated within- and between-farm transmission model to simulate the spread of bTB in 
Uruguay (see Methods, Supplementary Methods, and Supplementary Table S1). Within-farm transmission was 
accounted for using an age-structured, stochastic compartmental model (Fig. 1), including infection classes of 
Susceptible (S), Occult (O: exposed, not reactive to diagnostic tests, not infectious), Reactive (R, not infectious 
but reactive to skin testing), and Infectious (I, reactive to diagnostic tests and infectious to others). Between-farm 
transmission occurred via animal movements, which were represented with the observed dynamic movement 
network over 5.5 years, and via a spatial transmission kernel to capture localized transmission (e.g., through fence 
line contact, shared equipment, or movement of people that may function as mechanical vectors for fomites). 
Following the current surveillance program used within Uruguay, the model simulated detection of bTB-positive 
farms through annual skin testing in all adult dairy cattle and via carcass inspections at slaughter for both dairy 
and non-dairy animals. Contact tracing and movement restrictions were implemented for detected farms. This 
model was fit to observed epidemiological data using a genetic algorithm (GA), a machine learning approach for 
optimizing model parameters within multi-dimensional parameter space26, so that model simulations reproduced 
observed epidemiological dynamics. Observed data used for model fitting included the number of farms detected 

Figure 1.  Graphical representation of the compartmental model used to represent within-herd transmission 
dynamics, including calves (c, top row) and adults (a, bottom row). Number of individuals in each infection 
class is indicated as susceptible (S), occult/exposed (O), reactive (to skin testing, R), and infectious (I). Total 
herd size is represented as N. β indicates the rate of transmission between infectious and susceptible individuals, 
and λ1 and λ2 represent the duration of the occult and reactive periods, respectively. Calves transition to adults 
after twelve months, which is equivalent to 1/12 on the monthly time scale of the model.
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per year, method of detection (slaughter versus skin testing), and distribution of pairwise distances between 
infected farms. The fitted model was then used to evaluate the efficacy of alternative surveillance strategies.

Parameterization and validation.  In the model, all dairy animals were tested annually and infected ani-
mals (R or I) were detected with probability senssk, the animal-level sensitivity for skin testing. For slaughter sur-
veillance, infectious animals were detected with probability senssl. Additional parameters fit by the GA were those 
that define the transmission kernel; the probability of transmission between farms was assumed to scale linearly 
with the prevalence in the infected farm and decrease exponentially with distance. The shape of the kernel was 
controlled by two parameters, φ and α.

Fitted parameter values estimated by the genetic algorithm are summarized in Table 1. Estimated animal-level 
sensitivities for surveillance measures included senssl = 0.42 [range: 0.39–0.53] for slaughter inspection and 
senssk = 0.53 [0.46–0.62] for skin testing. Parameters controlling the shape of the transmission kernel were 
φ = 0.05 [0.04–0.07] and α = 1.46 [1.12–1.74] (Fig. 2), and the number of initially infected farms was estimated to 
be 25 dairies [20–29 dairies]. Based on 1000 runs of the fitted model, we summarized model performance in 
terms of the pairwise distance between infected farms (proportion of pairwise distances <5 km, 5–10, and 
10–20 km apart), total number of detected farms, and proportion of farms detected via each method (slaughter 
surveillance, skin testing, contact tracing). These distributions were compared with real-world data to further 
assess the model’s fit. The observed values fell within the interquartile range for the spatial criteria and showed low 
spatial deviance (Fig. 3a), indicating that the observed data were consistent with the epidemiological dynamics 
predicted by the model. The total number of detected farms in the observed data exceeded the 75th quartile of the 
simulations, but still fell within the overall range predicted by the model (Fig. 3b, Table S2). In other words, the 
observed epidemiological data could represent one realization of the epidemiological dynamics represented by 
the model. In addition, despite being seeded in dairy farms, the model consistently predicted bTB spread to 
non-dairy farms, accounting for well over half of all farms detected. In contrast, non-dairy infections were not 
reported in the observed data, although non-dairy farms were not subjected to annual skin testing.

Parameter Definition
Optimization 
constraints (min, max)

Estimated 
value (range)

Surveillance (at animal-level)

 senssl Sensitivity of slaughter surveillance (0.3, 0.7) 0.42 (0.39–0.53)

 senssk Sensitivity of skin test (0.3, 0.7) 0.53 (0.46–0.62)

Spatial transmission kernel

 Φ Spatial transmission coefficient (0.01, 0.1) 0.05 (0.04–0.07)

 α Shape of spatial transmission kernel (1, 2) 1.46 (1.12–1.74)

Initial conditions

 seeds Number of farms infected initially (10, 30) 25 (20–29)

Table 1.  Definitions, estimated values, and constraints for parameters undergoing optimization.

Figure 2.  Fitted spatial transmission kernel describing the probability of transmission between two farms by 
distance when the prevalence in the infected farm is 1. The gray area represents uncertainty in the parameter 
estimates (Table 1).
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Testing alternative surveillance strategies.  We evaluated surveillance strategies that eliminated active 
surveillance in low-risk dairies, while maintaining existing surveillance measures on high-risk dairies (Table 2)11. 
Specifically, lower risk farms that failed to meet cut-off values for herd size and/or number of animals received 
did not undergo annual skin testing (no active surveillance), whereas high-risk farms that exceeded cut-off values 
underwent annual skin testing. The relative effectiveness of the baseline scenario and nine alternative surveillance 
strategies was assessed by comparing the annual incidence of bTB in the final three years of the model period 
(2011–2013). 1000 simulations were run per scenario.

We identified three alternative surveillance strategies (Scenarios D, H, and I) in which the number of infected 
farms per year did not differ significantly from the baseline scenario (Fig. 4). Of these, Scenario H and I required 

Figure 3.  Summary of the epidemiological dynamics of simulations run with the fitted parameters in terms 
of (a) the proportion of pairwise distances between infected farms that are 0–5 and 5–10 km apart, as well 
as the percent spatial deviance in simulated epidemics, and (b) total number of infected farms, infected 
dairies, detected farms (overall: 2008–2013), and detected farms (2011–2013, the time period used for model 
parameterization). “X”s represent the observed data. No observed data are shown for infected farms because the 
true number of infected farms in the population is not observable.
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similar numbers of farms to be tested annually as compared to the baseline, whereas Scenario D reduced sam-
pling effort by 40%. Scenario A (testing farms with herd size >360 that also received >44 animals) and E (herd 
size >360 head and no movement criteria) resulted in the largest annual incidence, with >20 new infected farms 
per year, and reduced sampling effort to <25% of the baseline scenario. Scenarios B, C, F, and G resulted in 
annual incidence significantly lower that A and E but also significantly higher than baseline. Scenarios B, C, and 
F required testing 25–50% fewer farms than the baseline scenario, and Scenario G increased the number of farms 
sampled (risk-based surveillance based on movements only, ignoring production type and herd size). Notably, D 
and F highlight the importance of including movement criteria in defining which farms to test. Scenario F only 
uses a size-based threshold (>115 herd size), whereas D uses the same size-based threshold in combination with 
a movement threshold (farms must receive at least 1 animal in the previous three years).

Model sensitivity analysis.  We found that the epidemiological dynamics predicted by the model were 
sensitive to all parameters explored φ( , α, senssl, senssk), as measured by the total number of infected and detected 
farms and the percentage of pairwise distances between infected farms that were <5 km (Table 3). As expected, 
increasing the sensitivity of surveillance measures resulted in smaller numbers of farms infected, and thus, sub-
sequently detected. Increasing φ increased the likelihood of local (<5 km) transmission between farms and 
increased the total number of farms affected, whereas increasing α (i.e., increasing the steepness in which trans-
mission probabilities decline with distance) had the opposite effect. While these results are intuitive, they serve as 
verification that the model is behaving in a manner consistent with epidemiologic expectations27.

Discussion
The goal of our study was to model the spread of bTB and assess the efficacy of current and alternative sur-
veillance strategies for controlling this pathogen in low prevalence settings, such as Uruguay. While Uruguay’s 
test-and-cull control program has been successful at reducing bTB to its current low prevalence (<0.05% of 
farms infected), programs based on routine testing may not be the optimal strategy for limiting bTB transmis-
sion in low prevalence settings. Given the availability of animal movement data, targeted surveillance strategies 
may both minimize surveillance costs and improve control. To explore the potential for targeted surveillance 
within this low prevalence country, we designed a network-based transmission model that integrated within- and 
between-farm transmission processes and optimized parameter values with real-world data to emulate the epide-
miological dynamics specific to Uruguay. This model was used to test alternative surveillance strategies.

We focused on alternative surveillance scenarios that reduce the number of farms tested by eliminating annual 
testing in low-risk dairy farms. The analysis presented here identified one scenario in particular, Scenario D, in 
which annual testing was reduced by 40% without increasing incidence. Scenario D eliminated testing on low-risk 
farms, which were defined as dairies with fewer than 115 head and that had purchased one or fewer animals 
over the preceding three years. Annual testing was retained on farms with higher risk, as defined by exceed-
ing the minimum threshold for either herd size or movements. The best scenario was likely effective because 
between-farm transmission chains were likely to include at least some high-risk farms that would be detected as 
part of annual skin testing, and low-risk farms would be detected as part of contact tracing. Testing low-risk dairy 
farms every other year (Scenario I) did not further reduce incidence, likely because these farms would be detected 
through contact tracing regardless of biennial testing. While the incidence of bTB was not reduced below baseline 
levels in Scenario D, this scenario is a promising option given substantial reductions in testing effort.

Scenarios A, B, C, and E resulted in higher bTB incidence than the baseline or Scenario D, likely because 
annual testing was eliminated on a greater proportion of dairy farms as a result of more restrictive thresholds for 
herd size and movements. It is also worth noting that Scenario F performed more poorly than D; scenario F used 
the same herd size criterion as D but ignored movement data, thus highlighting the importance of the availability 
and use of movement data in improving targeted control efforts. Similarly, ignoring herd size data and targeting 
control efforts based on movement alone (including dairies and non-dairies, Scenario G) did not reduce inci-
dence beyond the baseline. Improving slaughter surveillance (Scenario H) by 10% also had limited impact on pre-
dicted incidence, suggesting that any training or reward programs meant to increase the effectiveness of slaughter 

Scenario Type Size criteria Movement criteria Description of farms tested annually

Baseline Dairy — — All dairies

A Dairy  > 360 &  > 44 High-risk by size AND movements

B Dairy  > 115 &  > 1 Med/High-risk by size AND movements

C Dairy  > 360 OR  > 44 High-risk by size OR movements

D Dairy  > 115 OR  > 1 Med/High-risk by size OR movements

E Dairy  > 360 — High-risk by size

F Dairy  > 115 — Med/High-risk by size

G All Top 10th percentile High-risk by movement

H Dairy — — Improved slaughter surveillance (10%)

I Dairy  > 115 OR  > 1 Scenario D + all dairies biennially

Table 2.  Criteria for farms undergoing annual skin testing for 10 surveillance scenarios. Size criteria refers to 
the herd size of the farm in the current year. Movement criteria refers to the number of animals received in the 
previous three years.



www.nature.com/scientificreports/

6Scientific Reports | 7: 4140  | DOI:10.1038/s41598-017-04466-2

surveillance would need to increase the sensitivity of slaughter surveillance by more than 10% to expect any 
substantial impact on bTB incidence. Future work could explore additional scenarios that depart more substan-
tially from current surveillance measures, such as pre-movement testing, targeting of high-risk non-dairy farms, 
and the use of more sensitive diagnostics in high-risk farms, such as the interferon gamma assay. Additionally, 
we primarily focused on risk in relation to animal movements and thus far have not explored targeted measures 
based on spatial variation in risk, such as farm density or spatial clusters of bTB-positive farms11. We plan to 
evaluate additional surveillance strategies based on spatial definitions of high-risk farms and alternative testing 
procedures in the future.

Although movements and farm size are dynamic through time, targeted surveillance based on these criteria 
is feasible in Uruguay. High-risk farms were defined based on movement in the previous years, not the year of 
testing. Given that the movement database is actively maintained by the Uruguayan government, it would be pos-
sible to extract movement data from the previous three years in order to define the present year’s high-risk farms. 
Furthermore, both a farm’s tendency to engage in movements and its herd size are correlated across years25. Thus, 
implementation of a targeted strategy is viable and economical. Given that the cost of annual testing is borne by 
the farmer, a low-risk farm with a median size herd of ~100 head would save approximately $450 USD annually, 
which is sizeable considering Uruguay’s GDP per capita is ~$15,50028.

The effectiveness of targeted skin testing demonstrated by our model deviates from modeling conclusions in 
the United Kingdom, where targeted surveillance based on numbers of outward movements from farms did not 
substantially alter the effectiveness of control programs13. However, their focus on outward rather than incoming 

Figure 4.  Comparison of sampling effort (top panel) and number of infected farms (bottom panel) for 
alternative surveillance strategies. Boxplot shows the number of farms infected per year (median, interquartile 
range, and 95th percentile whiskers), and open circles represent outliers. Scenarios depicted with the same color 
were not significantly different based on a Kruskal-Wallis test. Sampling effort is calculated as the number of 
farms tested per year relative to the baseline scenario (~4,400 farms).

Model output

Parameter

Senssl Senssk φ α

Total infected farms −0.46* −0.76* 0.34* −0.37*

% infected farms that were < 5 km −0.13 −0.25* 0.65* −0.60*

Total number of farms detected −0.47* −0.80* 0.25* −0.26*

Table 3.  Results of sensitivity analysis. PRCC (Partial rank correlation coefficients) between model parameters 
and key model outputs. *Indicates significant PRCCs (p < 0.05).
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movements to farms may not as effectively target farms at high-risk of becoming infected. In addition, the UK 
differs markedly from the situation in Uruguay in that herd-level prevalence is substantially higher (9–12% in 
England and Wales) and a wildlife reservoir is present in Europe13, 29. In bTB-free regions of Italy, models predict 
that slaughter inspection and routine on-farm testing are more crucial to surveillance than pre-movement testing, 
which is a measure currently not part of Uruguay’s control program14. However, targeted surveillance options are 
often not considered in bTB-free settings14, 30.

To our knowledge, this work represents the first use of genetic algorithms for parameterizing epidemiolog-
ical models in veterinary epidemiology. We suggest that GAs are a promising tool for parameterizing complex 
epidemiological models, particularly when trying to fit a model to several types of observed data (e.g., spatial 
distribution and case counts). Parameter estimates for the transmission kernel represent one of the only estimates 
existing in the literature for estimating localized transmission processes between farms. For example, the UK bTB 
model handles local transmission by considering all farms located within the same parish to be equally at risk13, 
and unlike Uruguay, the transmission kernel is driven by a wildlife reservoir. Thus, our estimates will likely be 
useful in parameterizing bTB models for settings with little or no wildlife contribution to spread.

The sensitivity of serially applied skin tests (CFT-CCT) is estimated to range from 74–93%31. However, test 
sensitivity under field conditions is often far lower32, 33, and our estimate of ~50% falls within the range reported 
elsewhere for serial testing under field conditions32–34. Similarly, the sensitivity of slaughter inspection was esti-
mated to be 42% for infectious animals and 21% for reactive animals, which is consistent with values reported 
elsewhere35–38. Importantly, our estimates of sensitivity include the entire diagnostic process, and thus a false 
negative may occur for reasons beyond poor performance of the diagnostic tests in itself (e.g., inadequate cold 
chain for samples of bTB-like lesions detected at slaughter). Our sensitivity estimates did not distinguish among 
multiple possible reasons for which infected animals are not reported. Additional training in either the applica-
tion of skin tests or recognition of bTB-like lesions at slaughter could improve the sensitivity of surveillance in 
the country.

While the spatial fit of our model was adequate, the model underestimated the number of new infections 
per year. This could be due to our assumption that control was perfect, whereby there were no undocumented 
movements from infected farms under movement restrictions and culling of infected animals was immediate. 
In reality, farms often remain infected for more than a year after the imposition of control measures and prior to 
clearing infection. These farms could potentially be a source of infection to neighbors. We also assumed that, for 
slaughter surveillance, the probability of detecting cattle in the reactive stage of infection was half that of infec-
tious individuals14. If the sensitivity of detecting reactive cattle is, in practice, far lower than was assumed, this 
would delay the detection of infected farms and potentially allow for more extensive between-farm spread prior 
to detection. In addition, we only allowed for between-farm, and not inter-individual variation in the sensitivities 
of skin testing and slaughter surveillance, which may have increased the probability of detecting infected farms. 
These factors relating to bTB control may have led the model to overestimate the effectiveness of control meas-
ures, and thus prematurely halt transmission chains as compared to the real situation in Uruguay. While absolute 
numbers of cases may be underestimated, we believe that our results on the relative effectiveness of alternative 
surveillance scenarios are robust.

Although the model was always seeded in dairy farms, the majority of the cases were in non-dairy farms 
(Fig. 3b), demonstrating substantial opportunity for dairy to non-dairy transmission via observed patterns of 
animal movements. In contrast, 57 of 58 bTB-positive farms detected in Uruguay between 2011 and 2013 were 
dairy farms, all of which were detected via skin testing. The model predicted that the majority (85%) of detections 
in dairies involved skin testing, which corresponds reasonably with the observed data (Supplementary Table S2). 
In addition, a larger proportion of the infected dairies were detected, whereas non-dairies were more likely to 
remain undetected (Supplementary Table S2). Detections of non-dairies in the model were generally split equally 
between detection at slaughter and via contact tracing. Non-dairy farms do not undergo skin testing, making it 
difficult to ascertain whether the model’s predictions on bTB in non-dairy farms is erroneous or if the observed 
data underestimates the true prevalence in non-dairies due to lack of active surveillance. The results from our 
model suggest that future research should investigate the prevalence of bTB in the beef sector of Uruguay’s cattle 
industry.

Underlying risk factors related to the transmission of bTB create heterogeneities in infection patterns that can 
be used to target surveillance and control efforts. We explored optimal strategies for reducing the sampling effort 
required to maintain low bTB prevalence, and identified specific strategies for targeted surveillance based on a 
combination of movement and herd size criteria that reduce sampling effort by 40% relative to the surveillance 
program currently employed. The surveillance scenarios identified were sufficient to prevent an increase in the 
prevalence in bTB while minimizing sampling effort, but did not achieve a reduction in prevalence relative to the 
current surveillance program. Our exploration of alternative strategies was not exhaustive, and future directions 
include a more thorough investigation of the targeted use of alternative diagnostic tests and testing in dairy and 
non-dairy herds, with the aim of identifying strategies that move the country from maintenance of low bTB 
prevalence to bTB eradication. An economic analysis would also be beneficial to more thoroughly assess the costs 
and benefits of each strategy. Conclusions and lessons learnt about the relative efficacy of targeted surveillance 
strategies in Uruguay are applicable to other countries or regions with low bTB prevalence.

Methods
Data source.  Data on farm attributes and between-farm cattle movement from July 2008 to May 2013 were 
obtained from the Uruguay’s Ministry of Livestock, Agriculture, and Fisheries25, including the geographic loca-
tion as UTM coordinates (Universal Transverse Mercator), herd size, and production type of each farm. Mean 
number of premises recorded per year was ~45,000, with dairies accounting for ~10% of all farms. Movement 
records consisted of the date of each movement, total number of animals of each age-class moved (calves <12 
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mo.; adults >12 mo.), and the premise ID of the source and destination farms. A full characterization of the cattle 
herd demographic and movement data is described in VanderWaal et al.25, and a detailed summary is included in 
the Supplementary Methods.

Model description.  We developed an integrated within- and between-farm model to simulate the spread of 
bTB. This stochastic model tracked transmission processes both within infected farms and allowed transmission 
to occur between farms by either movement of infected animals or through a local spatial transmission kernel 
that accounts for localized processes that could contribute to transmission, such as fence line contact, contami-
nated sewage or water, undocumented local movements of animals (e.g., sharing of bulls or escaped animals), and 
shared equipment/personnel that may function as mechanical vectors for fomites39–42. The model operated on a 
monthly time step for 5.5 years, which was the period in which data on movements were available.

Within-farm transmission dynamics were captured with an age-structured Susceptible-Occult-Reactive- 
Infectious (SORI) compartmental model with homogenous, frequency-dependent transmission (Fig. 1)32, 43. 
Infectious individuals (I) infect susceptible individuals (S) at rate β, after which the susceptible animal moves 
into the occult stage (O: exposed, not reactive to diagnostic tests, not infectious). After the occult period (λ1), 
infected individuals progress into the reactive compartment (R, not infectious but reactive to skin testing). After 
the reactive period (λ2), animals progress into the infectious stage (I), where they are both reactive to diagnos-
tic tests and contribute to new infections (Fig. 1). Calves transition to adults at the rate of 1/12 (i.e., after 12 
months). Susceptible and occult calves are likely to transition to adults prior to reaching the reactive or infectious 
calf classes, hence reactive and infectious animals are usually adults. This model includes births and slaugh-
ter. Slaughter rates and transmission coefficients β were specific to dairy and non-dairy production types44, 45.  
A full description of the stochastic within-herd transmission model and model parameters can be found in the 
Supplementary Methods (Supplementary Table S1).

Between-farm transmission via animal movements.  For each time step t, all movements involving 
infected farms at time t were extracted from the movement database. The total number (batch size b) of adults or 
calves moved in the model was drawn from a Poisson distribution centered on the observed batch size for the 
specific age-class in that particular movement in the movement database. For each compartment in Fig. 1, the 
number of animals moved was determined by drawing from Binom (b, n

n
s ), where ns is the total number of ani-

mals in a given age-class and infection stage, and n is the total number of animals in that age-class. The numbers 
of animals in each class were updated on the origin and destination farms. If no infected animals remain on the 
origin farm after movement, then that farm is considered to have cleared the infection and is re-classified as 
uninfected.

Between-farm transmission via local spread.  Local spread occurs via a spatial transmission kernel, 
where the probability of transmission decreases as two farms become farther apart:

∏ φ= − − α−P farm becomes infected I
N

e( ) 1 (1 )j

i
i

i

d

1

ij

Where farm j is an uninfected farm and dij is the distance between farm j and every infected farm i within 20 km. 
Distances of >20 km were not considered as local spread at long distances is unlikely46. φ α−eI

N
di

i

ij represents the 

probability of transmission between farm i and j (scaled by infection prevalence in farm i, I
N

i

i
) given distance apart 

in kilometers, and thus 1− φ α−eI
N

di

i

ij is the probability that transmission will not occur between those two farms. 

φ and α control the shape of the transmission kernel, with φ indicating the probability of transmission when 
dij = 0, and α controlling the steepness with which probabilities decline with distance. If a farm becomes infected 
via local spread during a time step, one susceptible adult is reclassified to the occult stage.

Surveillance and control measures.  Following Uruguay’s existing surveillance and control program11, 
all animals sent to slaughter undergo passive surveillance via carcass inspection. Each infectious animal can be 
detected in the slaughterhouse with probability senssl, and following Rossi et al.14, we assume that animals in an 
earlier stage of infection (i.e., reactive animals) are detected at half this probability because they are expected to 
be in a less apparent stage of infection (see Supplementary Methods)14, 47. In addition, all dairy animals > 1 year 
old undergo active surveillance in Uruguay, which involves annual skin testing with the caudal fold test (CFT) 
and confirmation of reactors using the comparative cervical test (CCT). Each reactive and infectious animal is 
detected with probability senssk, which is defined as the combined sensitivity to the CFT-CCT. To account for var-
iation in the performance of surveillance activities, values for senssl and senssk are drawn from a beta distribution 
each time they are performed on a batch of animals at a farm, with mean equals to senssk or senssl and variance 
equal to 0.012 (Supplementary Table S1)13.

Any farm with at least one detected animal is reclassified as a detected farm and control measures based 
on the current test-and-cull control program utilized within Uruguay are implemented. All movements from 
the detected farm are restricted. For simplicity, we consider control measures to be perfect in that no illegal 
movements occur and that the farm also no longer contributes to local spatial spread. Detected farms are perma-
nently removed from the simulation and do not re-enter the population of susceptible farms. This is a reasonable 
assumption, given that of the 58 detected farms occurring in Uruguay between 2011 and 2013, only 13 of the 
farms had been certified clear of bTB by the end of 2013.

http://S1
http://S1
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In addition to control measures on detected farms, contact tracing occurs for all of the farm’s connections in 
the movement network for a period of two years prior to the detection date. Geographic neighbors are also iden-
tified. Neighbors and contacts undergo skin testing as described above, and any farms that are detected undergo 
the same control measures.

Model calibration.  We conducted a multivariate calibration exercise on parameters directly involved with 
between-farm transmission and surveillance (φ, α, senssl, senssk) using Latin Hypercube Sampling (LHS) and 
partial rank correlation coefficient (PRCC) analyses. This approach has often been used for global sensitivity 
analyses in disease models and agent-based models48–51. We generated 500 parameter sets through sampling a 
Latin Hypercube, which is expected to efficiently cover the parameter space (see Table 1 for minimum and max-
imum values for each parameter). Because bTB is endemic in Uruguay and 57 of 58 infected farms were dairies11, 
model runs were seeded in ten randomly selected dairy farms. Initial conditions are further described in the 
Supplementary Methods.

One hundred simulations were conducted per parameter set, yielding 50,000 simulations. Each simulation set 
ran on the same 100 sets of index cases to eliminate variability associated with index case choice. PRCC analysis 
was based on the averaged values from the simulation sets52. Specifically, we used Spearman’s ranked partial cor-
relation coefficients to detect monotonic relationships between model parameters and outputs after accounting 
for the effects of all other parameters53. Outputs included the total number of infected farms to assess overall 
model performance, the total number of farms detected during 2011–2013 to assess sensitivity to bTB diagnostic 
parameters, and the percentage of infected farms that were < 5 km apart to assess sensitivity to the spatial trans-
mission kernel parameters.

The results of the LHS analysis indicated that only 75 simulations per parameter set were necessary to obtain 
a consistent result, as described in the Supplementary Methods52, 54, 55. Based on this analysis, 75 simulations per 
parameter set were used for subsequent model parameterization.

Model parameterization and validation.  A genetic algorithm (GA) was used to optimize parameter val-
ues in the model so that simulations matched observed epidemiological dynamics26. GAs are a class of machine 
learning methods for model optimization that are used to find optimal solutions in multidimensional parameter 
space. GAs are based on the mechanics of biological evolution and aim to find parameter values that maximize 
the “fitness” of the model, where fitness is a user-defined function that quantifies how well model outputs match 
observed data26. To do this, the GA first generates a population of parameter sets, running 75 simulations per set 
and calculating the average fitness of simulations within each set. Based on the principles of natural selection, 
parameter sets that produced high fitness simulations are “selected” to propagate into the next generation of 
parameter sets, with some degree of mutation and crossover. This process is repeated for many generations in 
order to optimize parameter values26.

The fitness function was defined based on three components (k) that quantify the deviance between the 
observed and simulated epidemic in terms of spatial dynamics, total number of farms detected, and detection 
method. The spatial deviance component was calculated by first measuring the pairwise distances between all 
infected farms, and summarizing the distribution of pairwise distances by calculating the proportion of distances 
that fell < 5 km, 5–10 km, and 10–20 km apart. The spatial deviance function was defined as the summed absolute 
differences between the observed and predicted proportions, where high values indicated a greater deviance 
from observed values. Deviance in the total number of detected farms (farm deviance component) was calcu-
lated as the percent difference between the observed and predicted number of detected farms in the last three 
years for a given parameter set. For the predicted number of detected farms, the 75th quantile of model runs was 
used instead of the average because bTB went extinct within the first year in a large proportion of simulations. 
Deviance in detection method (detection method deviance component) was calculated as the summed difference 
in the observed and simulated proportion of detected farms that were detected via skin testing, slaughter sur-
veillance, or contact tracing. Deviances of each component was re-scaled by dividing by the maximum deviance 
observed in all LHS runs in order to ensure that all components exhibited similar magnitudes in their values. A 
variable-weighting strategy, in which each component received a different weight each time fitness was calculated, 
was employed to ensure that any one component cannot dominate the optimization process26, 56–58. The overall 
fitness function is then:

∑⇒




−




=

f x w f x( ) max ( )
x i

k

i i
1

Where fi(x) is the function for calculating each deviance component, and {wi} is a set of positive values used for 
weighting whose elements sum to one. {wi} is randomly generated each time fitness is calculated.

Because there are multiple operators that determine the exact mechanics of how selection, mutation, and 
crossover occur, we tuned the GA by simulating an epidemic with known parameter values and then identifying 
operators for selection, mutation, and crossover that were able to recover the known parameter values to within 
10%. See the Supplementary Methods for details on tuning the genetic algorithm.

We applied the tuned GA to the real-world data to estimate parameter values. 1000 simulations were then per-
formed with the GA-fitted parameter values to validate model performance. Distributions of the pairwise distance 
between infected farms, total number of detected farms (2011–2013), and detection methods were extracted from 
simulated outputs and compared with the real-world data to assess model fit. After the initial optimization, the 
model consistently underestimated the number of observed outbreaks. Thus, we re-ran the GA holding the spatial 



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 4140  | DOI:10.1038/s41598-017-04466-2

parameters at the previously fitted values and allowed the GA to fit the number of farms initially infected (seeds) 
concurrently with senssl and senssk. All GAs were run with the GA package in R v3.2.359.

Testing alternative surveillance strategies.  Dairy farms were classified as low or high-risk for bTB 
infection based on an epidemiological analysis of bTB-positive dairy farms in Uruguay11. Risk classes were 
defined using a combination of criteria based on the number of animals received by a farm in the previous three 
years and the herd size of the farm. We explored the efficacy of surveillance strategies that reduced active sur-
veillance in lower-risk farms (defined based on criteria related to farm size and movement frequencies), while 
maintaining existing levels of surveillance on high-risk farms (Table 2). Specifically, farms that failed to meet 
cut-off values for herd size and/or number of animals received did not undergo annual skin testing (no active 
surveillance), whereas farms exceeding cut-off values for herd size and/or number of animals received underwent 
annual skin testing. Table 2 summarizes criteria for farms receiving annual testing for each scenario. Cut-off val-
ues described in Table 2 for herd size and movement criteria were based on results of a bTB case-control study in 
Uruguayan dairy herds, which showed that herds meeting the criteria in Table 2 were more likely to be infected 
with bTB11. We also tested a scenario in which senssl was increased by 10%. 1000 simulations were run per sce-
nario. The relative effectiveness of alternative strategies was assessed by running the model for 2008 to 2013 and 
then comparing the annual incidence of bTB in the final three years of the model period (2011–2013), which is 
the timeframe for which observed epidemiological data were available. Differences in incidence were compared 
using the Kruskal-Wallis test60.

Data availability.  The datasets generated and/or analyzed during this study are not publically available 
because the data belong to the government of Uruguay and contain confidential information about privately 
owned farms. However, model outputs are available from the corresponding author on reasonable request.
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