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. The recent global challenges to prevent and treat fungal infections strongly demand for the

. development of new antifungal strategies. The structurally very similar cysteine-rich antifungal proteins

. from ascomycetes provide a feasible basis for designing new antifungal molecules. The main structural

. elements responsible for folding, stability and antifungal activity are not fully understood, although this
is an essential prerequisite for rational protein design. In this study, we used the Neosartorya fischeri

. antifungal protein (NFAP) to investigate the role of the disulphide bridges, the hydrophobic core, and

. the N-terminal amino acids in the formation of a highly stable, folded, and antifungal active protein.

© NFAP and its mutants carrying cysteine deletion (NFAP AC), hydrophobic core deletion (NFAP Ah),
and N-terminal amino acids exchanges (NFAP AN) were produced in Pichia pastoris. The recombinant
NFAP showed the same features in structure, folding, stability and activity as the native protein. The
data acquired with mass spectrometry, structural analyses and antifungal activity assays of NFAP and
its mutants proved the importance of the disulphide bonding, the hydrophobic core and the correct
N-terminus for folding, stability and full antifungal function. Our findings provide further support to the
comprehensive understanding of the structure-function relationship in members of this protein group.

Recent global challenges to prevent and treat fungal infections for human welfare require the development of
novel antifungal strategies against moulds'. The cysteine-rich antifungal proteins from filamentous ascomycetes
(AFPs) provide a feasible basis for the rational design and development of new bio-pesticides, preservatives and
drugs with improved activity, efficacy, fungal-selectivity, and low-cost production®-. The members of this protein
group show different antifungal spectra and mechanisms of action on opportunistic human, animal, plant and
foodborne pathogenic filamentous fungi®, but interestingly, they exhibit remarkably similar 3-barrel topology
. constituting five highly twisted antiparallel 3-strands'®-'*. This structure is stabilized by three to four disulphide
. bridges, which provide stability against protease degradation, high temperatures and within a broad pH range®. In
spite of the available experimental knowledge about their structure!®!4, the main structural elements which coor-
dinate the proper folding, and hence are responsible for the high-stability and antifungal activity have not been
. fully understood. However, distinction of these “essential” determinants from the other “non-essential” designa-
. ble structural elements is a prerequisite for rational modifications to improve the activity and fungal-specificity of
. these proteins, which are strongly requested for novel antifungal strategies. The importance of disulphide bonds
. and the correct cleavage of the leader sequence from the N-terminus for structural integrity and antifungal activ-
© ity have been already observed in this protein family'" 1215 16,
The tertiary structure of AFPs is similar to the 3-defensin(-like) peptides but they possess a hydrophobic
- core'?. In the lack of a distinct hydrophobic core, the folded structure of 3-defensins is stabilized by intramolecu-
. lar disulphide bonds between cysteine residues and these also catalyse the proper folding of antimicrobial active
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Molecular Net charge Number of | Disulphide
Protein mass (Da) | Theoretical pI | Number of Cys | at pH=7.0 | GRAVY | 3-strands | bond pattern*®
LEYKGECFTKDNTCKYKIDGKTYLAKCPSAANTKCEKDGNKCTYDSYNRKVKCDFRH
NEAP ‘ 6625.50 ‘ 8.93 ‘ 6 ‘ +5.0 ‘ 1214 ‘ 5 ‘ abcabe
LEYKGEYFTKDNTYKYKIDGKTYLAKYPSAANTKYEKDGNKYTYDSYNRKVKYDFRH
NEAPAC ‘ 6985.74 ‘ 935 ‘ 0 \ +5.1 ‘ —1.614 ‘ 4 ‘ _
LESKGECFTKDNTCKSKSDGKTSLAKCPSAANTKCEKDGNKCTSDSYNRKVKCDFRH
NFAPAh ‘6295.05 ‘8.99 ‘6 ‘ +5.0 ‘ —1272 ‘4 ‘bb
GEWKAECFTKDNTCKYKIDGKTYLAKCPSAANTKCEKDGNKCTYDSYNRKVKCDFRH
NFAPAN ‘ 6606.48 ‘ 8.95 ‘ 6 ‘ +5.0 ‘ 1242 ‘ 4 ‘ bb

Table 1. Amino acid sequence and in silico predicted physical and chemical properties of the mature NFAP
and its mutants. Substitutions in the amino acid sequences are indicated with bold and underlined letters. “The
formation of disulphide bridges between C7-C35 and C27-C53 in NFAPAh and NFAPAN is impossible, as
the distance between these cysteines is over the disulphide bonding limit, 2.3 A%, GRAVY: grand average of
hydropathy value; NFAP: Neosartorya fischeri NRRL 181 antifungal protein; NFAPAC: cysteine deletion NFAP
mutant; NFAPAh: hydrophobic core deletion NFAP mutant; NFAPAN: N-terminal amino acids exchanged
NFAP mutant.

structure'” 18, It is well-known that the hydrophobic core of a protein is responsible for stability, and coordinates
the folding and structural formation'-*!. Mutations in the hydrophobic core affect the stability and the correct
protein folding??. Furthermore, the first five N-terminal residues of 3-defensins facilitate the proper folding and
the formation of canonical disulphide bond pattern'’. Single N-terminal amino acid mutations or lack of the
N-terminal residues causes structural rearrangements® and/or changes in the antimicrobial specificity, efficacy
or toxicity*.

The Neosartorya fischeri NRRL 181 isolate secretes a representative of AFPs, the Neosartorya fischeri antifun-
gal protein (NFAP)?. NFAP is synthesised as a preproprotein which contains both a signal sequence for secretion
and a prosequence that is removed before or during protein release into the supernatant®. We successfully used a
Pichia pastoris heterologous expression system to produce high amounts of folded and active recombinant NFAP,
which has the same antifungal activity as the native NFAP®.

In this study, we wanted to prove our assumption that distinct structural elements contribute to the second-
ary structure formation, proper folding, stability and antifungal activity of AFPs from ascomycetes like NFAP.
To achieve this objective, we produced recombinant NFAP mutants in P. pastoris that vary in disulphide bridge
formation (NFAPAC), the hydrophobic core (NFAPAh) and the N-terminus (NFAPAN) (Table 1). In NFAPAC
the disulphide bridges, and in NFAPA the hydrophobic core were destroyed by amino acids substitutions. The
NFAPAN mutant carried three exchanges of the first five N-terminal amino acids of the mature protein. The fold-
ing property, structural stability, and antimicrobial activity of these NFAP mutants were investigated by thermal
unfolding experiments, antifungal susceptibility tests, and functional tests and were compared with the wild-type
NFAP.

Results

Homology modelling suggested disrupted structure and disturbed folding of NFAPAC,
NFAPAh and NFAPAN. [n silico homology modelling experiments can reveal the contribution of the
disulphide bonding, the hydrophobic core and the N-terminus to formation of correct secondary structure and
folding of NFAP. Hence, we analysed potential structural changes in NFAP when these structural elements are
disturbed by amino acid replacement. The in silico predicted tertiary structure of NFAP contains five antipar-
allel 3-strands (constituted by E2-C7, T13-K17, T22-K26, N40-D45, K50-D54) connected with four loops
(F8-N12,118-K21, C27-G39, S46-R49) (Fig. 1). This folded 3-barrel structure is stabilized by three intramolec-
ular disulphide bridges between C7-C35, C14-C42 and C27-C53 in an abcabc bonding pattern (Fig. 1). NFAP
has an amphipathic surface (Supplementary Fig. Sla), alternating positively- and negatively-charged patches
(Supplementary Fig. S1b) and a hydrophobic core constituted by Y3, Y16, 118, Y23, Y44 (Fig. 1). The disul-
phide-bonded six cysteines are well protected in the centre of this hydrophobic core. Replacements of all cysteines
to tyrosines (C7Y, C14Y, C27Y, C35Y, C42Y, C53Y) abrogate the presence of the disulphide bridges (NFAPAC,
Table 1 and Fig. 1). Substitutions of tyrosines at the position of 3, 16, 23, 44 and the isoleucine at the position of 18
to serines (Y3S, Y168, Y23S, Y44S, and 118S) destruct the hydrophobic core of the molecule (NFAPA, Table 1
and Fig. 1). The hydrophilicity of the N-terminal region can be increased by L1G, Y3W and G5A substitutions
(NFAPAN, Table 1 and Fig. 1), which results in a more hydrophobic N-terminal 3-strand. However, these amino
acid substitutions do not dramatically change the net charge and the grand average of hydropathy (GRAVY) value
of the protein (Table 1), but based on the in silico homology modelling data they could impair the disulphide
bridge formation®, secondary structure and folded state of NFAP (Fig. 1). The loss of one (3-strand, the disturbed
disulphide bonding and folding indicate the possibility of significant structural changes in all mutants (Fig. 1).

Pichia pastoris KM71H produced NFAP and its mutants. To prove the structural and functional
disruption by distinct amino acid substitutions, we produced NFAP and its mutants in P. pastoris KM71H
(Supplementary Fig. S2). The average yield of purified NFAP, NFAPAh, and NFAPAN was 11.27 +4.65 mg/1
(n=3),29.10£0.77mg/l (n=3) and 7.62 £ 0.09 mg/l (n=2), respectively. The NFAPAC was degraded
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Figure 1. Predicted tertiary structure of NFAP, NFAPAC, NFAPAh, NFAPAN. The hydrophobic core
constituting amino acids are indicated by light blue. Cysteines and the possible disulphide bridges are marked
with yellow and yellow line. Amino acid substitutions are indicated in red. The putative structures are highly
reliable: Based on the Ramachandran plot analysis®’, 94.5% and 5.5% of the residues are in the favoured and
allowed regions at NFAP; and 98.2% and 1.8% at NFAPAC, NFAPAh, and NFAPAN. The.pdb files of the
structures are available in the Dataset 1-4. NFAP: Neosartorya fischeri NRRL 181 antifungal protein; NFAPAC:
cysteine deletion NFAP mutant; NFAPAh: hydrophobic core deletion NFAP mutant; NFAPAN: N-terminal
amino acids exchanged NFAP mutant.

during its expression. Degradation of NFAPAC became evident in sodium dodecyl sulphate-polyacrylamide
gels (Supplementary Fig. S3) and did not allow a molar mass determination. To prove the presence of the degra-
dation products of NFAPAC in the culture broth of P. pastoris KM71H, the different molecular weight fractions
of the ferment broth were subjected to tryptic digestion to allow the identification of defined peptide fragments
originating from NFAPAC by mass spectrometric (MS) analysis. These molecular mass data were then compared
with the NFAPAC sequence. Nine characteristic peptide fragments could be identified in the >10kDa fraction
which covered 74% of the NFAPAC sequence (Supplementary Table S1). The identification of both the N- and
C-terminal fragments of NFAPAC proved that the protein was expressed in a correctly processed form and
let us assume that it was degraded by extracellular proteases. The investigation of the <3 kDa fraction verified
our assumption, that this fraction possibly contained the peptide fragments from the degraded NFAPAC: We
detected eight characteristic peptide fragments in it (Supplementary Table S1). The N-terminal YDFRH peptide
fragment was not detectable in the fractions below <10kDa, possibly due to its weak peak intensity. This result
clearly indicates that NFAPAC is not stable in the absence of the disulphide bridges, and is supposedly more
prone to easy degradation by extracellular proteases.

Mass spectrometry and RP-HPLC indicated truncations and structural variants of NFAPAh
and NFAPAN. NFAP, NFAPAh, and NFAPAN were identified by capillary electrophoresis electrospray
ionization mass spectrometry (CE-ESI-MS). The calculated and measured monoisotopic molecular masses from
independent expressions are listed in Table 2. The NFAP purified from four days cultivation broths of P. pas-
toris KM71H proved to be homogeneous and correctly maturated, and the measured molecular mass corre-
sponded to the calculated mass of the protein that exhibits oxidized cysteines. This unambiguously indicated
that all three disulphide bonds were formed (Table 2). In contrast, differently N- and C-terminal truncated, but
disulphide bond-stabilized forms of NFAPAh and NFAPAN were present in the purified samples in addition to
the full-length mature protein mutants (Table 2). Mass spectrum extraction analysis of the full-length NFAPAh
and NFAPAN revealed that these NFAP mutants apparently showed different structures (Supplementary Fig. $4),
and this could also be observed with their truncated variants (data not shown). This result indicates that NFAPAh
and NFAPAN were expressed in unordered states before being stabilized by random disulphide bridges. The
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Protein (calculated Detected monoisotopic
monoisotopic molecular mass | molecular mass by CE- Number of
with oxidized cysteine, Da) ESI-MS (Da) Protein variant disulphide bridges
NFAP (6615.10) 6615.07, 6615.08, 6615.17 | N-NFAP-C 3

6284.90, 6284.98, 6284.99 | N-NFAPAh-C 3

6171.90 N-(-L)NFAPAh-C 3

5827.63,5827.71,5827.73 | N-(-LESK)NFAPAh-C 3
NFAPAh (6284.92) 6147.83,6147.92,6147.93 | N-NFAPAh(-H)-C 3

5991.72, 5991.81 N-NFAPAh(-RH)-C 3

5844.63, 5844.67 N-NFAPAh(-FRH)-C 3

5690.57, 5690.64 N-(-LESK)NFAPAh(-H)-C 3

6596.04, 6596.09 N-NFAPAN-C 3

6095.80, 6095.87 N-(-GEWK)NFAPAN-C 3

6024.74 N-(-GEWKA)NFAPAN-C 3
NFAPAN (6596.07) 5794.64 N-(-GEWKAEC)NFAPAN-C 2

6458.96, 6459.01 N-NFAPAN(-H)-C 3

6245.87 N-(-G)NFAPAN(-RH)-C 3

5958.73 N-(-GEWK)NFAPAN(-H)-C 3

Table 2. Calculated and detected monoisotopic molecular masses (in the range of 5600-7400 Da) of the
recombinantly expressed proteins that were purified from four days old Pichia pastoris KM71H supernatants.
NFAP: recombinant Neosartorya fischeri NRRL 181 antifungal protein (n = 3); NFAPAh: hydrophobic core
deletion NFAP mutant (n =3); NFAPAN: N-terminal amino acids exchanged NFAP mutant (n=2).

integrity of the mutant proteins was also examined by reversed-phase high performance liquid chromatogra-
phy (RP-HPLC). While the NFAP sample proved to be intact (Fig. 2) and to exist in a single well-folded state,
NFAPAh and NFAPAN samples were degraded and showed several different structures (Fig. 2). The structural
alterations were more prominent in NFAPAN than in NFAPAh (Fig. 2). The RP-HPLC results further strengthen
our assumption that these NFAP mutants are unordered and contain randomly matched disulphide bonds.

ECD spectroscopy indicated unordered secondary structure of NFAPAh and NFAPAN. The
secondary structure of recombinant NFAP, NFAPAh, and NFAPAN and the thermal stability of recombinant
NFAP were investigated by ECD spectroscopy and the results were compared with NFAP from the native pro-
ducer N. fischeri NRRL 181%°. ECD spectra of the native and recombinant NFAP were identical at 25°C (Fig. 3a)
indicating that their secondary structures are the same. These spectra had two maxima at 202nm and 228 nm
with a shoulder at 195nm and a low intensity minimum centred at 217 nm. The maximum at 202 nm emerged
from contributions from the spectral transitions of disulphide bridges. The maximum at 228 nm was mainly
attributed to the disulphide bridges while the shoulder at 195 nm and the low intensity minimum at 217 nm indi-
cated (3-sheet conformation. Similar spectral features were reported previously for the homologous Penicillium
chrysogenum antifungal protein (PAF)' and other 3-structured proteins which contain disulphide bridges?.
Deconvolution of ECD spectra of native and recombinant NFAP revealed, that the difference between the sec-
ondary structure of the two proteins is not higher than 3% (Supplementary Table S2). In the case of NFAP, 3%
accounts for less than two residues, therefore it can be assumed that the structures of the two proteins are essen-
tially the same. Spectra of NFAPAh and NFAPAN reflected the complete loss of an ordered secondary structure
and suggested the presence of various disulphide bond patterns. Thermal unfolding curves (Fig. 3b) indicated
that unfolding was not complete in the 25°C-95 °C temperature range. These curves did not present the usual
sigmoidal shape; therefore, the exact determination of the melting temperature (T,,) of the protein structure was
not possible. Nevertheless, the native fold of NFAP appeared to be completely intact below 60 °C, which reflected
the remarkable stability of this protein.

NFAPAh and NFAPAN showed changes in the antifungal activity, thermal, pH and salt tol-
erance. The antifungal activity, thermal, pH and salt tolerance of the investigated proteins were tested in a
broth microdilution assay using the NFAP-sensitive Aspergillus nidulans FGSC A4 as test organism. Compared
to the ordered NFAP, the unordered NFAPAh and NFAPAN showed no or significantly reduced antifungal
activity against A. nidulans FGSC A4, respectively (Fig. 4a). Surprisingly, five microgram NFAPAN reduced
the growth of the test organism to 68 +4.7% (Fig. 4a), whereas the same amount of NFAP proved to be inac-
tive. A dose-dependent inhibitory activity was observed for NFAP, and in contrast to this, NFAPAN reduced
the growth with ca. 33%, independently of its applied amount (Fig. 4a). The difference between the antifungal
activity of NFAP and NFAPAN was significant at the applied amount of 5, 20 and 40 pg (Fig. 4a). NFAPAN
showed same tolerance characteristics to heat and pH as NFAP (Fig. 4b,c), but proved to be less salt-tolerant
(Fig. 4d). Temperature treatment at 50 °C did not cause significant reduction in the antifungal activity of NFAP
and NFAPAN, but both proteins were inactive after treatment at 100 °C (Fig. 4b). NFAP and NFAPAN were
similarly pH sensitive (Fig. 4c). They showed the highest activity at slightly basic pH 8.0 and they were less active
at slightly acidic pH 6.0 (Fig. 4c). Whilst 50-100 mM NacCl, and 25-100 mM MgSO, impaired the antifungal
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Figure 2. RP-HPLC chromatogram of recombinant NFAP, NFAPAh, and NFAPAN. Compared to NFAP, the
NFAPAh and NFAPAN samples showed degradation and structural alterations, which were more prominent in
NFAPAN than in NFAPAh. NFAP: recombinant Neosartorya fischeri NRRL 181 antifungal protein; NFAPAh:
hydrophobic core deletion NFAP mutant; NFAPAN: N-terminal amino acids exchanged NFAP mutant.

activity of NFAP in a dose-dependent manner, presence of 25 mM NaCl had no influence (Fig. 4d). In contrast
to this, NFAPAN readily was inactivated by 25 mM NaCl or MgSO,. NFAPAh was inactive under all conditions
tested (Fig. 4a-d).

NFAPAh and NFAPAN had no effects on hyphal morphology and physiology. Previously,
we described that at sublethal concentrations NFAP affects the morphology of A. nidulans hyphae (hyper-
branching and swollen hyphal tips, Supplementary Fig. S5a) as a consequence of disturbed actin distribution
(Supplementary Fig. S5b) and chitin deposition (Supplementary Fig. S5¢)®. Moreover, metabolic inactivation by
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Figure 3. ECD spectra and thermal unfolding of NFAP, NFAPAh, and NFAPAN. (a) ECD spectra of native
NFAP (black), recombinant NFAP (red), NFAPAh (blue) and NFAPAN (green) mutants recorded at 25 °C.
(b) Thermal unfolding of native NFAP (black) and recombinant NFAP (red) followed by ECD spectroscopy
at 228 nm. NFAP: native and recombinant Neosartorya fischeri NRRL 181 antifungal protein; NFAPAh:
hydrophobic core deletion NFAP mutant; NFAPAN: N-terminal amino acids exchanged NFAP mutant.

NFAP was detected (Supplementary Fig. S5d)®. However, morphology (Supplementary Fig. S5a), actin distribu-
tion (Supplementary Fig. S5b), chitin deposition (Supplementary Fig. S5¢) and metabolic activity (Supplementary
Fig. S5¢) of the A. nidulans hyphae were neither affected by NFAPAh nor by NFAPAN (Supplementary
Fig. S5a-d).

Discussion

Following previous observations from other cysteine-rich, 3-structured antimicrobial peptides and proteins
folding, stability and antifungal activity of NFAP was proposed here to be dependent of the correct disulphide
bond pattern, the presence of a hydrophobic core and the correct N-terminal amino acid sequence. Previously
we demonstrated that P. pastoris KM71H is able to produce folded, antifungal active NFAP, and its antifungal
efficacy is comparable to the native protein’. In the present study ECD spectroscopic measurements proved that
this recombinant NFAP has the same structural elements, folding and thermal stability as the native protein
(Fig. 3a,b). Thus, any differences in structure and activity of the NFAP mutants generated in this study, reflect the
possible role of disulphide bonding, hydrophobic core and N-terminal amino acid sequence for the function of
the native NFAP.

In silico homology modelling was employed to visualize potential structural disruption induced by amino
acid exchanges in the respective motifs of NFAP. The modelling estimated the possible impact of amino acid
exchanges on the overall solution structure of the protein. The models suggest that all NFAP mutants exhibit
four (3-strands instead of the five 3-strands present in native NFAP and less disulphide bonds. This could be an
indication of strong perturbation of the ordered secondary structure. The drastic structural rearrangements of the
NFAP mutants in the in silico homology model strongly indicated that the affected structural elements could have
a deep impact in the protein folding. However, one must be aware of the fact that this method cannot predict ifa
protein is unordered or not. Thus, the homology modelling was helpful to investigate the importance of structural
elements in the folding, but no evidence for the overall solution structure of a protein is given. The ECD spectros-
copy provided an experimental insight into this aspect.

A loss of ordered structure was indicated by ECD spectroscopic measurements of NFAP mutants, however, it
has to be further investigated how the amino acid exchanges interfere with the overall three-dimensional solution

17-24
>
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Figure 4. Antifungal activity of recombinant NFAP, NFAPAh, NFAPAN in broth microdilution tests. (a)
Growth of Aspergillus nidulans FGSC A4 at pH 7.0 in the presence of 2.5-40 pg NFAP, NFAPAh, and NFAPAN;
and with 20 ug of NFAP, NFAPAh, and NFAPAN after (b) heat-treatment at pH 7.0, (c) at different pH, and

(d) in salt supplemented medium at pH 7.0. In all cases the untreated control cultures was referred to 100%
growth. Significant differences (p-values) between the growth percentages were determined based on the
comparison with the untreated control. When the growth percentages were compared in significance test, they
are connected with line. “p < 0.0001, *p < 0.005, “p < 0.05, ns: no significant difference. NFAP: recombinant
Neosartorya fischeri NRRL 181 antifungal protein; NFAPAh: hydrophobic core deletion NFAP mutant;
NFAPAN: N-terminal amino acids exchanged NFAP mutant.

structure of NFAP. Clearly, we plan to approach this objective in the near future by replacing further amino acids
in NFAP and analysing the impact on its actual structure at atomic resolution by nuclear magnetic resonance.

In this study, however, we performed the first important steps towards a better understanding of the NFAP
structure-function relation. We could show that the lack of disulphide bonds render NFAPAC highly sensitive to
proteolytic degradation (Supplementary Fig. S3, Supplementary Table S1). The presence of all disulphide bonds
and formation of the correct disulphide bonding pattern proved to be also important for the structural integrity
and antifungal activity of other, NFAP-related antifungal proteins, the Aspergillus giganteus AFP'! and P. chrysoge-
num PAF'> 16, Considering this last observation and that NFAPAC was totally degraded during expression, we
conclude that the presence of all disulphide bonds in the correct pattern is indispensable for stability and full
antifungal activity.

In this study, we observed for the first time that the hydrophobic core determines the folded and stable struc-
ture of NFAP. Substitution of neutral, hydrophobic amino acids (i.e. Y3, Y16, 118, Y23, Y44 at NFAP) to the
neutral, hydrophilic serine in this region resulted in a mixture of differently truncated, unordered protein vari-
ants (NFAPAh in Table 2 and Fig. 3a). Since neutral, hydrophobic amino acids are present at similar conserved
positions in the primary structure of the so far isolated and characterized NFAP-related proteins (Supplementary
Fig. S6), the universal role of the hydrophobic core in the proper protein folding of AFPs can be assumed.
However, this hypothesis awaits further investigations.

NFAPAN proved to be unstable (Table 2) and unordered (Fig. 3a) which indicates that the correct amino acid
composition of the N-terminus of the mature protein is important for folding and stability. Information about
the structural role of the first N-terminal amino acids of mature AFPs has not been reported so far; however, it
was described that the antifungal activity of AFP is lost when it is not completely processed during fermentation
and contains six additional amino acids at the N-terminus'®. The role of the N-terminus in folding, stability and
antimicrobial activity of defensins is also emphasised in the literature!” 2324,

The unordered NFAPAh and NFAPAN variants that lack amino acids at their N- and/or C-termini seemed to
be more sensitive to extracellular protease degradation than NFAP. It is also possible that they could be differently
processed during their maturation in the endoplasmic reticulum, the Golgi complex and the extracellular space.
However, further investigation needs to prove these assumptions.

The disulphide bond-stabilized, folded protein form is required for the antifungal activity of AFP!! and PAF'®,
hence we were curious about the antifungal activity of the unordered NFAPAh, and NFAPAN mutants in com-
parison with the folded NFAP. NFAPAh proved to be inactive in all susceptibility tests (Fig. 4a-d), and NFAPAN
showed a reduction in antifungal activity. These results clearly indicate that the ordered, folded protein structure
is also essential for the full antifungal activity of this AFP- and PAF-related protein (Fig. 4a). Heat treatment
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experiments with NFAP further evidenced the importance of the folded structure in the antifungal activity. After
treatment at 50 °C NFAP showed the same antifungal activity as the sample which was not heated (Fig. 4b), and
based on the ECD spectroscopic measurements NFAP is still intact and retains its folded structure at this tem-
perature (Fig. 2b). In contrast, after heat treatment at 100 °C, the protein became unfolded (Fig. 3b) and lost its
antifungal activity (Fig. 4b).

Heat-, pH-, and salt-tolerances of NFAP (Fig. 4b-d) observed in this study parallel well with our previously
observed published data with Aspergillus niger™ or A. nidulans®®. The thermal- and pH-sensitivity of NFAPAN
was similar to NFAP. However, NFAPAN proved to be more sensitive to the ion strength of the medium
(Fig. 4d), which might be possibly the reason of its reduced activity. Interestingly, NFAPAN did not cause mor-
phological or physiological changes on hyphae in contrast to NFAP, but slightly inhibited the fungal growth
in a dose-independent manner. This needs further investigations. Other studies with plant defensins® and the
NFAP-related antifungal protein PAF from P. chrysogenum®”3' reported that specific protein motifs exhibit dis-
tinct antifungal features. Therefore, the observed functional differences of the NFAP mutants reflect the impor-
tance of the mutated motifs for full integrity and optimal antifungal action.

The in silico analysis of the structure, the folding dynamics and the antifungal properties of NFAP and
its mutants provided a detailed insight into the role of the disulphide bonds, the hydrophobic core and the
N-terminal amino acids of the mature protein for proper folding, stability and antifungal activity. The results
presented in this study provide further evidences to the comprehensive understanding of the structure-function
relationship of other members of the AFP group, considering their structural similarities. This is an important
prerequisite for their rational design to develop new protein-based antifungal strategies in the near future.

Methods

In silico predictions and homology modelling. The molecular weight, pI, GRAVY value, total net
charge, and disulphide bridge pattern of proteins were calculated and predicted by ExPASy ProtParam tool*?,
Protein Calculator v3.4 server (The Scripps Research Institute; http://www.scripps.edu/~cdputnam/protcalc.
html), and DISULFIND Cysteines Disulfide Bonding State and Connectivity Predictor server®, respectively. The
experimentally determined NFAP-related A. giganteus antifungal protein tertiary structure (Protein Data Bank
(PDB) code: 1afp) served as a template to model the structure of NFAP. Putative tertiary structure of NFAP was
predicted in silico by MODELLER 9.9%, refined by ModRefiner®, and energy minimized and visualized with the
UCSF Chimera software. Residues in most favoured positions were validated by using the RAMPAGE server®.
This in silico predicted tertiary structure of NFAP was used as a template to model the structure of NFAPAC,
NFAPAh and NFAPAN in the same way.

Cloning, transformation and protein preparation. NFAP, NFAPAC, NFAPAh and NFAPAN encod-
ing cDNA were synthetized by GenScript USA Inc. (Piscataway, NJ, USA) considering the preferential codon
usage of P, pastoris. The synthetic genes carried the restriction site of Xhol and the Kex2 signal cleavage site (CTC
GAG AAA AGA) at their 5’-end, and the restriction site of Xbal (TCT AGA) at their 3’-end. They were cloned
into XhoI-Xbal digested pPICZaA expression vector (Thermo Fisher Scientific, Waltham, MA, USA) and these
constructs were used to transform P. pastoris KM71H (Thermo Fisher Scientific, Waltham, MA, USA) cells as pre-
viously described’. Heterologous protein expression in P. pastoris KM71H for four days and protein purification
were performed on a CM-Sepharose column as reported’.

Identification of produced proteins. Purified proteins were identified based on their molecular mass at
the Protein Micro-Analysis Facility of Biocenter at Medical University of Innsbruck (Innsbruck, Austria). The
protein samples were ZipTip enriched (EMD; Millipore, Billerica, MA, USA), dissolved in 100 mM acetic acid
and analysed (180 nl/min flow rate) with capillary electrophoresis (CE)-ESI-MS (20kV separation voltage, 10 psi
pressure) on a CESI 8000 (AB Sciex, Framingham, MA, USA) coupled to a Q Exactive (Thermo Fisher Scientific,
Waltham, MA, USA). Protein masses were determined by deconvolution using the integrated Xcalibur pXtract
software (Thermo Fisher Scientific, Waltham, MA, USA).

The expression of NFAPAC was verified by the identification of different peptide fragments from the
degraded product. The NFAPAC supernatant was separated into four different molecular weight fractions
(>10kDa, <10kDa, 3-10kDa and <3 kDa) by centrifugal ultrafiltration (Vivaspin 500 10,000 MWCO PES then
3,000 MWCO PES; Sartorius Stedim Biotech GmbH, Gottingen, Germany), before a mass spectrometric method
was used to identify peptide fragments derived from NFAPAC. This method was based on enzymatic digestion
of the proteins present in each fraction and peptide mass mapping (Protein Prospector, MS-fit http://prospector.
ucsf.edu/). For in solution protein digestion, 10l of protein solution containing 1 pg/pl protein was mixed with a
buffer containing 25 mM ammonium bicarbonate, pH 8.0. The protein was subjected to enzymatic cleavage with
0.1 pg trypsin (Promega, Madison, W1, USA) solution (in 25 mM ammonium bicarbonate) overnight at 37 °C.
Digested samples were analysed on a Waters NanoAcquity UPLC (Waters MS Technologies, Manchester, UK)
system coupled with a Q Exactive Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). LC conditions were the followings: flow rate: 350 nl/min; eluent A: water with 0.1% (v/v) formic acid,
eluent B: acetonitrile with 0.1%(v/v) formic acid; gradient: 40 min, 3-40% (v/v) B eluent; column: Waters BEH130
C18 751m/250 mm column with 1.7 pm particle size C18 packing (Waters Inc., Milford, MA, USA). Based on
our previous experiences with the filtration of cysteine-rich and cationic antifungal proteins (and possibly their
degradation products) showing high-affinity for the filter membrane material occlusion of the pores can occur,
which inhibits the filtration of the proteins and bigger peptide fragments. Hence, the >10kDa fraction was also
analysed, although the molecular weights of the NFAPAC peptides fragments were expected to be much below
this cut-off.
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Investigation of structural alterations.  Structural alterations of NFAP and its mutants were examined by
RP-HPLC, using an Agilent 1100 Series liquid chromatograph (Agilent technologies, Little Falls, DE, USA) and
a Phenomenex Jupiter C18 column (250 x 4.6 mm; 10 pm particle size; 300 A pore size; Phenomenex, Torrance,
CA, USA). Linear gradient elution was carried out with 0.1% TFA in water (eluent A) and 80% acetonitrile and
0.1% TFA is water (eluent B) from 15% to 40% (B) over 25 min at a flow rate of 1.0 ml/min.

Electronic circular dichroism spectroscopy. Electronic circular dichroism (ECD) spectroscopic meas-
urements of NFAP and the mixtures of unordered NFAPAh, and NFAPAN variants were performed in the
185-260 nm wavelength range using a Jasco-J815 spectropolarimeter (JASCO, Tokyo, Japan). Protein samples
were presented in pure water at 0.1 mg/ml concentration and spectra were collected at 25 °C with a scan speed
of 100 nm/s using a 0.1 cm pathlength quartz cuvette. The reported spectra are accumulations of 10 scans, from
which the spectrum of pure water was subtracted. Acquisition of thermal unfolding curves of proteins was done
by recording ellipticity as a function of temperature at 228 nm. The temperature was increased from 25 °C up
to 95°C in 5°C increments, at a rate of 1°C/min using a Peltier thermoelectronic controller (TE Technology,
Traverse City, MI, USA). Measurements of ellipticities were taken at each temperature point after allowing the
system to equilibrate for 1 min. Ellipticity data were corrected for protein concentration, which was determined
based on the UV absorbance of aromatic and cysteine residues, following the protocol published by Greenfield, N.
J.8 Secondary structural contributions were determined by the CDSSTR method from the ECD spectra of native
and recombinant NFAP measured at 25 °C¥.

In vitro antifungal susceptibility tests. In vitro susceptibility tests were performed in a 96-well microtiter
plate bioassay in the presence of increasing amount of proteins (2.5-40 ug) in SPEC medium at pH 7.0 against
the NFAP-sensitive model fungus A. nidulans strain FGSC A4 (Fungal Genetics Stock Center, Kansas, MO, USA)
as described®. To investigate the salt, pH, and temperature sensitivity of the proteins (20 ug) the medium was sup-
plemented with NaCl or MgSO, (25-100 mM), or it was prepared in phosphate buffer (50 mM, pH 6.0-8.0), or
exposed to different temperatures (25, 50, 100 °C) for 30 min. The flat-bottom plates were incubated for 48 hours
at 37 °C without shaking, then after shaking for five seconds, the absorbance (ODg,,) were measured in well scan-
ning mode with a microtiter plate reader (FLUOstar Omega, BMG Labtech, Ortenberg, Germany). Respective
fresh media were used for background calibration. For calculation of the growth ability in presence of NFAP and
the mixtures of unordered NFAPAh, and NFAPAN variants, the absorbance of the untreated control cultures
(media without NFAP or its mutants) were referred to 100% growth. Susceptibility tests were prepared in tripli-
cates and repeated three times.

Investigation of the antifungal mechanism. The effect of NFAP and its mutants on the metabolic activ-
ity, actin distribution, and chitin content of A. nidulans FGSC A4 and A. nidulans GR5 strains was investigated
by means of 30 minutes-long exposure to sublethal protein concentrations (25 jig/ml) as described previously®.

Microscopy. Cells were visualized by light and fluorescence microscopy (Carl Zeiss Axiolab LR 66238C;
Zeiss, Oberkochen, Germany) and photographed by a microscope camera (Zeiss AxioCam ERc 5s; Zeiss,
Oberkochen, Germany).

Statistical analyses. Statistical analysis was performed using Microsoft Excel 2010 software (Microsoft,
Edmond, WA, USA) or GraphPad Prism version 5.01 (GraphPad Software, San Diego, CA, USA). Two sample
t-test or one-way ANOVA analysis of variance with Bonferroni’s multiple comparison posttest was used.
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