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Universal fractality of 
morphological transitions in 
stochastic growth processes
J. R. Nicolás-Carlock1, J. L. Carrillo-Estrada1 & V. Dossetti2

Stochastic growth processes give rise to diverse and intricate structures everywhere in nature, often 
referred to as fractals. In general, these complex structures reflect the non-trivial competition among 
the interactions that generate them. In particular, the paradigmatic Laplacian-growth model exhibits 
a characteristic fractal to non-fractal morphological transition as the non-linear effects of its growth 
dynamics increase. So far, a complete scaling theory for this type of transitions, as well as a general 
analytical description for their fractal dimensions have been lacking. In this work, we show that 
despite the enormous variety of shapes, these morphological transitions have clear universal scaling 
characteristics. Using a statistical approach to fundamental particle-cluster aggregation, we introduce 
two non-trivial fractal to non-fractal transitions that capture all the main features of fractal growth. 
By analyzing the respective clusters, in addition to constructing a dynamical model for their fractal 
dimension, we show that they are well described by a general dimensionality function regardless of 
their space symmetry-breaking mechanism, including the Laplacian case itself. Moreover, under the 
appropriate variable transformation this description is universal, i.e., independent of the transition 
dynamics, the initial cluster configuration, and the embedding Euclidean space.

Found everywhere in nature, the intricate structures generated by fractal growth usually emerge from non-trivial 
self-organizing and self-assembling pattern formation1–4. One striking feature of these systems is the morpholog-
ical transition they undergo as a result of the interplay between entropic and energetic processes in their growth 
dynamics, that ultimately manifest themselves in the geometry of their structure5. It is here where, despite their 
complexity, great insight can be obtained into the fundamental elements of their dynamics from the powerful 
concepts of fractal geometry6, 7. Such is the case of the Laplacian growth or Dielectric Breakdown Model (DBM)8, 9  
that has importantly contributed to our understanding of far-from-equilibrium growth phenomena, to such an 
extent that seemingly unrelated patterns found in nature, such as river networks or bacterial colonies, are now 
understood in terms of a single framework of complex growth10, 11. Nonetheless, a complete scaling theory of 
growth far-from-equilibrium has been missing and, consequently, a comprehensive description of the fractality 
of systems that exhibit fractal to non-fractal morphological transitions as well7, 12.

Laplacian theory assumes that, in the absence of long-range interactions, the growth probability at a given 
point in space, μ, is generated by the spatial variation of a scalar field, φ, i.e., µ φ∝ ∇ . One example of such 
processes is the paradigmatic diffusion-limited aggregation (DLA) model, where particles performing a random 
walk aggregate one-by-one to form a cluster, starting from a seed particle (see Fig. 1). In particular, the structure 
that emerges from this process can be described by a single fractal dimension, D, only dependent on the Euclidean 
dimension of its embedding space, d. For the off-lattice two-dimensional (d = 2) case, the corresponding fractal 
dimension has been widely reported to have a value D = 1.7112. Furthermore, the theory has been extended to 
consider a more general and interesting growth process13–17 in which the mean-square displacement of the parti-
cles’ trajectories, as the control parameter, generates a continuous morphological transition that can be neatly 
described through the fractal dimension of the walkers’ trajectories, dw. This transition goes from a compact 
cluster with D = d for dw = 1, as expected for ballistic-aggregation (BA), to the DLA fractal for dw = 218 (see Fig. 1).

However, one of the most challenging aspects of the theory arises when the growth is not purely limited by 
diffusion, e.g., when it takes place under the presence of long-range attractive interactions, where strong screen-
ing and anisotropic effects must be taken into account. In this case, the growth probability has been generalized 
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to the form µ φ∝ ∇ η( ) , where η is a positive real number associated with all the effects coming from screening 
and anisotropy8, 9. For a given embedding Euclidean space of dimension d, this process generates a characteristic 
morphological transition as function of η, that goes from an initial compact structure with D = d for η = 0, asso-
ciated with Eden clusters, passing through DLA fractals for η = 1, to a linear cluster with D = 1 as η → ∞. In 
addition, it has been suggested that the transition to the last one occurs at a critical value η ≈ 4, where this criti-
cality is understood in terms of the fractality of the system, i.e., the value of η at which ≈D 119–21. Nonetheless, 
the use of the fractal dimension D as an order parameter, able to describe the criticality of these transitions, still 
needs some clarification.

One of the best analytical results to describe the fractality of transitions such as BA-DLA and the one associ-
ated with the DBM, is the generalized Honda-Toyoki-Matsushita mean-field equation22–24:
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For η = 1, this equation gives a good description of the BA-DLA transition, whereas for dw = 2, it is intended to 
describe the DBM in any embedding dimension d. In particular, for the case d = 2, this expression provides a 
good qualitative description of the fractality of the DBM transition, however, due to its mean-field limitations, 
it fails to precisely reproduce the reported numerical results for D(η)25, 26 (see Table 1). For example, it underes-
timates the known fractal dimension of DLA clusters for d = 2, nor does it clearly predict any criticality as sug-
gested. As far as we know, there is not any analytical result able to fully describe the scaling or fractality of these 
and similar processes7, 12.

In this work, in order to clarify these aspects of the Laplacian theory, as well as to establish a possible gen-
eral framework to analyze more complex morphological transitions in stochastic growth processes, we present 
a dynamical model that addresses the fractality of these transitions. Moreover, it is able to precisely describe the 
observed scaling from an initial non-fractal/fractal configuration, towards a linear one, in terms of a single func-
tion associated to all the dynamical growth mechanisms present in the system.

Figure 1.  Fundamental aggregation models. After being launched into the system from rL with uniform 
probability, particles (a) follow straight-line trajectories before aggregation in BA, (b) perform a random walk 
in DLA, and (c) get radially attached to the closest particle in the cluster as a result of an infinite-range radial 
interaction in MF aggregation. The last one is particle-path independent and its morphological characteristics 
emerge solely from this long-range interaction as opposed to the stochastic BA and DLA models. Characteristic 
clusters for each model with their respective fractal dimension are shown.

Data source η = 0.5 η = 1 η = 2 η = 3 η = 4 η = 5

Niemeyer, et al.8 * 1.89 ± 0.01 1.75 ± 0.02 1.6

Hayakawa, et al.24 * 1.79 ± 0.01 1.47 ± 0.03

Pietronero, et al.9 1.92 1.70 1.43

Somfai, et al.25 1.71 1.42 1.23

Amitrano26 1.86 1.69 1.43 1.26 1.16 1.07

Hastings21 1.433 1.263 1.128 1.068

1.426 1.264 1.090 1.030

1.435 1.262 1.078 1.025

1.452 1.243 1.071 1.009

〈D(η)〉 1.89 ± 0.05 1.70 ± 0.01 1.44 ± 0.02 1.25 ± 0.01 1.11 ± 0.04 1.04 ± 0.03

DMF(η) 1.80 1.67 1.50 1.40 1.33 1.29

D(η) (theoretical) 1.88 1.71 1.37 1.16 1.06 1.02

Table 1.  Fractal dimensions of the DBM. The first section of the table summarizes the fractal dimensions 
reported for the two-dimensional version of the model. The second section of the table is filled with the average 
fractal dimension 〈D(η)〉, obtained as the arithmetic mean over each column with its corresponding standard 
deviation, the mean-field theory and the analytical result obtained here (last row). Data sources marked with 
an asterisk are not considered in the average due to limitations in their simulations. The error in the reported 
measurements is shown if available.
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The validity of our model is tested twofold. First, under a Monte Carlo approach to fundamental particle 
aggregation dynamics, we combined three basic off-lattice particle-cluster aggregation models, the DLA, BA, 
and an infinite-range mean-field (MF) attractive model, in order to generate BA-MF and DLA-MF (fractal to 
non-fractal) morphological transitions as function of a mixing parameter p. For these transitions, that are able to 
reproduce all the main morphologies of fractal growth, the scaling of the generated clusters is measured locally 
and globally for different values of p using two standard methods: the two-point density correlation function 
and the radius of gyration. In second place, we apply the model to the scaling of the DBM (by making use of data 
already available in the literature, given in Table 1). In particular, we show how our model contains equation (1) 
as a special case within its first-order approximation. In both cases, we show that the solution is able to describe 
the measured scaling of these clusters, i.e., D(p) and D(η), for the BA/DLA-MF and DBM transitions, respectively. 
Finally, we show how all of the data collapse to single universal curves, independently of any initial configuration, 
growth process, and embedding Euclidean space.

Results
Generalized dimensionality function.  Despite the complexity of the transitions mentioned above, a sim-
ple model can be established to describe their fractality or scaling. This is done by considering that the funda-
mental dynamical elements that drive the fractal growth are mainly two: stochastic and energetic. As previously 
discussed, when the growth dynamics is purely driven by stochastic processes, as in the case of DLA (η = 1) or 
BA (similar to η = 0), the resulting structure is either a fractal (DLA) or a compact fat-fractal (BA) with D ≤ d. 
However, when an energetic element is introduced in the growth dynamics, the fractal dimension of the clusters 
decreases; for example, D → 1 as η → ∞ in the DBM.

As such, in the most general case, we consider that these transitions start with clusters produced by purely 
stochastic dynamics, with D = D0, where D0 stands for the fractal dimension of the clusters in this regime. Further 
on, as energetic mechanisms that drive spatial symmetry-breaking increase, such as strong non-linear interac-
tions, for example, these clusters collapse to linear structures. Let us also consider that all the information regard-
ing the effects of stochastic and energetic growth-dynamics is encoded in an effective control parameter Φ, 
allowing us to define a generalized dimensionality function ΦD( ). In this way, as a function of Φ, we require that 

Φ =D D( ) 0 for Φ = 0 and that Φ →D( ) 1 as Φ → ∞ along the transition. Correspondingly, in terms of the 
co-dimension, = −D̂ D 1, we would have Φ = −D̂ D( ) 10  for Φ = 0 and Φ →D̂( ) 0 as Φ → ∞. Additionally, for 
this kind of morphological transitions, it has been observed that the dependence of D on the control parameter is 
smooth and monotonically decreasing21, 24, 26–29. From this, since Φ = ΦˆD d D dd / d /  is satisfied, the most general 
solution for the scaling of the clusters is obtained from Φ = −ˆ ˆD d f Dd / ( ), with >ˆf D( ) 0. By expanding ˆf D( ) as a 
Taylor series we have: Φ ≈ − + + ≈ − −ˆ ˆ ˆ ˆD d f f D O D f f Dd / [ ( )]0 1

2
0 1 , where we have truncated the series up to 

the linear term as, again, we expect D̂ to vary smoothly along the transition. Thus, by integrating on both sides of 
the equation for given and finite D̂ and Φ, i.e., ∫ ∫′ + ′ = Φ′
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 and by taking into account the con-
dition that Φ →D̂( ) 0 as Φ → ∞, we obtain:

Φ = + − −ΦD D e( ) 1 ( 1) , (2)0

where the constant f1 has been absorbed in the control parameter Φ.
Under the conditions stated above, equation (2) is the most general form for the fractality of clusters found in 

morphological transitions, driven by stochastic and energetic mechanisms. For a particular case, the effective 
parameter Φ must still be found and is expected to depend on the parameters of a given system. As explained 
below, finding the correct Φ is not trivial and special dynamical conditions over D will be required. Before consid-
ering a more general scenario, let us now show why this equation is suitable to characterize these systems by 
considering the DBM mean-field equation first.

The mean-field result given in equation (1) belongs to a special case of the family of equations given in (2). 
Starting with the first-order approximation in Φ of equation (2), it follows that,

Φ = +
−

+ Φ
=

+ Φ
+ Φ

.D D D( ) 1 1
1 1 (3)

(1) 0 0

Here, by setting D0 = d and from direct comparison with equation (1), one is able to observe that these expres-
sions are equivalent, with Φ being nothing but ηΦ = −d d( 1)/MF w . This approximate result makes the relation 
between the effective parameter Φ and the actual parameter of the transition (in this case η) more evident and, for 
a given d (with dw = 2), it exhibits a linear relation between the parameters, ηΦ ∝ , which, as stated before, does 
not provide the correct solution for D due to its mean-field nature25, 26. Thus, a more general function for ηΦ d( , ) 
is still required.

There is one more condition that should be imposed over D in order to have a better and more general pre-
scription for Φ. When the fractal dimension of a cluster goes from D = D0 ≤ d to D = 1 throughout the transition, 
due to the competition of the stochastic and energetic elements of the growth dynamics, two regimes can be 
clearly defined in the extremes. For this to happen, there will necessarily exist a regime change in between, where 
neither the stochastic nor the energetic mechanisms dominate. Regarding the behavior of D, let us consider that 
this change in regime is associated with the point where the second derivative of D with respect to its control 
parameter becomes zero. This is, if ζΦ = Φ D( , )0 , where ζ  is the parameter that controls the transition of a given 
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system, then, there is an inflection point ζi that satisfies, ζ =
ζ ζ=

D̂d /d 02 2

i
. This inflection condition, from equa-

tions (2) and (3), translates to ζ ζΦ − Φ =
ζ ζ=

d[( /d ) d /d ] 02 2 2

i
 and ζ ζΦ − + Φ Φ =

ζ ζ=
d[2( /d ) (1 )d /d ] 02 2 2

i
.

For example, as it can be observed in the DBM mean-field case by identifying ζ  as η, the relation between 
parameters is linear, i.e., ζΦ = Λ D/MF 0 (with Λ = −d 1w  and fixed D0), making it impossible to define ζi, as the 
inflection condition cannot be satisfied. Therefore, we propose ζ ζΦ = Λ χD D( , ) /0 0 as a general ansatz for Φ, 
where Λ and χ are two positive real numbers that are associated with the strength of the screening/
anisotropy-driven effective growth forces, to be determined either theoretically or phenomenologically according 
to the system under study. Then, from equation (2), the newly proposed form for the effective parameter ζΦ D( , )0  
allows us to define a general dimensionality function ζD D( , )0 , characterized by an inflection point ζi, associated 
with a regime change in growth dynamics that satisfies ζ χ χΛ = −χ D/ ( 1)/i 0 . Additionally, from equation (3), 
the inflection point for the first-order approximation ζD D( , )(1)

0  is characterized by ζ χ χΛ = − +χ D/ ( 1)/( 1)i 0 . 
In this way, the expressions for the generalized dimensionality function ζD D( , )0  describe the scaling of the clus-
ters along a continuous morphological transition from D = D0 for ζΦ =( ) 0 towards D = 1 as ζΦ → ∞( ) , with a 
well-defined regime change in growth dynamics at ζi. In the following, in order to test our model, we will apply it 
to two morphological transitions, namely DLA-MF and BA-MF, newly developed for this work. Then, we will 
address the DBM once more, aiming to develop a possible solution to its fractality. Finally, we will discuss the 
universal scaling presented by these systems.

DLA/BA-MF morphological transitions.  In d = 2, a general stochastic aggregation process can be mod-
eled under a Monte Carlo scheme, involving three fundamental and simple off-lattice models of particle-cluster 
aggregation. On the one hand, the well-known BA and DLA models will provide disordered/fractal structures by 
means of their pure stochastic dynamics (Fig. 1a,b). On the other, a mean-field (MF) model of long-range inter-
active particle-cluster aggregation27, 30, will provide the energetic dynamical element (see Fig. 1c). The statistical 
combination of these models results in off-lattice DLA-MF and BA-MF dynamics, whose morphological transi-
tions can be controlled by the mixing parameter ∈p [0, 1], associated with the fraction of particles aggregated 
under MF dynamics, =p N N/MF , where N is total number of particles in the cluster. In this way, as p varies from 
p = 0 to p = 1, it generates two non-trivial transitions from fractals (DLA) or fat-fractals (BA) with respective D0, 
to non-fractal clusters with D = 1 (MF), that capture all the main morphologies of fractal growth6 (see Fig. 2). In 
the following, the data for D was measured and averaged over an ensemble of 128 clusters (with N = 1.5 × 105 
particles), for each value of p, by means of two standard methods: the two-point density correlation function, 

∝ α−C r r( ) , and the radius of gyration, ∝ βR N N( )g , where the scaling exponents are related to D as Dα = d − α 
and Dβ = 1/β, respectively (see Methods).

Figure 2.  DLA/BA-MF Transitions. Clusters of 1.5 × 105 particles grown with the indicated values of p are 
shown at different magnifications for the (a) DLA-MF and (b) BA-MF transitions. Particles aggregated under 
DLA/BA are coloured in light-blue while those through MF in black. These transitions exhibit fast 
morphological transformations as p increases, from unstable tip-splitting (DLA) or dense branching (BA), 
through (inhomogeneous) dendritic, to needle-like growth (MF). (c,d) C(r) and Rg(N) display deviations from a 
well-defined linear behaviour for different values of p, revealing the inhomogeneity or crossover effects in these 
clusters. This is better appreciated at low scales, where the stochasticity of DLA or BA dominates the local 
growth, whereas MF tends to dominate the global morphology as p → 1. In both cases, the dynamical growth-
regime changes at ≈ .p 0 1. Labels αI, αII, βI and βII indicate the regions used for the scaling analysis.
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Figure 3.  Scaling analysis of the BA/DLA-MF transitions. (a) Local scaling, D(p), of the DLA-MF and BA-MF 
transitions obtained from C(r) [top], at small (αI) and large (αII) scales, and Rg(N) [bottom], at medium (βI) and 
large (βII) scales, according to Fig. 2c,d (see Methods). These results are described by the solid and dotted curves 
given by equation (2) [top] and (3) [bottom], respectively, for different values of the parameters Λ and χ. The 
arrows indicate the direction of increasing scale. (b) By plotting D as a function of q = p/pi (where pi is calculated 
for each curve), all the data collapse into single master curves, D(q), according to equations (2) [top] and (3) 
[bottom], with a common point of regime change at qi = 1. The arrows indicate the direction in which the fractal 
or non-fractal features of the clusters are enhanced. (c) Plots of D as a function of the effective parameter Φ. 
Notice how all of the transitions approach common transitional points where clusters have already fully 
collapsed to linear ≈D( 1) structures, independently of the stochastic model used. Details of the values for the 
parameters used can be found in Table 2.

Transition Method Scale Λ χ D0 pi qi

DLA-MF

C(r) αI 15.4 2.24 1.6749 ± 0.0024 0.29

αII 71.5 1.82 0.08

Rg(N) βI 33.8 1.41 1.7100 ± 0.0007 0.03

βII 101.6 1.32 0.01

BA-MF

C(r) αI 11.6 1.61 1.9384 ± 0.0001 0.18

αII 45.4 1.38 0.04

Rg(N) βI 124.8 1.95 1.9485 ± 0.0001 0.06

βII 1547.7 2.05 0.02

DLA-MF
C(r) 1.69 1.6749 ± 0.0024 1.0

Rg(N) 1.34 1.7100 ± 0.0007 1.0

BA-MF
C(r) 1.39 1.9384 ± 0.0001 1.0

Rg(N) 1.88 1.9485 ± 0.0001 1.0

DBM (numerical) 0.70 1.26 2.0 0.66

DBM (theoretical) 0.685 1.52 2.0 1.0 1.0

Table 2.  Descriptions based on D(p) and D(q). First section: parameter values used to describe D(p, Λ, χ), 
using equations (2) and (3). In order to determine the inflection points, χ χΛ = −χD p( / ) ( 1)/0 i  for the 
measurements obtained through C(r), while χ χΛ = − +χD p( / ) ( 1)/( 1)0 i  for those obtained through Rg(N). 
Second section: equations (2) and (3), as function of q = p/pi, are used to fit the data for D(q, χ) obtained 
through C(r) and Rg(N), respectively. In this description, only χ is remains as a fitting parameter and, by 
construction, all the inflection points are located at qi = 1. Third section: results for the DBM obtained through 
equation (2).
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In contrast to the BA-DLA or DBM transitions, the DLA-MF and BA-MF transitions are characterized by inho-
mogeneous clusters, i.e., structures with non-constant scaling (see Fig. 2c,d). Given this multiscaling or crossover 
behaviour, it is not possible to strictly define their fractal dimensions for intermediate values of p, because the 
measurements are scale dependent. Nonetheless, these multiscaling features can be properly quantified by meas-
uring a local scaling or “local fractal dimension”, D(p), at different scales7 (see Fig. 3a). In this particular case, the 
selection of the scales for the analysis was made with the purpose of making evident the change of slope of the 
C(r) and Rg(N) functions at short and long scales (see Methods).

In particular, it should be noted that all of the measurements for D(p) display a clear behaviour from D0 for 
p = 0 to D = 1 for p = 1, with the exception of the data for D(p) obtained from C(r) at small scales, that does not 
fully collapse to one as p → 1 (see data labelled as αI in the upper panel of Fig. 3a). This feature can be associated 
with the locality of the measurements with C(r), that samples over many different origins and, therefore, captures 
more details of the fine structure of the cluster. In contrast, measurements performed with Rg(N) have a common 
fixed origin (the seed particle), thus providing a coarser description (see Methods). Then, at small scales, when 
clusters seem to be more compact (“less” fractal), i.e., when finite-size effects are inevitable, the limitations of the 
respective quantities are exhibited in the computation of D. Nonetheless, this feature does not compromise the 
reliability of the simulations results nor the analytical analysis performed over the data as we show below.

Discussion
Analytically, all the measurements of D(p) for the DLA-MF and BA-MF transitions can be described by equations 
(2) and (3), by identifying ζ = p in the expression for the general ansatz ζ ζΦ = Λ χD D( , ) /0 0, with D0 being the 
fractal dimension of the BA or the DLA cluster obtained when p = 0, and by using Λ and χ as fitting parameters. 
Remarkably, we found that the data for D(p), as obtained through C(r), is very well described by equation (2), 
whereas equation (3) describes best the results obtained through Rg(N) (see Fig. 3a). As previously discussed, even 
though the data for D(p) obtained through C(r) at small scales does not fully collapse to one ≈ .D( 1 2) as p → 1 
(see the curves with subscript αI in the upper panel of Fig. 3a), the functional form of Φ D p( , )0  allows for these 
cases to be considered as, for p = 1, we have Φ = ΛD D( ,1) /0 0. Indeed, a condition for the full collapse to D = 1 for 

Figure 4.  Scaling analysis of the DBM transition. (a) Plot of the fractal dimensions D as a function of η for the 
two-dimensional DBM transition (see Table 1). Here, the failure of the mean-field description is evident (dashed 
red curve). A better agreement is obtained using equation (2), with η ηΦ = Λ χD D( , ) /0 0, where D0 = 2. By fitting 
the data with this equation, one obtains Λ ≈ .0 70 and χ ≈ .1 26 with η ≈ .0 66i  (dashed black curve), while from 
the analytical analysis and by considering ηi = 1, Λ = − . ≈ .2log(0 71) 0 685 and χ = − Λ ≈ .D1/(1 / ) 1 520  
(solid black curve). (b) Maintaining ηi = 1 as the transitional point, the analytical solution for D(q) is equivalent 
to that for D(η). (c) As well, from the analytical expressions, one can obtain the curve ΦD( ) (see Table 3).

Transition Method Parameter D0 χ Φt(ε = 0.1) qt Φt(ε = 0.05) qt D(q = 1)

DLA-MF C(r) p 1.6749 ± 0.0024 1.69 2.3 2.8 3.0 3.2 1.46 ± 0.02

DLA-MF Rg(N) p 1.7100 ± 0.0007 1.34 9.0 21.7 19.0 37.8 1.62 ± 0.01

BA-MF C(r) p 1.9384 ± 0.0001 1.39 2.3 4.5 3.0 5.4 1.72 ± 0.02

BA-MF Rg(N) p 1.9485 ± 0.0001 1.88 9.0 6.0 19.0 9.0 1.73 ± 0.01

DBM (theoretical) η 2.0 1.52 2.3 3.5 3.0 4.2 1.71

Table 3.  Transitional points. By considering εΦ − − =D D( ( ) 1)/( 1)t 0 , where ε  1 is the tolerance or 
deviation from D = 1 (see Fig. 3c), the universal transitional points, Φt, must satisfy, ε−Φ =exp( )t  and 

ε εΦ = −(1 )/t , from equations (2) and (3), respectively. In order to recover the particular transitional points, 
we must recall that Φ = Φ q( )t t  and solve for qt. Notice also that ε χ=q q D( , , )t t 0 , therefore, it yields different 
values for each transition. Additionally, we must point out that the strong similarities exhibited by the BA-MF 
and DBM transitions, such as ≈q 4t  and ≈ .D 1 71 for q = 1 (similar to η = 1), even though we are dealing with 
completely different processes.



www.nature.com/scientificreports/

7Scientific Reports | 7: 3523  | DOI:10.1038/s41598-017-03491-5

p = 1 would require Λ D/ 10 , condition that is currently satisfied by the BA-MF and DLA-MF transitions (see 
Table 2).

Furthermore, our model allows us to determine the corresponding inflection point pi for each curve D(p), 
however, due to the inhomogeneity of the clusters and the measurements’ scale dependence, it is impossible to 
establish a unique regime-change point for each curve in terms of p. Nonetheless, such description can still be 
achieved by introducing the reduced parameter =q p p/ i, under which, all the data for D(p) collapse into single 
curves D(q), according to their respective transition (DLA-MF or BA-MF). Analytically, substituting ∈ ∞q [0, ), 
back into equation (2), we have that χ χΦ = −χq q( ) ( 1)/  and, for equation (3), the effective parameter is now 
given by χ χΦ = − +χq q( ) ( 1)/( 1). In this framework, the variations in χΛD p( , , ) due to crossover effects 
disappear and each transitions is now described by a single master curve D(q, χ). Also, by construction, the 
dynamical growth-regime change is now located at qi = 1 for all transitions. By fitting D(q, χ) given by equations 
(2) and (3) to the respective data, we obtain again an excellent agreement with the numerical results (see Fig. 3b).

At this point in the analysis, it is important to consider the two-dimensional DBM transition as well. As pre-
viously discussed, within the mean-field approximation, we have that equation (3), with ηΦ = d/MF  (dw = 2), fails 
to precisely describe the fractality of the transition (see dashed red curve in Fig. 4a). However, by means of equa-
tion (2) and the general ansatz, η ηΦ = Λ χD D( , ) /0 0, with D0 = d, a better agreement with the data is achieved. 
The parameters Λ and χ can be obtained by fitting our model to the data as before (dashed black curve in Fig. 4a), 
nonetheless, here we also show how they can be analytically calculated. Setting d = 2, the first parameter Λ can be 
obtained by using the well known result for the two-dimensional scaling of DLA, D = 1.71, that is associated with 
η = 1 for the DBM. From equation (2), this leads to Λ = − − − = − . ≈ .η=d D dlog(( 1)/( 1)) 2log(0 71) 0 6851 . 
Then, the parameter χ is obtained from the dynamical condition imposed over D, given by η χ χΛ = −χ d/ ( 1)/i . 
Considering that the DLA fractal (η = 1) can be associated to a particular (possibly critical28, 29) dynamical state, 
that defines the regime change in the DBM transition, from non-fractal (D0 = d, η = 0), through fractal (DLA, 
η = 1), to non-fractal (D = 1, η  1), we can set ηi = 1, leading to χ = − Λ ≈ .d1/(1 / ) 1 52. As it can be appreci-
ated in Fig. 4 (solid black curves), this analytical result agrees very well with the data for D(η) within a 
self-contained framework, provided that the DLA state marks the point of change in regime. For the rest of the 
article we will consider ηi = 1 as the transitional point for the DBM.

An important issue to consider here is that of the criticality of these morphological transitions, as well as its 
characterization using the fractal dimension as an order parameter, as previously suggested for the DBM21. In 
order to address this point in a comprehensive approach, let us first define a possible and suitable order parameter 
for these systems. This is done by plotting all of the data for D(q) now as function of Φ itself, i.e., ΦD( ), depicted in 
Figs 3c and 4c. Notice that, in this description, the DLA/BA-MF (Fig. 3c) and DBM (Fig. 4c) transitions, starting 
from D0, approach the highly anisotropic regime ≈D( 1) in an almost identical manner, in excellent agreement 
with equations (2) and (3). Further on, in order to remove the dependence on D0, we introduce the reduced 
co-dimension, ∈  ⁎D [0, 1], defined by = − −⁎D D D( 1)/( 1)0 , as the new “order parameter” of the system. From 
equations (2) and (3), we respectively have,

Φ = Φ =
+ Φ

.−Φ⁎ ⁎D e D( ) , ( ) 1
1 (4)

(1)

In this manner, under the new framework based on the co-dimension D*, all the numerical results collapse 
into the universal curves given by equations (4) as can be appreciated in Fig. 5. These curves go from D* = 1 for 
D = D0, to D* → 0 as D → 1. Moreover, the co-dimension D* is not necessarily describing a real “order-disorder” 
transition but, rather, an isotropic-anisotropic one. The subtlety lies at the initial cluster configuration. This is, 
even though all transitions collapse to a linear “ordered” structure, the initial cluster configuration can also be 
considered as ordered, such as in the case of the DBM (associated to compact Eden clusters), or disordered, as in 
the case of the BA/DLA-MF transitions (a fractal for DLA and a fat-fractal for BA). Nonetheless, in terms of their 
isotropy, or preferential growth features, all transitions start from an isotropic (such as Eden or BA) or isotropic 
on-average (such as DLA) clusters, to a highly anisotropic structure as the rotational-symmetry brakes down.

Even more, given that in any case the solutions for D* are smooth functions that tend to zero in a continuous 
manner, defining an specific point where D* becomes exactly zero is not possible. This implies that the previously 
suggested critical point for the DBM, i.e., the value for η where ≈D 121, cannot be treated as “critical” from the 
point of view of a formal critical phase-transition theory28, 29. In fact, this will not be possible for any of the tran-
sitions analyzed in this work. Nevertheless, what it is still possible is to define transitional points, Φt, that are dif-
ferent from the points where the growth-regime changes. For the transitional points, the screening/anisotropy 
effects strongly dominate the morphology of the cluster, thus, they correspond to points at which ε= +D 1 , 
with ε  1 is the tolerance or deviation from D = 1 (for technical details see Table 3).

The final and most important implication of the previous findings is that the DBM and BA/DLA-MF transi-
tions, although completely different, can be treated as belonging to the same universality class. In order to make 
sense of this, we must recall that, in two-dimensions, the DBM (for η = 1) and viscous fingering phenomena are 
said to belong to the same universality class as that of DLA, based on the fact that they are all characterized by the 
same fractal dimension, D = 1.7112, 31. Therefore, by extending this idea to a whole set of dimensions, the univer-
sality of these morphological transitions must be understood in the sense that they are all described by the same 
set of fractal dimensions. Quite remarkably, under the description provided by the co-dimension Φ⁎D ( ), the DBM 
and BA/DLA-MF morphological transitions belong to the same universality class which, in turn, implies that 
their mathematical description is independent of their spatial symmetry-breaking dynamics and initial 
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configuration, therefore, these transitions will be described by the same curves in any embedding Euclidean 
dimension (see Fig. 5).

In summary, we present a novel framework for the scaling of morphological transitions in stochastic growth 
processes. By means of a general ansatz for an effective control parameter, Φ, we were able to construct a model 
for the fractal dimension D that is able to describe the fractality of very different systems. In particular, this model 
is able to describe the scaling of the newly introduced BA/DLA-MF transitions, as well as it provides an excelent 
description for the fractal dimensions of the well-known DBM. In addition, it was strictly shown that D can be 
used as a rotational-symmetry “order” parameter under the reduced co-dimension transformation D*. On the 
other hand, we have shown that the previously suggested “critical” point for the DBM cannot be properly defined 
as such, but instead, as a transitional point in the fractality of a continuous morphological transition. Finally, we 
have shown that under the reduced co-dimension, the DLA-MF, BA-MF and DBM transitions exhibit a 
well-defined universal scaling, Φ⁎D ( ), that is remarkably independent of their initial configuration, the specific 
spatial symmetry-breaking mechanism that drives the transition, and the dimensionality of their embedding 
Euclidean space. In general, we consider that the results and models presented in this work represent a significa-
tive unifying step towards a complete scaling theory of fractal growth and far-from-equilibrium pattern forma-
tion. Additionally, the possibility of applying this model to discuss current issues in fractal growth-phenomena 
and other related research areas, ranging from biology1, 3, intelligent materials engineering32, 33 to medicine34–36, 
seems to be more feasible and direct.

Methods
Aggregation dynamics.  In all simulations, each particle has a diameter equal to one. This is the basic unit 
of distance of the system. For aggregates based on BA or MF (Fig. 1a,c), we follow a standard procedure in which 
particles are launched at random from a circumference of radius rL = 2rmax + δ, with equal probability in position 
and direction of motion. Here, rmax is the distance of the farthest particle in the cluster with respect to the seed 
particle placed at the origin. In our simulations we used δ = 1000 particle diameters to avoid undesired screening 
effects. For the MF model, particles always aggregate to the closest particle in the cluster with respect to their 
incoming path. This is determined by the projected position of the aggregated particles along the direction of 
motion of the incoming particle (see Fig. 1c). In the case of aggregates based on DLA (Fig. 1b), particles were 
launched from a circumference of radius rL = rmax + δ, with δ = 100. The mean free path of the particles is set to 
one particle diameter. We also used a standard scheme that modifies the mean free path of the particles as they 
wander at a distance larger than rL or in-between branches, as well as the common practice of setting a killing 
radius at rK = 2rL in order to speed up the aggregation process.

In order to mix different aggregation dynamics, a Monte Carlo scheme of aggregation is implemented using 
the BA, DLA and MF models. The combination between pairs of models results in the DLA-MF and BA-MF 
transitions, controlled by the mixing parameter ∈p [0, 1], associated with the probability or fraction of particles 
aggregated under MF dynamics, =p N N/MF , where N is total number of particles in the cluster. Therefore, as p 
varies from p = 0 (pure stochastic dynamics given by the BA or DLA models) to p = 1 (purely energetic dynamics 
given by the MF model), it generates the two transitions introduced in the work. The evaluation of the aggregation 
scheme to be used is only updated once a particle has been successfully aggregated to the cluster under such 
dynamics.

Figure 5.  Universality. By plotting the reduced co-dimension D* as function of the effective parameter Φ, data 
for the scaling of the DLA-MF, BA-MF and DBM transitions collapse to universal curves given directly by 
equations (2) and (3). Under this description, these universal morphological transitions are independent of the 
fractal dimension of the initial configuration, D0, the symmetry-breaking process that drives the transition 
(including crossover effects), and, even, independent of the Euclidean dimension d of their embedding space. 
The scattered points were obtained by processing the data of Figs 3 and 4.
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Fractal and scaling analysis.  In all of the measurements, we used 128 clusters containing 1.5 × 105 parti-
cles. Formally, the fractal dimension is measured from the two-point density correlation function, 

ρ ρ= + =C r r r r( ) ( ) ( ) rr0 0 , where the double bracket indicates an average over all possible origins r0 and all 
possible orientations. For this work, we made use of 1000 possible origins. Here, it is assumed that ≈ α−C r r( ) , 
where the fractal dimension is given by Dα = d − α, where d is the dimension of the embedding space. We also 
used the radius of gyration given by = ∑ −=R r r( )g i

N
i CM

2
1

2, where N is the number of particles, ri is the position 
of the ith-particle in the cluster, and rCM is the position of the center of mass. In this scheme, it is assumed that 

≈ βR N N( )g , where the fractal dimension is given by Dβ = 1/β. Therefore, the fractal dimensions, Dα and Dβ, are 
respectively obtained from linear-fits to the corresponding functions, C(r) and Rg(N), in log-log plots for different 
scales.

In practice, it is assumed that α and β are constant as long as the size or number of particles in the cluster is 
large enough. However, because the clusters do not develop a constant scaling, linear-fits at different scales were 
performed in order to capture their main local fractal features. Also, we averaged the outcome of 10 linear fits, 
distributed over a given interval in order to improve the precision of the measurements. For both transitions, 
DLA-MF and BA-MF, Dα(p) is measured at short length-scales (this is αI) over the interval ∈r [1, 2]i  with 
fitting-length equal to 10, and ∈r [11, 12]f  (in particle diameters units). At long length-scales (αII), over 

∈r [10, 11]i  with fitting-length equal to 40, and ∈r [50, 51]f . On the other hand, for Dβ(p), the measurements at 
medium scales (βI) where performed over the interval ∈r [10 , 10 ]i

2 3  with fitting-length equal to 104 and 
∈ . × . ×r [1 01 10 , 1 1 10 ]f

4 4  (in particle number), while, at large scales (βII), over the interval ∈r [10 , 10 ]i
3 4  

with fitting-length equal to 0.9 × 105 and ∈ . ×r [9 1 10 , 10 ]f
4 5 .
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