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A GPU-accelerated algorithm 
for biclustering analysis and 
detection of condition-dependent 
coexpression network modules
Anindya Bhattacharya1,2,3 & Yan Cui1,2

In the analysis of large-scale gene expression data, it is important to identify groups of genes with 
common expression patterns under certain conditions. Many biclustering algorithms have been 
developed to address this problem. However, comprehensive discovery of functionally coherent 
biclusters from large datasets remains a challenging problem. Here we propose a GPU-accelerated 
biclustering algorithm, based on searching for the largest Condition-dependent Correlation Subgroups 
(CCS) for each gene in the gene expression dataset. We compared CCS with thirteen widely used 
biclustering algorithms. CCS consistently outperformed all the thirteen biclustering algorithms on 
both synthetic and real gene expression datasets. As a correlation-based biclustering method, CCS can 
also be used to find condition-dependent coexpression network modules. We implemented the CCS 
algorithm using C and implemented the parallelized CCS algorithm using CUDA C for GPU computing. 
The source code of CCS is available from https://github.com/abhatta3/Condition-dependent-
Correlation-Subgroups-CCS.

Clustering algorithms have been widely used to group genes based on their similarities in expression1–4. The gene 
expression coherence is often related to functional coherence. A recent comparative assessment of 21 existing 
clustering algorithms showed that the clustering algorithms report more functionally meaningful clusters by 
exploiting the relationships between all pairs of genes1. Clustering algorithms are also known to perform better 
grouping of co-functional genes if they search for similarities between expression patterns rather than similarities 
between expression values1, 5.

Functional relations between genes may vary over conditions6, 7. For example, a group of genes may act 
coherently under one set of conditions but may become inactive or perform different functions separately under 
another set of conditions. Clustering algorithms that obtain grouping based on similarities over all the samples 
in a dataset are not effective for detecting condition-dependent coexpression patterns. Biclustering algorithms 
have been developed to address this problem1, 8–12. A bicluster consists of a group of genes and a set of conditions 
under which the genes are co-expressed. Searching for bicluster is a challenging problem because the number of 
potential biclusters is exponential to the number of genes and samples. An important difference between various 
biclustering algorithms is how they apply heuristic rules to detect biclusters. Most biclustering algorithms use 
local search heuristics that may miss many biclusters. Conventional way of finding biclusters depends on the 
selection of random seeds of genes and/or samples followed by their augmentation based on a scoring function. 
However, random selection of initial seeds is often unable to efficiently cover the search space and to obtain a 
consistent set of biclusters from multiple runs on the same input data. The selection of scoring function for the 
heuristic search is also important for finding the biologically meaningful biclusters. Most common biclustering 
approaches adopt arithmetic mean of the gene expression or an up/down-regulation patterns on corresponding 
discretized data matrix. Both are inefficient for finding the interesting co-regulatory modules where genes are 
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expressed with similar or opposite patterns of expression but the expression values are very different. Such mod-
ules are important as they may represent relations between genes in the same biological functions1, 13.

A Pearson Correlation Coefficient based scoring function was introduced by Correlated Pattern Biclusters 
(CPB)14. However, the performance CPB is still depends on the random selection of samples. Benefits of Pearson 
Correlation Coefficient based similarity measures over the conventional mean square residue based bicluster 
scores again was demonstrated by Bi-Correlation Clustering algorithm (BCCA) that looks for positively corre-
lated biclusters and reports biclusters for each pair of genes present in a dataset13. Initially, for each pair of genes 
all the samples are selected and then a greedy search is made to eliminate samples one at a time until the gene pair 
shows positive correlation higher than a predefined high positive correlation threshold. The gene pair is then aug-
mented with other genes that are correlated to form a bicluster. However the backward elimination of samples in a 
greedy search is subject to finding a local optimal subset of samples, hence in reality it imposes a restriction on the 
search space for finding the optimal set of biclusters. BIclustering by Correlated and Large number of Individual 
Clustered seeds (BICLIC) introduces another alternative correlation based biclustering. BICLIC forms biclusters 
by starting from a large number of clustered seeds followed by augmentation and deletion of rows and columns 
based on the correlations with seeds15. The main drawback of BICLIC which is also true for BCCA is finding a 
large number of overlapping biclusters which are very much identical. Moreover, BICLIC, BCCA and other cor-
relation based biclustering methods, only look for finding positively correlated gene groups as bicluster. However, 
in reality negatively correlated genes are equally relevant and may represent important regulatory mechanisms 
in biological functions.

Here we propose a more effective correlation-based biclustering algorithm named Condition-dependent 
Correlation Subgroup (CCS). It integrates several important features for developing an effective algorithm for 
comprehensive discovery of functionally coherent biclusters1. A significant challenge in genomic data analysis is 
to utilize the fast growing high performance computing capacity to process and analyze large complex datasets 
efficiently16–18. CCS is particularly suitable for parallel computing. We used the GPGPU computing for a parallel 
implementation of the algorithm in CUDA C which shows a substantial speedup compared to the sequential C 
program. The performance of CCS was compared with CPB, BCCA, BICLIC and ten other widely-used biclus-
tering algorithms on 5 synthetic and 5 real gene expression datasets. CCS outperforms the other biclustering 
algorithms in all the comparisons. We also showed that there is equivalence between the CCS biclusters and 
condition-dependent coexpression network modules.

Methods
A bicluster is a group of genes with a related pattern of expression over a group of samples. We defined the related 
pattern of gene expression in terms of positive and negative Pearson correlation coefficients. Let us consider a 
gene expression data set D = G × E where G = {g1, g2, …, gn} is a set of “n” genes and E = {e1, e2, …, es, …, em} is a 
set of “m” samples. For each gene gi there is an m-dimensional vector xi. In vector xi, xis is the value of es for gene 
gi. In our algorithm we defined a bicluster as a group of genes “I” over a group of samples “J” where each gene 
gi in “I” is correlated to all the other genes gj in “I” with an absolute correlation value greater than a threshold θ. 
Mathematically a bicluster “C” is represented as C = (I; J) where “I” is a subset of “G” and “J” is a subset of “E”. 
The Pearson correlation coefficient between gi and gj over a subset of samples “J” is represented as r(gi, gj)J and 
defined as
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where b is a bit vector of size “m”. If sample es is in “J” then we set the sth bit of bs = 1, otherwise we set bs = 0. The 
terms xis and xjs represent sth sample values for gene gi and gj respectively. Average expression values of gi and gj for 
samples in “J” are represented as ×x bi  and ×x bj  respectively. We considered a pair of genes gi and gj similar for 
a subset of samples “J” if θ>r gi gj( , )J , where θ is the correlation threshold and r gi gj( , )J is the absolute value 
of correlation between gi and gj for the subset of samples “J”. For each gene gi in a dataset “D”, CCS considers gi as 
the base gene to start forming a bicluster for each gi.

Search space sorting and base-gene selection.  The gene with the lower variability over the samples 
(commonly known as housekeeping genes) are often considered as less significant for the corresponding biologi-
cal conditions, hence the less important candidates for forming a bicluster. Prior to biclustering, the search space 
(input data matrix) was sorted by the standard deviations of the gene expression values. In an ordered data matrix 
the genes with the higher variability were placed before the other with the lower variability.

CCS algorithm selects ‘base_number’ of genes as base-gene from the sorted data matrix in the decreasing 
order of variability. Ordering of the search space ensured that a gene with higher variability considered for form-
ing a bicluster and also for augmentation before the other with lower variability. The ‘base_number’ can be set 
between “1” to “n” (total number of genes). Here we set the base_number value equals 1,000 for the biological 
dataset to restrict the search time.

Similarity pattern classes and sample selections.  CCS algorithm considers three classes of gene 
expression pattern similarities: (i) up-regulated positive correlation: gi and gj are positively correlated and the 
expression values of gi and gj for the selected samples are higher than the arithmetic mean expression values over 
all smaples; (ii) down-regulated positive correlation: gi and gj are positively correlated and the expression values 
of gi and gj for the selected samples are lower than the arithmetic mean expression values over all smaples; (iii) 
negative correlation: gi and gj are negatively correlated over the selected samples and their expression values are at 
the opposite sides to their respective arithmetic mean expressions.
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For each pair of genes gi and gj the sample sets “J1: for up-regulated positive correlation”, “J2: for down-regulated 
positive correlation” and “J3: for negative correlation” are selected from sample selection rules 1, 2 and 3 respec-
tively. For each sample es, s = 1:m, we defined the following three rules to determine J1, J2 and J3: Rule 1. IF 

− > − >( )x x AND x x( ) 0 0is i js j  THEN include es to J1 [Expression values of gi and gj for the samples in J1 are 
higher than the arithmetic mean expression values], Rule 2. IF − < − <( )x x AND x x( ) 0 0is i js j  THEN include 
es to J2 [Expression values of gi and gj for the samples in J2 are lower than the arithmetic mean expression values], 
Rule 3. IF − × − <( )x x x x( ) 0is i js j  THEN include es to J3 [Expression values of gi and gj for the samples in J3 
are opposite to their arithmetic mean expression values]. Here xi and xj are the mean expression value of gene gi 
and gj over all samples. The correlations between gi and gj for sample sets Jk=1:3 are determined first by computing 
Pearson Correlation Coefficient ‘r’ and then by comparing against a threshold ‘θ’ which is denoted by |r(gi, 
gj)Jk| > θ in the algorithm.

Defining biclusters as condition dependent correlation modules.  CCS defines biclusters as con-
dition dependent correlation modules where the genes in a bicluster are expected to show correlations only for 
the samples in that bicluster. CCS introduces a scoring function named BScore as defined in Equation (2). The 
BScore is designed to compare two sets of correlated gene pairs N and M. The correlations in set ‘N’ are computed 
over the samples that are included in a bicluster while the correlations in set ‘M’ are computed over the rest of 
the samples that are not included in the same bicluster. Thus, the BScore measures the degree to which the gene 
coexpression in a bicluster is condition-specific. In this work, we used a small BScore threshold (<0.01) to ensure 
the discovered biclusters are based on condition-specific coexpression.

∩
∪

=
N M
N M

BScore
(2)

Algorithm.  The algorithm at each iteration of step 2 starts with a new base-gene gi. In each iteration of step 5, 
gi is paired with a gene gj (i < j ≤ n). In step 6, the sample sets are selected for gene pair gi, gj. In step 8, the algo-
rithm computes the absolute value of the correlation |r(gi, gj)Jk| for each sample set Jk=1:3 (Equation (1)). If |r(gi, 
gj)Jk| θ>  then the algorithm starts a bicluster with an initial gene set Ii = {gi, gj}. In step 10, augmentation of the 
gene set is performed by including a new gene gp in Ii. In step 16, BScore(Ii,Ji) is compared against the previous 
best BScore(I,J) to update the sets I and J. The most condition dependent bicluster for each base gene gi is selected 
in step 22. In step 26, all the overlapping biclusters are merged while keeping < .BScore 0 01 for the final set of 
biclusters ‘S’.

Input: (i) A gene expression data set D = G × H, G = {g1, g2,…, gn} is a set of n genes, H = {e1, e2,…, em} is a set of m samples for gene set G. (ii) 
A correlation threshold θ.

Output: A set of biclusters S = {bicluster(g1), bicluster(g2),…, bicluster(gbase_number)}, base_number ≤ n.

1. S ← NULL

2. for all gi ∈ G, i ≤ base_number do

3.       I ← NULL

4.       J ← NULL

5.       for all gj ∈ G, i < j ≤ n do

6.          apply Rules(1,2,3) on {gi, gj} for sample sets Jk(k=1,2,3)

7.          for all Jk, k = 1:3 do

8.                if |r(gi, gj)Jk| > θ then

9.                        Ii ← {gi, gj}

10.                       for all gp not in Ii do

11.                           if |r(gp, gq)Jk| > θ, for all gq ∈ Ii then

12.                                 Ii ← Ii ∪ gp

13.                             end if

14.                       end for

15.                end if

16.                If (BScore(Ii,Ji) < BScore(I,J) < 0.01) or

                        (BScore(Ii,Ji) = BScore(I,J) < 0.01 and |Ii| > |I|) then

17.                       I ← Ii

18.                       J ← Ji

19.                end if

20.          end for

21.       end for

22.       if I ≠ NULL and J ≠ NULL then

Continued
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The input parameter for our biclustering algorithm is the correlation threshold θ, which is the minimum abso-
lute value of correlation between genes in a bicluster. Allocco et al. investigated the relation between co-regulation 
and coexpression and came up with a conclusion that for a correlation greater than 0.84 there is at least 50% 
chance of co-regulation19. Here we set θ = 0.8. If the number of biclusters is zero for θ = 0.8 then we decrease θ by 
0.05 until we get a nonempty set of biclustering result or θ drops to 0.

GPU computing for biclustering analysis of large datasets.  GPU was initially introduced for ren-
dering video graphics on display devices. The GPU designing company NVIDIA introduced their CUDA archi-
tecture in 2007 for general purpose computing on graphics processing unit (GPGPU computing). The single 
instruction set and multiple dataset architecture (SIMD) of GPU is particularly useful for executing a single 
instruction over thousands of core processors in a GPU card. CUDA is currently the most popular program-
ming model for general purpose GPU computing. CUDA C is an extension of regular C that supports GPGPU 
computing. The parallel part is implemented as a CUDA C kernel function. Thousands of instances of a CUDA 
C kernel function run parallel on a group of GPU core processors. Each group of GPU cores is also known as a 
thread block. Each thread block is a virtual processor formed from one or more GPU core processors, registers, 
local memories, shared memory and global memory. CUDA C kernel functions are sent to the GPU for parallel 
execution, and sequential parts of the code run on the CPU.

We used GPGPU computing to reduce the execution time. In this work, we executed our CUDA C code for 
CCS on NVIDIA Tesla K20 (2,496 CUDA cores) and K80 GPU (4,992 CUDA cores) accelerator. For compilation 
of CUDA C code we installed CUDA 7.5 toolkit in our Linux workstation. Transferring big datasets between 
CPUs and GPUs is time consuming. To reduce the data transfer overhead we moved the entire process of finding 
new biclusters to GPU.

Step 2 of CCS executes “n” times when “base_number” is set at “n” for a dataset with “n” rows. For each execu-
tion the inner loop at step 5 executes a maximum “n-1” times. To achieve increased speed from parallel GPGPU 
computing, we removed the step 2 loop from CCS algorithm and implement steps 5 to 25 of CCS as a CUDA C 
kernel function.

Synthetic datasets.  Five synthetic datasets were generated using the BiBench-0.2 python library8. The 
synthetic datasets contains two types of biclustering: Constant biclusters and Shift-Scale biclusters. Constant 
biclusters are sub-matrices with a constant value and Shift-Scale biclusters are biclusters that are formed from 
both shifting and scaling a base row by random numbers. Table 1 describes the synthetic datasets for their types, 
dimensions and number of true biclusters.

Gene expression datasets.  Five publicly available gene expression datasets GDS531, GDS589, GDS3603, 
GDS3966 and GDS4794 were downloaded from Gene Expression Omnibus (GEO). Genes with standard devi-
ation less than 2.0 were removed. For genes appeared multiple times, only the row (probe set) with the highest 
standard deviation was kept. The dataset information is summarized in Table 2.

Evaluating biclustering results.  We evaluated the results of the biclustering algorithms on synthetic data-
sets using Recovery and Relevance metrics8, 20. They compare the set of found biclusters ‘F’ against the expected 
biclusters ‘E’ (the true bicluster). Both for Recovery and Relevance the scores are ranging between ‘0’ and ‘1’. The 
highest score ‘1’ for Recovery denotes that all the expected biclusters are found. Similarly, the highest ‘1’ for 
Relevance denotes that all the found biclusters are expected.

To evaluate the results on the real gene expression datasets, we performed functional enrichment tests for 
each bicluster1, 8, 13, 20. We used gProfileR21 for selecting the enriched gene annotation terms. gProfilerR retrieves 
a comprehensive set of gene annotations from Gene Ontology (GO) terms, biological pathways, regulatory 
motifs in DNA, microRNA targets and protein complexes. From gProfiler search, all the annotation terms with 
a Benjamini-Hochberg FDR less than 0.01 were considered as enriched. From the biclustering results on all five 
gene expression datasets we computed the average number of enriched annotation terms. Higher average number 
of enriched terms indicates better functional grouping. We also evaluated the performance of biclustering algo-
rithms from percentage of total biclusters that have one or more enriched annotation terms.

23.        bicluster(gi) ← {I, J}

24.       end if

25. end for

26. for each bicluster({I, J}) do

27.       for each bicluster({K, L})≠ NULL do

28.          if BScore(I ∪ K, J ∪ L) < 0.01 and I ∩ K ≠ NULL then

29.               bicluster({I, J}) ← {I ∪ K, J ∪ L}

30.                 bicluster({K, L}) ← NULL

31.          end if

32.   end for

33. end for
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Results and Discussions
We obtained the biclustering results from CCS and 13 other biclustering algorithms namely Cheng and Church 
Biclustering algorithm (CC)22, Iterative Signature Algorithm (ISA)23, Plaid24, Spectral25, Order Preserving Sub 
Matrix (OPSM)26, xMotifs27, SAMBA28, Bimax20, BicSPAM29, UniBic30, CPB14, BICLIC15 and BCCA13. We used 
BicAT20 software package for ISA, CC, OPSMs, xMotifs and Bimax. We also used ‘biclust’ R package (https://
cran.r-project.org/web/packages/biclust/) for Plaid and Spectral. For UniBic, BicSPAM, BCCA, CPB and BICLIC 
the published versions of the software packages were used. SAMBA biclustering was performed using the 
Expander package31.

Performance on synthetic data.  Figure 1 shows the Recovery and Relevance scores on five synthetic 
datasets (Table 1) for CCS and the best among the other 13 algorithms for comparison. For all of the five synthetic 
datasets CCS significantly outperformed other algorithms for finding the expected biclusters (recovery) and the 
most relevant set of biclusters (relevance). For constant bicluster on a datasets of 100 rows and 100 columns, CCS 
obtained 0.88 score for both recovery and relevance. For larger size datasets and shift and scale biclusters, still 
the recovery and relevance scores are higher than the other algorithms which clearly demonstrate the accuracy 
of CCS for recovering the relevant biclusters irrespective of the number and pattern of the biclusters and size of 
the datasets.

Performance on gene expression data.  CCS biclustering algorithm obtained total 25 biclusters from five 
gene expression datasets (Table 2). Figure 2 shows the average number of enriched terms from gProfiler enrich-
ment analysis. Figure 2 shows there are more enriched terms per bicluster from CCS than the others. Figure 3 
compares the biclustering algorithms for the percentage of biclusters with at least one enriched term. Again, CCS 
obtained the highest percentage of enriched biclusters (Figure 3).

Dataset Type Rows Columns True biclusters

CNST.100.3 Constant 100 75 3

SS.150.4 Shift and Scale 150 100 4

SS.200.5 Constant 200 120 5

SS.200.6 Shift and Scale 200 120 6

SS.250.7 Shift and Scale 250 120 7

Table 1.  Summary of the synthetic datasets.

Dataset Rows Columns Description Number of CCS biclusters

GDS531 12625 173 Bone marrow plasma cell of 
multiple myeloma patients39 13

GDS589 8799 122 Peripheral and brain regions in 
rat strains40 20

GDS3603 12625 79 Advanced renal cancer Peripheral 
blood mononuclear cells41 14

GDS3966 22283 83 Melanoma clinical samples42 19

GDS4794 54675 65 Small cell lung cancer (SCLC) 
samples and normal samples43 19

Table 2.  Summary of the gene expression datasets and number of CCS biclusters obtained for θ = 0.8.

Figure 1.  Recovery and Relevance scores on five synthetic datasets for CCS and the next-best performing 
algorithm.

https://cran.r-project.org/web/packages/biclust/
https://cran.r-project.org/web/packages/biclust/
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GPU accelerated biclustering.  The CPU version of the CCS algorithm is computationally expensive. If the 
‘base_number’ is ‘n’ then step 5 executes ‘n’ times. Again for ‘n’ iterations of step 5 the augmentation task at step 
10 executes ‘n’ times. Hence, the worst case time complexity of CCS is O(n3). The CUDA C implementation of 
CCS eliminates the outer loop and runs from step 5 to step 25 as CUDA C kernel function. This reduces the time 
complexity to O(n2). We compared the execution time of the CPU and GPU implementations of CCS. Figure 4 
shows the speedup gained from CCS running on the NVIDIA Tesla K20 and K80 GPUs. For larger datasets the 
GPU-based CCS runs more than 20 times faster than the CPU-based CCS.

Figure 4.  Comparison between the execution time for the CPU and GPU implementations of CCS on gene 
expression dataset GDS531. The “x” axis shows the number base genes for bicluster search. The “y” axis shows 
GPU speedup from CPU vs. GPU execution times.

Figure 2.  Average number of enriched terms on five gene expression datasets. All the enriched gene ontology 
terms with Benjamini-Hochberg FDR less than 0.01 were considered.

Figure 3.  Percentage of bicluster from five gene expression datasets that have at list one enriched term. All the 
enriched gene ontology terms with Benjamini-Hochberg FDR less than 0.01 were considered.
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CCS biclusters are equivalent to condition-dependent coexpression network modules.  A net-
work module is usually defined as a highly connected sub-network. A module in coexpression network consists 
of a group of genes whose expression levels are highly correlated32. The correlative relations in a coexpression 
network often depends on conditions such as genotype, environment, treatment, cell type, disease state or devel-
opmental stage33–38. Therefore, coexpression network modules may also change with those conditions. There 
is an interesting relation between CCS biclusters and coexpression network modules. A CCS bicluster consists 
of genes whose expression levels are highly correlated under a set of conditions. Therefore, a CCS bicluster is 
equivalent to a condition-dependent module in a coexpression network. This has been illustrated here from two 
CCS-biclusters. We picked two CCS-biclusters from GDS589 dataset. The first bicluster (bicluster 1) includes 166 
genes and 70 samples. The second bicluster (bicluster 2) includes 81 genes and 60 samples. We also identified all 
the neighboring genes of the biclusters. Neighboring genes are the genes that are not from a bicluster but they 
are correlated with at least one gene in that bicluster. Figure 5(A) shows the coexpression network of the genes in 

Figure 5.  The coexpression network related to two CCS biclusters from GDS589. The blue, green and white 
nodes represent the genes from bicluster 1, bicluster 2 and the neighboring genes respectively. Red nodes are 
common genes between bicluster 1 and 2. Edges represent correlation >=0.8 or <=−0.8. (A) Coexpression 
network based on correlations over all the samples in GDS589. (B) Coexpression network based on correlations 
over the samples of bicluster 1 (C) Coexpression network based on correlations over the samples of bicluster 2.
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two biclusters and their neighboring genes. Because this network shows coexpression over all the samples, none 
of the biclusters are forming a network module. In contrast, when the coexpression network is constructed using 
correlations over the samples of bicluster 1, the genes of this bicluster form a network module, but the genes of 
bicluster 2 do not form a module (Figure 5(B)). Similarly, genes of bicluster 2 form a module when the coexpres-
sion network is based on correlations over samples of bicluster 2, but genes from bicluster 1 do not form a module 
in this case (Figure 5(C)).

Conclusion
In this work we designed a novel algorithm, CCS, to discover the functionally coherent biclusters from large-scale 
gene expression datasets. The performance of CCS was compared with thirteen widely used biclustering algo-
rithms. CCS consistently outperforms all the other algorithms in the comparison for obtaining true biclusters 
from synthetic datasets and discovering functionally enriched biclusters from the real gene expression datasets. 
Moreover, the CCS biclusters are equivalent to condition-dependent modules in coexpression networks. This 
important feature makes the CCS algorithm also useful for the study of the condition-dependent structural char-
acteristics of the coexpression networks. The biclusters and network modules of co-regulated and co-functional 
genes discovered by the CCS algorithm may provide an important entry point for many other analyses such as 
gene set enrichment analysis, regulatory network inference and disease genes identification.

The recent development of fast and accurate data acquisitions and quantifications in genomics, transcriptom-
ics and proteomics greatly increased the data volume that needs to be processed by clustering algorithms. To ena-
ble rapid discovery of high quality biclusters, we implemented CCS algorithm using CUDA C for parallel GPGPU 
computing. For large datasets, the GPU implementation of CCS achieved about 20 fold speedup compared to the 
sequential version of CCS. We expect that the GPU- accelerated biclustering will have important applications in 
the time-sensitive analysis of genomic medicine data.
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