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Anderson localization in synthetic 
photonic lattices
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Synthetic photonic lattices provide unique capabilities to realize theoretical concepts emerging in 
different fields of wave physics via the utilization of powerful photonic technologies. Here we observe 
experimentally Anderson localization for optical pulses in time domain, using a photonic mesh lattice 
composed of coupled fiber loops. We introduce a random potential through programmed electro-
optic pulse phase modulation, and identify the localization features associated with varying degree 
of disorder. Furthermore, we present a practical approach to control the band-gap width in photonic 
lattices by varying the coupling between the fiber loops, and reveal that the strongest degree of 
localization is limited and increases in lattices with wider band-gaps. Importantly, this opens a 
possibility to enhance or reduce the effect of disorder and associated localization of optical pulses.

An intriguing concept of wave mechanics is Anderson localization, a phenomenon firstly formulated for electrons 
in crystals with defects1. The theory predicted that static, or time-independent, disorder can lead to complete 
localization of wavefunctions for non-interacting particles. Optics offers a fruitful framework to achieve this 
regime, as it’s easier to preserve coherence in optical systems, and photon interactions can be vanishingly small 
at low light intensities. Indeed, Anderson localization was observed experimentally for photons in lattices and 
photonic-crystal structures2–4, see a review in ref. 5. Beyond the fundamental importance recognized by Nobel 
prize for the original discovery1, the Anderson localization can find multiple applications including image trans-
mission in disordered fibers6–8. Whereas optical localization was initially observed in space2, 3, its implementation 
in time can open new opportunities for optical pulse manipulation, and this is the focus of current work.

It was demonstrated that synthetic photonic lattices (SPL) for optical pulses in time domain can be realized in 
coupled optical ring resonators with different path-lengths9–12, building on the time-multiplexing concepts originally 
developed for photon detectors13, 14. A number of important effects have been demonstrated in SPLs, including 
random walks of single particles11, Bloch oscillations and unidirectional invisibility associated with parity-time sym-
metry12, 15, scattering on defect states16, and diametric drive acceleration17. Furthermore, SPLs are naturally suitable 
for observation of Anderson localization, since any degree of disorder can be introduced through programmable 
electro-optic phase-modulation of individual propagating pulses at specific time slots of the lattice. First observa-
tion of Anderson localization in a system conceptually similar to an SPL was reported in refs 9, 10. In this imple-
mentation, a set of two polarizations effectively play a role of two different loops with different propagation time. 
However, only the regime of strong disorder was realized10, as large random phase shifts in comparison with the 
phase acquired by a pulse for one roundtrip were applied. Whereas Anderson localization can occur for arbitrarily 
weak disorder in one-dimensional potentials18, 19, this regime remained unexplored in SPLs.

In this paper, we present results of comprehensive experimental and numerical investigation of the effect 
of disorder on light pulses in synthetic photonic lattice composed of two fiber loops. Our results numerically 
confirm the onset of Anderson localization even at weak disorder, and we describe the localization features for 
different disorder strengths. Furthermore, we identify a practical approach to control photonic band-gap width 
by varying the coupling between the fiber loops, and show that this allows one to enhance or reduce localization, 
since the strongest degree of localization is limited and increases in lattices with wider band-gaps.

Results
Mesh photonic lattices with disorder.  Following refs 11, 12, we consider a synthetic photonic lat-
tice formed by two fiber loops of different lengths L and L + ΔL connected by a fiber coupler. Details of the 
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experimental setup are provided in Methods and Supplementary Information section 1. Optical losses in the 
loops are precisely compensated by amplifiers. Each roundtrip of a pulse over a loop corresponds to a ‘time’ or 
‘slow’ coordinate of a spatial mesh lattice, and is characterized by discrete number m. A light pulse changes its 
position in space of n, as roundtrip times in two loops are slightly different. The time delay between pulses (posi-
tion number n), appearing at a photodiode coupling to the short loop, corresponds to ‘space’ or ‘fast’ coordinate 
of a spatial mesh lattice.

The system is described by a set of equations for amplitudes of light pulses placed at ‘space’ position n in short 
(Un

m) and long (Vn
m) loops at the m-th roundtrip11, 12, 16, 17:
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where φn
m are phase shifts introduced by an electro-optical modulator placed inside the short loop. η defines the 

coupling ratio of the splitter connecting the loops, and in experiments we use a symmetrical 50:50 splitter corre-
sponding to η = π/4 (Fig. 1).

Discussion
We study the effect of disorder on a single pulse coupled into the long loop at the input. This corresponds to the 
initial conditions ==V 1n 0

0 , =≠V 0n 0
0 , and =U 0n

0 . If there is no potential introduced in the system (φ = 0n ), we 
observe well-known ballistic expansion, which resembles quantum walk of a single particle11. In this regime, the 
width of a pulse chain grows proportionally to the number of roundtrips. Applying the phase shift φn which is 
randomly distributed over n (i.e. the phase shifts are transversely uncorrelated) and constant over m, the optical 
analogue of a random potential can be created.

We gradually increase the strength of the potential φmax, where φn is randomly distributed in the interval (0, 
φmax), to study the onset of Anderson localization. For each level of disorder φmax we carried out a set of 100 
experiments, using a different realization of the potential in each experiment within the set. A single pulse was 
launched with the same temporal position (n = 0) into the long loop. Then, the ensemble-averaged values, includ-
ing the average intensities Un

m 2  in the short loop, were extracted, see the top row in Fig. 2. The whole procedure 
was repeated for different φmax values.

To quantify the process of localization, we analyze the participation ratio = ∑ ∑P m U U( ) ( ) /n n
m

n n
m2 2 42. The 

broader the distribution of a wavepacket Un
m at the roundtrip m, the larger is P(m). Due to the fact that we study 

the optical lattice realized in time domain, the value of participation ratio corresponds to the number of pulses in 
a chain propagating inside the loops. We present the experimental participation ratio and its variance over the 
ensemble in the bottom row of Fig. 2.

For each particular realization of the phase distribution φn, we perform a comparison of experimental data 
with theoretical predictions based on Eq. (1). The phase distributions used for calculations were the same with 
those applied to the phase modulator in the experiment. Numerically calculated dependencies of participation 
ratio P(m) clearly confirm the presence of localization, see the bottom row of Fig. 2. We observe a good agreement 
between experimental results and numerics up to m = 80 roundtrips, although discrepancies appear between the 
predicted and observed participation ratios after longer propagation times, see Fig. 2(b). The positive bias for 
experimentally determined P(m) at large m is due to a gradual rise of optical noise in the system occurring after 
each roundtrip (see Supplementary Information section 1 for details), which efficiently increases the participation 
ratio. We extrapolate the results for larger values of m using numerical simulations, and confirm the onset of 
localization at m 800 in case of relatively weak random potential φmax = 0.2π, see Fig. 3(a). Another confirma-
tion of the effect of Anderson localization can be found by the inverse participation ratio at a fixed time step 
m = 100, calculated over an ensemble of realizations of disorder, and observe its increase as the stronger random 
potential is applied, see Fig. 3(b). Note that the fluctuations of inverse participation ratio δ(1/P) (φmax) increase 
with φmax as well, which is an additional indication of the localization2.

Figure 1.  The scheme of the experimental realization of a synthetic mesh photonic lattice based on fiber loops 
with random potential.
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We also observe a close fit of the experimentally measured and calculated intensity profiles up to m = 120, see 
blue and red squares in Fig. 4(a), respectively. To emphasize the localization process, we calculate numerically the 
intensity profile at m = 3000 and find it to have a typical form for Anderson localization with exponential tails, 
see Fig. 4(a), black squares.

To get an insight into the localization process, we simulate numerically the structure of eigenmodes. The 
eigenmode solutions have the form β=U U imexp( )n

m
n , β=V V imexp( )n

m
n , where β is the propagation constant. 

Such modes form a complete set of solutions for a potential which is random along n coordinate and constant 
along m. By substituting these expressions into Eq. (1), we obtain a set of 2N coupled linear equations, and then 
determine their eigenmodes numerically (see Supplementary Section 2 for details). Here N is a number of pulses 
that can be placed in loops of a given length simultaneously. In experiments, N is defined by the ratio of the width 
of a time slot and the roundtrip time, N = L/ΔL.

Figure 2.  Upper panel: Experimental pulse evolution in synthetic photonic lattices with different strengths of 
randomly distributed potential as indicated by labels. Lower panel: corresponding evolution of the participation 
ratio determined from experimental data and numerical simulations. All data is averaged over 100 realizations 
and the variance of the participation ratio is calculated.

Figure 3.  (a) Participation ratio calculated for the case of a weak potential realization with φmax = 0.2π. (b) 
Inverse participation ratio, numerically derived and averaged over 100 realizations of random potential with 
different strengths for m = 120.
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The calculated mode spectra for synthetic photonic lattices with different levels of disorder are presented in 
Fig. 4(b), lower panel. If there is no phase potential (φ ≡ 0max ), the mode spectrum can be found analytically in 
the limit of infinite lattice size,

β η= ±±
− Kcos [ cos( )cos( )], (2)1

where K is the wavenumber in the n direction. The spectrum consists of two bands separated by a band-gap, see 
the middle panel in Fig. 4(b).

At small disorder, the mode spectrum is almost the same as for a homogeneous lattice. The stronger the ran-
dom potential is, the narrower the bandgap becomes, and for maximum disorder the band-gap width approaches 
zero. But even for a weak random potential, localized modes immediately appear. The strongest localized modes 
are located at the edge of the band-gap, as indicated by maxima of the inverse participation ratio 1/P for mode 
numbers ~0, 100, 200 in Fig. 4(b), upper panel. This is analogous to the features of Anderson localization in wave-
guide arrays3. A structure of typical localized modes in our system is discussed in the Supplementary Section 3.

We also simulate the mode excitation spectrum corresponding to our initial conditions, when a single 
pulse is coupled into the long loop at the input (we briefly discuss the features of multi-pulse excitation in the 
Supplementary Section 4). We find that the excitation spectrum primarily consist of the well-localized modes at 
the edge of the bandgap, see a representative example in Fig. 4(c). Since the propagation is linear and the phase 
potential is fixed for each disorder realization, the excitation spectrum is preserved during the evolution.

Synthetic photonic lattices allow one to change the coupling strength between fibre loops. We study the effect 
of the coupling strength (η) on localization. We note that in the absence of disorder, according to Eq. (2), the 
width of transmission bands is (π − 2η) and the gap width is 2η. Whereas a symmetrical 50:50 splitter (η = π/4) 
was used in our experiments, we also perform numerical simulations for the coupling ratios η = π/8 and 3π/8. 
In agreement with analytical predictions, the gap width increases for larger η, see the middle and lower panels 
in Fig. 5(a,b). Accordingly, the degree of Anderson localization also increases, corresponding to larger inverse 
participation ratio values, cf. the upper panels in Fig. 5(a,b).

For a small fiber loop coupling (η = π/8), the localization strength depends nontrivially on the disorder 
[Fig. 5(a)]. The maximum localization is observed at the band edges for φ π< .



1 5max . This agrees with the predic-
tions made for photonic crystals20, that the smallest localized mode size near a band-edge is defined by the flat-
ness of the dispersion curve, and modes should get more localized for higher disorder. However for stronger 
phase modulation the band-gap closes due to disorder. In this regime, localization gets weaker at the former 
band-edge locations, since the effective dispersion slope becomes larger. As a result, all modes exhibit similar yet 
relatively weak degree of localization, which is lower than for band-edge modes at smaller disorder. In contrast, 
for larger fiber loop coupling (η = 3π/8), the band-gap never closes fully, and a degree of localization grows grad-
ually for increasing disorder [Fig. 5(b)].

Conclusions
To conclude, we have simulated numerically and demonstrated experimentally Anderson localization of optical 
pulses in synthetic photonic mesh lattices composed of coupled fiber loops. We find that localized modes arise 
even for weak disorder in full agreement with the theory of Anderson localization in one-dimensional systems. 

Figure 4.  (a) Amplitudes of the pulse sequence propagating through the SPL with random potential strength 
φmax = 0.2π, in experiment and numerical simulations. Data is averaged over 100 different random realizations. 
(b) Calculated inverse participation ratio for eigenmodes (upper panel), and the corresponding propagation 
constants β (lower panel) vs. the disorder strength (φmax). Middle panel shows the band structure for a trivial 
potential with φmax = 0. (c) An eigenmode excitation spectrum for a single realization of a SPL with random 
potential of strength φmax = 0.2π, excited by a single pulse.
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Importantly, we reveal that mesh lattices can be designed to enhance or reduce localization by varying the cou-
pling between the fiber loops. Such coupling tunes the photonic band-gap, and we find that the strongest degree 
of localization is limited and increases in lattices with wider band-gaps, for the same level of disorder. This mech-
anism of localization control can find application in optical fiber systems, and can also be realized in other optical 
systems based on the generic nature of wave phenomena. Furthermore, our results suggest new implications for 
quantum random walk emulators.

Methods
We used a pair of 5 km non-zero dispersion-shifted telecommunication fiber spools to form two loops of the 
synthetic photonic lattice with the 48 m difference in length. Pulse width, formed by direct current modulation 
of a FBG-stabilized diode laser, was set to 100 ns. Optical losses of all elements were compensated using semicon-
ductor optical amplifiers together with optical filters to suppress amplified spontaneous emission. Spontaneous 
emission from amplifiers in backward direction was dumped by optical isolators. In addition, we increase losses 
in the loops considerably before each measurement by means of acousto-optic modulators and set it back at the 
very moment of the launching the first pulse into the system. This approach allows us to suppress noise circulating 
in the loops. More discussion on experimental details and noise effects are provided in Supplementary Section 1. 
Pulse polarization was controlled by several polarization controllers and monitored using a polarization beam 
splitter. To create a time-domain analog of an optical potential, the electro-optical phase modulator (EOM) is 
added in the shorter loop driven with an arbitrary wave generator. The generator signal is a specially designed 
pulse pattern allowing us to generate arbitrary phase distributions along the fast coordinate but constant along 
the slow coordinate. We included a photodiode detecting a pulse train in the short loop, and the measured signal 
was further processed to characterize the states of the synthetic photonic lattice.
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