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Formal Definitions of Unbounded 
Evolution and Innovation Reveal 
Universal Mechanisms for Open-
Ended Evolution in Dynamical 
Systems
Alyssa Adams1,2,3, Hector Zenil3,4,5, Paul C. W. Davies1 & Sara Imari Walker   1,6,7,8

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, 
but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-
ended evolution as it appears in biology. We recast the problem as a more general one in dynamical 
systems theory, providing simple criteria for open-ended evolution based on two hallmark features: 
unbounded evolution and innovation. We define unbounded evolution as patterns that are non-
repeating within the expected Poincare recurrence time of an isolated system, and innovation as 
trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular 
automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each 
is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We 
find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other 
candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable 
manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for 
unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad 
applicability to biological and artificial systems.

Many real-world biological and technological systems display rich dynamics, often leading to increasing com-
plexity over time that is limited only by resource availability. A prominent example is the evolution of biological 
complexity: the history of life on Earth has displayed a trend of continual evolutionary adaptation and innovation, 
giving rise to an apparent open-ended increase in the complexity of the biosphere over its >3.5 billion year history1.  
Other complex systems, from the growth of cities2, to the evolution of language3, culture4, 5 and the Internet6 
appear to exhibit similar trends of innovation and open-ended dynamics. Producing computational models that 
generate sustained patterns of innovation over time is therefore an important goal in modeling complex systems 
as a necessary step on the path to elucidating the fundamental mechanisms driving open-ended dynamics in both 
natural and artificial systems. If successful, such models hold promise for new insights in diverse fields ranging 
from biological evolution to artificial life and artificial intelligence.

Despite the significance of realizing open-ended evolution in theoretical models, progress in this direction has 
been hindered by the lack of a universally accepted definition for open-ended evolution (OEE). Although relevant 
to many fields, OEE is most often discussed in the context of artificial life, where the problem is so fundamental 
that it has been dubbed a “millennium prize problem”7. Many working definitions exist, which can be classified 
into four hallmark categories as outlined by Banzhaf et al.8: (1) on-going innovation and generation of novelty9, 10; 
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(2) unbounded evolution1, 11, 12; (3) on-going production of complexity13–15; (4) a defining feature of life16. Each of 
these faces its own challenges, as each is cast in terms of equally ambiguous concepts. For example, the concepts 
of “innovation” or “novelty”, “complexity” and “life” are all notoriously difficult to formalize in their own right. It 
is also not apparent whether “unbounded evolution” is physically possible since real systems are limited in their 
dynamics by finite resources, finite time, and finite space. A further challenge is identifying whether the diverse 
concepts of OEE are driving at qualitatively different phenomena, or whether they might be unified within a com-
mon conceptual framework. For example, it has been suggested that increasing complexity might not itself be a 
hallmark of OEE, but instead a consequence of it9, 16. Likewise, processes may appear unbounded, even within a 
finite space, if they can continually produce novelty within observable dynamical timescales17.

Given these limitations, it was unclear if OEE is a property unique to life, is inclusive of its artifacts (such 
as technology), or if it is an even broader phenomenon that could be a universal property of certain classes of 
dynamical systems. Many approaches aimed at addressing the hallmarks of OEE have been inspired by biology17, 
primarily because biological evolution is the best known example of a real-world system with the potential to 
be truly open-ended1. However, as stated, other examples of potentially open-ended complex systems do exist, 
such as trends associated with cultural4, 5 and technological2, 6 growth, and other creative processes. Therefore, 
herein we set out to develop a more general framework to seek links between the four aforementioned hallmarks 
of OEE within dynamical systems, while remaining agnostic about their precise implementation in biology. Our 
motivation is to discover universal mechanisms that underlie OEE as it might occur both within and outside of 
biological evolution.

In dynamical systems theory there exists a natural bound on the complexity that can be generated by a finite 
deterministic process, which is given by the Poincaré recurrence time. Roughly, the Poincaré time is the maximal 
time after which any finite system returns to its initial state and its dynamical trajectory repeats. Clearly, new 
dynamical patterns cannot occur past the Poincaré time if the system is isolated from external perturbations. 
To cast the concept of unbounded evolution firmly within dynamical systems theory, we introduce a formal 
minimal criterion for unbounded evolution (where we stress that here we mean the broader concept of dynam-
ical evolution, not just evolution in the biological sense) in finite dynamical systems: minimally, an unbounded 
system is one that does not repeat within the expected Poincaré time. A key feature is that this definition auto-
matically excludes finite deterministic systems unless they are open to external perturbations in some way. That 
is, we contend that unbounded evolution (and in turn OEE which depends on it) is only possible for a subsystem 
interacting with an external environment. To make better contact with real-world systems, where the Poincaré 
time often cannot even in principle be observed, we introduce a second criterion of innovation. Systems satis-
fying the minimal definition of unbounded evolution must also satisfy a formal notion of innovation, where we 
define innovation as dynamical trajectories not observed in isolated, unperturbed systems. We identify innova-
tion by comparison to counterfactual histories (those of isolated systems). Like unbounded evolution, innovation 
is extrinsically defined and requires interaction between at least two subsystems. A given subsystem can exhibit 
OEE if and only if it is both unbounded and innovative. As we will show, utilizing these criteria for OEE allows us 
to evaluate candidate mechanisms for generating OEE in simple toy model dynamical systems, ones that could 
carry over to more realistic complex dynamical systems.

The utility of these definitions is that they provide a simple way to quantify intuition regarding hallmarks (1) 
and (2) of OEE for systems of finite size, which is applicable to any comparable dynamical system. They therefore 
provide a means to quantitatively evaluate, and therefore directly compare, different potential mechanisms for 
generating OEE. We apply these definitions to test three new variants of cellular automata (CA) for their capacity 
to generate OEE. A key feature of the new variants introduced is their implementation of time-dependent update 
rules, which represents a radical departure from more traditional approaches to dynamical systems where the 
dynamical laws remain fixed. Each variant introduced differs in its relative openness to an external environment. 
Of the variants tested, our results indicate that systems which implement time-dependent rules that are a function 
of their state are statistically better at satisfying the two criteria for OEE than dynamical systems with externally 
driven time-dependence for their rules (that is, where the rule evolution is not dependent on the state of the 
subsystem of interest). We show that the state-dependent systems provide a mechanism for generating OEE that 
includes the capacity for on-going production of novelty by coupling to larger environments. This mechanism 
also scales with system size, meaning the amount of open-endedness that is generated does not drop off as the 
system size increases. We then explore the complexity of state-dependent systems in more depth, calculating gen-
eral complexity measures including compressibility (based on LZW in ref. 18) and Lyapunov exponents. Given 
that state-dependent dynamics are often cited as a hallmark feature of life due to the role of self-reference in 
biological processes19–22, our results provide a new connection between hallmarks (1), (2) and (4) of OEE. Our 
results therefore connect several hallmarks of OEE in a new framework that allows identification of mechanisms 
that might operate in a diverse range of dynamical systems. The framework holds promise for providing insights 
into universal mechanisms for generating OEE in dynamical systems, which is applicable to both biological and 
artificial systems.

Theory
Traditionally dynamical systems, like their physical counterparts, are modeled with fixed dynamical laws – a 
legacy from the time of Newton. However, this framework may not be the appropriate one for modeling bio-
logical complexity, where the dynamical laws appear to be self-referential and evolve in time as a function of 
the states19–22. An explicit example is the feedback between genotype and phenotype within a cell: genes are 
“read-out” to produce changes to the state of expressed proteins and RNAs, and these in turn can feed back to 
turn individual genes on and off23. Given this connection to biology, we are motivated in this work to focus explic-
itly on time-dependent rules, where time-dependence is introduced by driving the rule evolution through cou-
pling to an external environment. Since open-ended evolution has been challenging to characterize in traditional 
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models with fixed dynamical rules, implementing time-dependent rules could open new pathways to generating 
complexity. In this study we therefore define open systems as those where the rule dynamically evolves as a func-
tion of time, and we assume this is driven by interaction with an environment. As we show, time-dependent rules 
allow novel trajectories to be realized that have not been previously characterized in cellular automata models. To 
quantify this novelty, we introduce a rigorous notion of OEE that relies on formalized definitions of unbounded 
evolution and innovation. The definitions presented rely on utilizing isolated systems evolved according to a fixed 
rule as a set of counterfactual systems to compare to the novel dynamics driven by time-dependent rules.

Formalizing Open-Ended Evolution as Unbounded Evolution and Innovation.  A hallmark feature 
of open-ended evolutionary systems is that they appear unbounded in their dynamical evolution1, 11, 12. For finite 
systems, such as those we encounter in the real world, the concept of “unbounded” is not well-defined. In part this 
is because all finite systems will eventually repeat, as captured by the well-known Poincaré recurrence theorem. 
As stated in the theorem, finite systems are bounded by their Poincaré recurrence time, which is the maximal time 
after which a system will start repeating its prior evolution. The Poincaré recurrence time tP of a finite, closed 
deterministic dynamical system therefore provides a natural bound on when one should expect such a system to 
stop producing novelty. In other words, tp is an absolute upper-bound on when such a system will terminate any 
appearance of open-endedness.

Potentially the Poincaré recurrence theorem can locally be violated by a subsystem with open boundary 
conditions or if the subsystem is stochastic (although in the latter case the system might still be expected to 
approximately repeat). We therefore consider a definition of unbounded evolution applicable to any instance of 
a dynamical system that can be decomposed into two interacting subsystems. Nominally, we refer to these two 
interacting subsystems as the “organism” (o) and “environment” (e). We note that our framework is sufficiently 
general to apply to systems outside of biology: the concept of “organism” is meant only to stress that we expect 
this subsystem to potentially exhibit the rich dynamics intuitively anticipated of OEE when coupled to an envi-
ronment (the environment, by contrast, is not expected to produce OEE behavior). The purpose of the second 
“environment” subsystem is to explicitly introduce external perturbations to the organism, where e is also part 
of the larger system under investigation and modulates the rule of o in a time-dependent manner. We therefore 
minimally define unbounded evolution (UE) as occurring when a sub-partition of a dynamical system does not 
repeat within its expected Poincaré recurrence time, giving the appearance of unbounded dynamics for given 
finite resources:
Definition 1Unbounded evolution (UE): A system U that can be decomposed into two interacting subsystems o 
and e, exhibits unbounded evolution if there exists a recurrence time such that the state-trajectory or the 
rule-trajectory of o is non-repeating for tr > tP or ′ >t tr P respectively, where tr is the recurrence time of the states, ′tr  
the recurrence time of the rules, and tP is the Poincaré recurrence time (measured in units of update steps) for an 
equivalent isolated (non-perturbed) system o.

Since we consider o where the states and rules evolve in time, unbounded evolution can apply to the state or 
rule trajectory recurrence time and still satisfy Definition 1. That is, a dynamical system exhibits UE if and only if 
it can be partitioned such that the sequence of one of its subsystems’ states or dynamical rules are non-repeating 
within the expected Poincaré recurrence time tP of an equivalent isolated system. In other words, unbounded 
evolution is only possible in a system that is partitioned into at least two interacting subsystems. This way, one of 
the subsystems acts as an external driver for the rule evolution of the other subsystem, which can then be pushed 
past its expected maximal recurrence time, tP. We calculate the expected tP as that of an equivalent isolated sys-
tem. By equivalent isolated system, we mean the set of all possible trajectories evolved from any initial state drawn 
from the same set of possible states as for o, but generated with a fixed rule, which can be any possible fixed rule. 
We will describe explicit examples using the Elementary Cellular Automata (ECA) rule space in Section Model 
Implementation, where the relevant set of states are those constructed from the binary alphabet {0, 1} and the set 
of rules for comparison are the ECA rules. ECA are defined as 1-dimensional CA with nearest-neighbor update 
rules: for an ECA of width w (number of cells across), equivalent isolated systems as defined here include all 
trajectories evolved with any fixed ECA rule from any initial state of width w, where tP is then tP = 2w and w = wo, 
where wo is the width of o.

Implementing the above definition of UE necessarily depends on counterfactual histories of isolated systems 
(e.g. of ECA in our examples). These counterfactual systems cannot, by definition, generate conditions for UE. 
This suggests as a corollary a natural definition for innovation in terms of comparison to the same set of counter-
factual histories:
Definition 2Innovation (INN): A system U that can be decomposed into two interacting subsystems o and e exhibits 
innovation if there exists a recurrence time tr such that the state-trajectory is not contained in the set of all possible 
state trajectories for an equivalent isolated (non-perturbed) system.

That is, a subsystem o exhibits INN by Definition 2 if its dynamics are not contained within the set of all possi-
ble trajectories of equivalent isolated systems. We note these definitions do not necessitate that the complexity of 
individual states increase with time, thus one might observe INN without a corresponding rise in complexity with 
time. Figure 1 shows a conceptual illustration of both UE and INN, as presented in Definitions 1 and 2.

A motivation for including both Definitions 1 and 2 is that they encompass intuitive notions of “on-going 
production of novelty” (INN) and “unbounded evolution” (UE), both of which are considered important hall-
marks of OEE8. UE can imply INN, but INN does not likewise imply UE. It might therefore appear that UE is 
sufficient to characterize OEE without needing to appeal to separately defining INN. The utility of including 
INN in our formalism is that it allows generalization to both infinite systems where UE is not defined, and to 
real-world systems where UE is not physically observable (since, for example, tP could in principle be longer 
than the age of the universe). For the latter, INN can be an approximation to UE, where higher values of INN 
indicate a system more likely to exhibit UE. Additionally, the combination of UE and INN can be used to exclude 
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cases that appear unbounded but are only trivially so. For example, a partition of a system evolved according to a 
fixed dynamical rule could in principle locally satisfy UE, but would not satisfy INN since its dynamics could be 
shown to be equivalent to those generated from an appropriately constructed isolated system (e.g. a larger ECA 
in our example). An example is the time evolution of ECA Rule 3024, which is known to be a ‘complex’ ECA rule 
that continually generates novel patterns under open-boundary conditions. In cases such as this, it should be 
considered that it is the complexity at the open boundary of the system that is generating continual novelty and 
not a mechanism internal to the system itself. In other words, in such examples the complexity is generated by the 
boundary conditions. Since our biosphere has simple, relatively homogeneous boundary conditions (geochemi-
cal and radiative energy sources) the complexity of the biosphere likely arises due to internal mechanisms and is 

Figure 1.  State diagrams: A hypothetical example demonstrating the concepts of INN and UE. The possible set 
of states are S = {1, 2, 3, 4, 5, 6} and rules R = {α, β}. For each panel, the example state trajectory s is initialized 
with starting state so = 3. For panels c and d the rule trajectory r is also shown. Highlighted in bold is the first 
iteration of the attractor for states (all panels) or rules (panel (c,d) only). For a discrete deterministic system of 
six states, the Poincaré recurrence time is tP = 6. Panel (a) shows the state transition diagram for hypothetical 
rule α where a trajectory initialized at s(t0) = 3 visits two states. Panel (b) shows the state transition diagram for 
hypothetical rule β where a trajectory initialized at s(t0) = 3 visits only one state. Since the trajectories in (a,b) 
evolve according to a fixed rule (are isolated) they do not display INN or UE and in general the recurrence time 
t tr P. Panel (c) demonstrates INN, where the trajectory shown cannot be fully described by rule α or rule β 

alone. The state trajectory s and rule trajectory r both have a recurrence time of tr = 5, which is less than tP so 
this example does not exhibit UE. Panel (d) exhibits UE (and is also an example of INN). The trajectory shown 
cannot be described by rule α or rule β alone. The recurrence time for the state trajectory is tr = 13, which is 
greater than tP. The rule trajectory also satisfies the conditions for UE, with a recurrence time in this example 
that is longer than that of the state trajectory due to the fact that the state transition 2 → 5 could be driven by 
rule α or β depending on the coupling to an external system.



www.nature.com/scientificreports/

5Scientific Reports | 7: 997  | DOI:10.1038/s41598-017-00810-8

not trivially generated by the boundary conditions alone25. Since we aim to understand the intrinsic mechanisms 
that might drive OEE in real, finite dynamical systems, we therefore require both definitions to be satisfied for a 
dynamical system to exhibit non-trivial OEE.

Model Implementation.  We evaluate different mechanisms for generating OEE against Definitions 
1 and 2, utilizing the rule space of Elementary Cellular Automata (ECA) as a case study. ECA are defined as 
nearest-neighbor 1-dimensional CA operating on the two-bit alphabet {0, 1}. There are 256 possible ECA rules, 
and since the rule numbering is arbitrary, we label them according to Wolfram’s heuristic designation24. Due to 
their relative simplicity, ECA represent some of the most widely-studied CA, thus providing a well-characterized 
foundation for this study. Traditionally, ECA evolve according to a fixed dynamical rule starting from a specified 
initial state. As such, no isolated finite ECA can meet both of the criteria laid out in Definitions 1 and 2 as per our 
construction aimed at excluding trivial cases. An isolated ECA of width w will repeat its pattern of states by the 
Poincaré time tP = 2w (violating Definition 1). If we instead considered a CA of width w as a subsystem of a larger 
ECA it would not necessarily repeat within 2w time steps, but it would not be innovative (violating Definition 2). 
Thus, as stated, we can exclude trivial examples such as ECA Rule 30, or other unbounded but non-innovative 
dynamical processes, which repeatedly apply the same update rule. A list of model parameters are summarized 
in Table 1.

To exclude trivial unbounded cases, Definitions 1 and 2 are constructed to require that the dynamical rules 
themselves evolve in time. As we will show, utilizing the set of 256 possible ECA rules as the rule space for CA 
with time-dependent rules makes both UE and INN possible. Rules can be stochastically or deterministically 
evolved, and we explore both mechanisms here. We note that there exists a huge number of possible variants one 
might consider. We therefore focus on three variants that display important mechanisms implicated in gener-
ating OEE, including openness to an environment10 (of varying degrees in all three variants), state-dependent 
dynamics (regarded as a hallmark feature of life19, 21, 22), and stochasticity. Here openness to an environment is 
parameterized by the degree to which the rule evolution of o depends on the state (or rule) of o, as compared to its 
dependence on the state of e. Completely open systems are regarded as depending only on external factors, such 
that the time-dependence of the rule evolution is only a function of the environment. We also consider cases that 
are only partially open, where the rule evolution depends on both extrinsic and intrinsic factors.

Case I.  The first variant, Case I, implements state-dependent update rules, such that the evolution of o depends 
on its own state and that of its environment. This is intended to provide a model that captures the hypothesized 
self-referential dynamics underlying biological systems (see e.g. Goldenfeld and Woese21) while also being open 
to an environment (we do not consider closed self-referential systems herein as treated in Pavlic et al. since these 
do not permit the possibility of UE26). We consider two coupled subsystems o and e, where the update rule of o is 
state-dependent and is a function of the state and rule of o, and the state of e at the same time t (thus being 
self-referential but also open to perturbations from an external system). That is, the update rule of o takes on the 
functional form + =r t f s t r t s t( 1) ( ( ), ( ), ( ))o o o e , where so and ro are the state and rule of the organism respectively, 
and se is the state of the environment. We regard this case as only partly open to an environment since the evolu-
tion of the rule of o depends on its own state (and rule) in addition to the state of its environment. By contrast, the 
subsystem e is closed to external perturbation and evolves according to a fixed rule (such that e is an ECA). Both 
o and e have periodic boundary conditions (o is only open in the sense that its rule evolution is in part externally 
driven). A schematic illustration of the time evolution of an ECA, and the coupling between subsystems in a Case 
I CA is shown in Fig. 2.

To demonstrate how the organism in our example of a Case I CA changes its update rule, we provide a sim-
ple illustrative example of the particular function f(so(t), ro(t), se(t)) implemented in this work (see Fig. 3 and 

Parameter Definition

o Single organism execution

e Single environment execution

so state of o

ro rule of o

se state of e

wo width of o

we width of e

tP Poincaré recurrence time

tr Recurrence time of so

′tr Recurrence time of ro

I Innovation calculated as the normalized number 
of rule transitions

μ Mutation threshold of Case III variant μ = [0, 1)

ξ random noise for Case III variant, ξ = [0, 1)

C Compressibility

k Lyapunov exponent

Table 1.  Table of terms and model parameters.
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Figure 2.  Illustrations of the time evolution of a standard ECA (left) and of a Case I state-dependent CA (right). 
ECA evolve according to a fixed update rule (here Rule 30), with the same rule implemented at each time step. 
In an ECA rule table, the cell representation of all possible binary ordered triplets is shown in the top row, with 
the cell representation of the corresponding mapping arising from Rule 30 shown below. Rule 30 therefore has 
the binary representation 00011110. In a Case I CA (right), the environment subsystem e evolves exactly like an 
ECA with a fixed rule. The organism subsystem o, by contrast, updates its rule at each time-step depending on 
its rule at the previous time-step, its own state (green arrows) and the state of e (red arrows). The new rule for o 
is then implemented to update the state of o (blue arrows). The rules are therefore time-dependent in a manner 
that is a function of the states of o and e and the past history of o (through the dependence on the rule at the 
previous time-step).

Figure 3.  Example of the implementation of a Case I organism in our example. Shown is an organism o of 
width wo = 4, coupled to an environment e with width we = 6, where the rule of o at time step t is ro(t) = 30. (a) 
At each time step t, the frequency of ordered triplets are compared in the state of the organism and that of the 
environment, so and se respectively, and used to update → +r t r t( ) ( 1)o o  (see text for algorithm description). (b) 
Table of the calculated frequency of ordered triplets in the state of the environment and in the state of the 
organism for time step t shown in the left panel. (c) Update of ro from Rule 30 to Rule 62, based on the frequency 
of triplets in the table (b).
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Supplement 1.1). Specifically, we utilize an update function that takes advantage of the binary representation of 
ECA. An example of the structure of an ECA rule is shown for Rule 30 in Fig. 2. ECA rules are structured such 
that each successive bit in the binary representation of the rule is the output of one of the 23 possible ordered sets 
of triplet states. The left panel of Fig. 3 shows an example of a few times steps of the evolution of an organism o of 
width wo = 4 (right) coupled to an environment e with width we = 6 (left), where o implemented rule 30 at t − 1. 
At each time-step t the frequency of each of the 23 ordered triplet states (listed in the top row of Fig. 2) in the 
state of o is compared to the frequency of the same ordered triplet in the state of e. If the frequency in o meets or 
exceeds the frequency in e for a given triplet, the bit corresponding to the output of that triplet in the rule of o is 
flipped from 0 ↔ 1. For the example in the left panel of Fig. 3, the triplet frequencies are listed in the table in the 
right panel of Fig. 3. We note that for our implementation, the frequency of a triplet in o is calculated relative to 
the total number of possible triplets in so, which is 4 in this example (and likewise for e, with 6 possible triplets in 
the current state). We compare the frequency only for those triplets that appear in the state of o at time t. In the 
table, only the triplet 101 is expressed more frequently in the organism o than in the environment e. The interac-
tion between o and e changes ro from Rule 30 at time-step t to Rule 62 at t + 1, as shown in Fig. 3. The rule may 
change by more than one bit in its binary representation in a single time step if multiple triplets meet the criteria 
to change the organism’s update rule.

We note that we do not expect the qualitative features of Case I CA reported here to depend on the precise 
form of the state-dependent update rule as presented, so long as the update of ro depends on the state and rule 
of o, and the state of e (that is, o is self-referential and open – see Pavlic et al.26 for an example of non-open 
self-referencing CA that does not display UE). We explored some variants to this rule-changing mechanism. 
None of our variants significantly changed the statistics of the results, indicating that the qualitative features of the 
dynamics do not depend on the exact (and somewhat parochial) details of the example presented herein. Instead, 
we regard the important part to be the general feature of self-reference coupled to openness to an environment 
that is driving the interesting features of the dynamics observed, where we can focus on just one example in this 
study for computational tractability in generating large ensemble statistics. The example implemented here was 
chosen since it takes explicit advantage of the structure of ECA rules (by flipping bits in the rule table) to provide 
a simple, open state-dependent mechanism for producing interesting dynamics.

Case II.  We introduce a second variant of CA, Case II, that is similarly composed of two spatially segregated, 
fixed-width, 1-dimensional CA: an organism o and an environment e. As with Case I, the environment e is an exe-
cution of an ECA, and is evolved according to a fixed rule drawn from the set of 256 possible ECA rules. The key 
difference between Case I and Case II CA is that for Case II, the the update rule of the subsystem o depends only on 
the state of the external environment e and is therefore independent of the current state or rule of o – that is, o is not 
self-referential in this example. Case II CA emulate systems where the rules for dynamical evolution are modulated 
exclusively by the time evolution of an external system. We consider o in this example to be more open to its environ-
ment than for Case I, since the rule evolution of o depends only on e. The functional form of Case II rule evolution 
may be written as + =r t f s t( 1) ( ( ))o e , where ro is the rule of o and se is the state of the environment (see 
Supplement 1.2). For the example presented here, we implement a map f that takes se(t) → ro(t) that is 1:1 from the 
state of e to the binary representation of the rule of o (determined according to Wolfram’s binary classification 
scheme). Therefore for the implementation of Case II in our example the environment must be of width we = 8.

Case III.  The final variant, Case III, is composed of a single, fixed-width, 1-dimensional CA with periodic 
boundary conditions, which is identified as the organism o. Like with Case II, the rule evolution of Case III is 
driven externally and does not depend on o. However, here the external environment e is stochastic noise and not 
an ECA. The subsystem o has a time-dependent rule where each bit in the rule table is flipped with a probability 
μ (“mutation rate”) at each time step. In functional form, the subsystem o updates its rule such that 

ξ+ =r t f r t( 1) ( ( ), )o o , where ro is the rule of o, and ξ is a random number drawn from the interval [0, 1) (see 
Supplement 1.3). At each time step, for each bit in the rule table, a random number ξ is drawn, and if ξ is above a 
threshold μ, that bit is flipped 0 ↔ 1 at that time step. This implements a diffusive-random walk through ECA rule 
space. Since the rule of o at time t + 1, ro(t + 1), depends on the rule at time t, r0(t), the dynamics of Case III CA 
are history-dependent in a similar manner to Case I (both rely on flipping bits in ro(t), where Case I do so deter-
ministically as a function of so and se, and Case III do so stochastically). In this example, o is also more open to its 
environment than in Case I since the organism’s rule does not depend on so, but it is less open than Case II since 
the rule does depend on the previous organism rule used.

All three variants are summarized in Table 2 (see Supplement 1), where the functional dependencies of the 
rule evolution in each example are explicitly compared. Since we restrict the rule space for Cases I–III to that of 
ECA rules only, the trajectories of ECA with periodic boundary conditions provides a well-defined set of isolated 
counterfactual trajectories with which to evaluate Definitions 1 and 2. For comparison to isolated systems, we 

CA Variant Organism Rule Evolution Environment, e

Case I ro(t + 1) = f(so(t), ro(t), se(t)) ECA, varied we

Case II ro(t + 1) = f(se(t)) ECA, we = 8

Case III ro(t + 1) = f(ro(t), ξ) Heat bath

ECA (Isolated) ro(t + 1) = ro(t) None

Table 2.  Table of cellular automata variants, and the functional form of the rule evolution of o.
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evaluate all ECA of width wo, where wo is the width of the “organism” subsystem o. We test the capacity for each 
of the three cases presented to generate OEE against Definitions 1 and 2 in a statistically rigorous manner, and 
compare the efficacy of the different mechanisms implemented in each case.

Experimental Methods.  For Cases I–III, we evolve o with periodic boundary conditions (such that interaction 
with the environment is only through the rule evolution). For Cases I and II, e is also a CA with periodic bound-
ary conditions. For Case I, where we must also be specified, we consider systems with we = 1/2wo, wo, 3/2wo, 2wo 
and 5/2wo, where wo is the width o. For Case II, we = 8 for all simulations, since this permits a 1:1 map from the 
possible states of e to the rule space of ECA. Results for Case III are given for organism rule mutation rate μ = 0.5, 
such that each outcome bit in the rule evolution has a 50% probability of flipping at every time step for ξ drawn 
from the interval [0, 1) (a bit flips when μ > ξ). Other values of μ were explored, with qualitatively similar results 
(see Supplement Fig. S4).

The number of possible executions grows exponentially large with width wo, limiting the computational trac-
tability of statistically rigorous sampling. We therefore explored small CA with = …w 3, 4, 7o  and sampled a 
representative subspace of each (see Supplement 2). For each system sampled, we measured the recurrence times 
of the rule ( ′tr ) and state (tr) trajectories for o. For Case III CA, which are stochastic, all simulations eventually 
terminated as a random oscillation between the all ‘0’ state and the all ‘1’ state. We therefore used the timescale of 
reaching this oscillatory attractor as a proxy for the state recurrence time tr. In cases where tr > tP or ′ >t tr P, where 

=t 2P o
w for isolated ECA (Definition 1), and the state trajectory was not produced by any ECA execution of width 

wo (Definition 2), the system is considered to exhibit OEE.
We measured the complexity of the resulting interactions by calculating relative compressibility, C, and by 

the system’s sensitivity based upon Lyapunov exponents, k27 (see Supplement 8). Large values of C indicate low 
Kolmogorov-Chaitin complexity, meaning the output can be produced by a simple (short) program. Large values 
of k indicate complex dynamics, with trajectories that rapidly diverge for small perturbations such as occurs in 
deterministic chaos27. These values are compared to those of ECA. Additionally, ECA rules are often categorized 
in terms of four Wolfram complexity classes, I–IV24. Class I and II are considered simple because all initial pat-
terns evolve quickly into a stable or oscillating, homogeneous state. Class III and IV rules are viewed as generating 
more complex dynamics. We use the complexity classes of the rules utilized in time-dependent rule evolution to 
determine whether the complexity of time-dependent CAs is a product of the ECA rules implemented, or if it is 
generated through the mechanism of time-dependence.

Results
The vast majority of executions sampled from all three CA variants were innovative by Definition 2, with >99% 
of Case II and Case III CAs displaying INN. For Case I CA, the percentage of INN cases increased as a function of 
both wo and we, ranging from ~30% for the smallest CA explored to >99% for larger systems (see Supplement 5). 
This is intuitive, since the majority of organisms with changing updates rules should be expected to exhibit dif-
ferent state-trajectories than ECA. The fact that >99% of organisms are innovative in our examples may seem to 
indicate that INN is trivial. However, we note that INN conceptually becomes more significant when considering 
infinite systems (where UE is not defined) or large systems where tP is not measurable (and thus UE cannot be 
calculated). We show below that INN scales with recurrence time, and that measuring innovation over a finite 
timescale could provide a method for approximating UE. INN is therefore useful to the analysis of large or infinite 
systems where the methods implemented here to detail candidate mechanisms are not directly applicable to test 
UE. INN is also necessary to exclude trivial OEE. We also note that for computational tractability we compare the 
time evolution of o only to ECA, but in practice one could (and perhaps should) compare o to dynamical systems 
evolved according to any fixed rule (e.g. regardless of neighborhood size, which for ECA is n = 3), in which case 
we might expect the number of INN cases to decrease and therefore INN would be more non-trivial even for 
small systems.

By contrast to cases exhibiting INN, OEE cases are much rarer, even for our highly simplified examples, due 
to the fact that the number of UE cases is much smaller, typically representing <5% of all the sampled trajectories 
in the examples studied here. We therefore focus discussion primarily on sampled executions meeting the criteria 
for OEE, i.e. those that satisfied Definitions 1, before returning to how INN might approximate UE.

Open-Ended Evolution in CA Variants.  The percentage of sampled cases for each CA variant that satisfies 
Definitions 1 for UE are shown in Table 3, where for purposes of more direct comparison Case I CA statistics are 
shown only for wo = we. Case I CA statistics for other relative values of wo and we are shown in Table 4. Examples 
of Case I CA exhibiting OEE are shown in Fig. 4, demonstrating the innovative patterns that can emerge due to 

wo ECA Case I (wo = we) Case II Case III

3 0 0.02 42.47 7.42

4 0 0.38 11.54 1.05

5 0 3.41 10.43 2.76

6 0 0.03 0.27 5.2 × 10−3

7 0 1.06 0.7 4.7 × 10−4

Table 3.  Percentage of sampled cases displaying OEE (satisfying Definitions 1 and 2) for each CA variant. Rows 
are organism width, wo, and columns correspond to the three different CA variants and ECA statistics.
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time dependent rules. Box plots of the distribution of measured recurrence times for each CA variant are shown 
in Figs 5 and 6. All UE cases presented here are also INN, and thus exhibit OEE. We therefore refer to UE and 
OEE interchangeably (without explicitly referencing OEE as cases exhibiting UE and INN separately).

To compare the capacity for OEE across the different CA variants tested, it is useful to define a notion of scal-
ability17. Here we define scalable systems as ones where the number of observed OEE cases can increase without 
the need to either (1) change the rule-updating mechanism of o or (2) significantly change the statistics of sam-
pled cases. By this definition, the two primary mechanisms for increasing the number of OEE cases in a scalable 
manner are by changing wo, or depending on the nature of the coupling between o and e, changing we (with the 
constraint that the rule-updating mechanism cannot change).

As expected (by definition), isolated ECA do not exhibit any OEE cases and the majority of ECA have recur-
rence times 

t tr p. However, all three CA variants with time-dependent rules do exhibit examples of OEE, but 
differ in the percentage of sampled cases and their scalability. Case III exhibits the simplest dynamics, where tra-
jectories follow a diffusive random walk through rule space until the system converges on a random oscillation 
between the all- ‘0’ and all-‘1’ states (where tr is approximated by this convergence time). The frequency of state 
recurrence times tr of the organism decreases exponentially (see Supplement Fig. S4), such that the o with the 
longest recurrence times are exponentially rare. Since so few examples were found for organisms of size wo = 7, we 
also tested wo = 8 and found no examples of OEE. In general, the exponential decline observed is steeper for 
increasing wo. Observing more OEE cases therefore requires exponentially increasing the number of sampled 
trajectories for increasing wo. The capacity for Case III CA to demonstrate OEE is therefore not scalable with 
system size (violating condition 2) in our definition above). An additional limitation of Case III CA is that their 

wo wo
1
2

wo wo
3
2

2wo wo
5
2

3 0 0.02 6.52 10.81 28.14

4 0 0.38 2.28 2.94 9.65

5 0 3.41 7.04 7.5 8.64

6 0 0.03 2.15 2.64 5.82

7 0 1.06 2.95 4.39 5.34

Table 4.  Percentage of sampled cases displaying OEE (satisfying Definitions 1 and 2) for Case I, with varying 
environment size we.

Figure 4.  Examples of Case I CA exhibiting OEE. In each panel the environment e is shown on the left, and 
organism o on the right. For each o, the Poincaré recurrence time (tP) for an isolated system is highlighted in 
blue, and the recurrence time of the states of o, tr, is highlighted in red.

http://S4


www.nature.com/scientificreports/

1 0Scientific Reports | 7: 997  | DOI:10.1038/s41598-017-00810-8

long-term dynamics are relatively simple once the system settles into the oscillatory attractor, thus the majority of 
observations of Case III CA would not yield interesting dynamics (e.g. if the observation time were much greater 
than the start time t tobs o).

For Case II, we also observed a steep decline in the number of OEE cases observed for increasing wo (Table 3). 
This is reflected by a steady decrease in the mean of the recurrence times for increasing wo, as shown in Fig. 6. We 
also tested a large statistical sample of organisms of size wo ≥ 8 for Case II CA (not shown) and found no examples 
of OEE cases. This is not wholly unexpected. For Case II with wo = 8, the environment and organism are the same 
size (we = wo). Therefore e and o share the same Poincaré time =t 2P

wo. The subsystem e is a traditional ECA, 
therefore the majority of e will exhibit recurrence times tP (see e.g. trend in Fig. 6). Since the rule of o is deter-
mined by a 1:1 map from the state of e, the rule recurrence time of o will also be much less than the Poincaré time, 
such that ′

t tr P. It is the rule evolution that drives novelty in the state evolution, we therefore also see that the 
state recurrence time is similarly limited such that t tr P also holds. To get around this limitation one could 
increase the size of the environment such that we > wo. However, since the rule for o is a 1:1 map from the state of 
e, this would require changing the updating rule scheme for o. That is, the organism o would have to change how 
it evolves in time as a function of its environment (violating 1) in our definition of scalability above. By our defi-
nition of scalability, this is not a scalable mechanism for generating OEE since o must change the function for its 
updating rule and therefore would represent a different o.

Figure 5.  Distribution of recurrence times tr for the state trajectory of o for Case I CA. From top to bottom 
are distributions for we = 1/2wo, wo, 3/2wo, 2wo and 5/2wo, respectively. In all panels the black horizontal line 
indicates where tr/tP = 1 (shown on a log scale). Sampled trajectories displaying UE occur for tr/tP > 1.



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 997  | DOI:10.1038/s41598-017-00810-8

We can compare the statistics of sampled OEE cases for Case I where wo = we to those of Case II and Case III, 
as in Table 3. While Case II and Case III CA see a steep drop-off in the percentage of sampled cases exhibiting 
OEE with increasing organism size wo, the Case I CA exhibit a flatter trend. We determined whether this trend 
holds for varying we by also analyzing statistics for Case I CA where =w we o

1
2

, wo, wo
3
2

, 2wo and wo
5
2

. The statistics 
of OEE cases sampled are shown in Table 4 and box plots of the distribution of recurrence times are shown in 
Fig. 5. For each fixed environment size explored (we, columns in Table 4), we observe that the statistics do not 
decrease dramatically as the size of the organism increases (increasing wo). For fixed organism size (wo, rows in 
Table 4), we observe that the number of OEE cases increases with increasing environment size. These trends are 
also reflected in the means of the distributions shown in Fig. 5. Case I represents a scalable mechanism for OEE 
as o can be coupled to larger environments and will produce more OEE cases.

Case I and Case II can be contrasted to gain insights into scalability. The key difference between the two 
variants is that for Case II the update rule of o is a 1:1 map with the state of e, whereas for Case I the map 
is self-referencing and is many:1. Case I therefore uses a coarse-grained representation of the environment for 
updating the rule of o and because the dynamics are self-referential, the same pattern in the environment can 
lead to different rule transitions in o, depending on the previous state and rule of o. Thus, although both Case I 
and Case II exhibit trends of increasing OEE as we is increased relative to wo, the degree to which the size of the 
environment can impact the time evolution of the organism is different for the two cases. For a comparable size 
environment in Case I and Case II CA, the pattern relevant to the update of o may have a longer recurrence time 
than the actual states of e for Case I CA (due to the coarse-graining), whereas for Case II CA this pattern is strictly 
limited by the environment’s recurrence time. Additionally, due to the coarse-graining of the environment in Case 
I CA, the update rule of o is not dependent on the size of e: the same exact function for updating the rule of o may 
be applied independent of the environment size. This is not true for Case II, where the function for updating the 
rule of o must change in order to accommodate larger environments.

INN as a Proxy for UE.  We have presented examples of small dynamical systems to perform rigorous statis-
tical testing of INN and UE to evaluate candidate mechanisms for generating OEE. An important question is how 
the results might apply to larger dynamical systems that could depend on different mechanisms than those testa-
ble in simple, discrete systems. While an approximation of INN is in principle measurable for large or infinite 
dynamical systems, UE is not measurable or not well-defined. We therefore aimed to determine if INN can be 

Figure 6.  Distribution of recurrence times tr for the state trajectory of o for ECA (top left), Case II (top right), 
and Case III CA (bottom). In all panels the black horizontal line indicates where tr/tP = 1 (shown on a log scale). 
Sampled trajectories displaying UE occur for tr/tP > 1.
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utilized as a proxy for UE. To do so, we defined a new parameter nr, which quantifies the number of times that an 
organism changed its update rule during a finite time interval τ in its dynamical evolution. We normalized to 
determine the relative innovation of an organism =

τ
I nr  to generate a standardized measure for comparing 

across example organisms in our study, where for the cases presented here τ = 2w. Statistically representative 
results for Case I and Case II organisms are shown in Fig. 7, where I is plotted against the organism’s state recur-
rence time (Case III results are not included since the recurrence time is not well-defined). For both Case I and 
Case II a clear trend is apparent where innovation is positively (and nearly linearly) correlated with recurrence 
time. For a given recurrence time, OEE cases (highlighted in red) are the most innovative. Comparing the two 
panels, it is evident that Case I CA exhibit higher innovation and therefore achieve longer recurrence times than 
Case II CA. From these results we can conclude that a statistical measure sampling the number of observed rule 
transitions over a finite interval τ could be used to approximate recurrence time and therefore provide a proxy 
measure for UE. However, this leaves open the question of how large the interval τ should be for accurately esti-
mating τ→I tr

 in cases where tr is not observable, and for identifying how I scales with tp for a given generating 
mechanism for the dynamics (that is, such that I = αtr could be solved for tr, where α is a scaling of innovation 
relative to recurrence time). We leave these questions as a subject for future work.

On-going Generation of Complexity in Case I.  We also considered the complexity of Case I CA, relative 
to isolated ECA, as a further test of their scalability and potential to generate complex and novel dynamics. We 
characterized the complexity of Case I using two standard complexity measures, compressibility (C) and Lyapunov 
exponent (k). The trends demonstrate that in general C decreases with increasing organism width wo, but 
increases with increasing environment size we (left panel, Fig. 8), indicative of increasing complexity with organ-
ism width wo. Similar trends are observed for the Lyapunov exponent, as shown in the right panel of Fig. 8, where 

Figure 7.  Relative innovation as a function of recurrence times for Case I (left) and Case II (right) CA. 
Highlighted in red are cases exhibiting OEE.

Figure 8.  Heat maps of compression C (left) and Lyapunov exponent values k (right) for all state trajectories of 
sampled o for Case I CA. From top to bottom wo = 3, 4, 5, 6 and 7, with distributions shown for =w we o

1
2

, wo, 
wo

3
2

, 2wo and wo
5
2

 (from top to bottom in each panel, respectively) for each wo. Distributions are normalized to 
the total size of sampled trajectories for each wo and we (see statistics in Table S3).
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it is evident that increasing wo or we leads to an increasing number of cases with higher Lyapunov exponent k.  
OEE cases tend to have the highest k values (see Supplement Fig. S12). As C is normalized relative to ECA (see 
Supplement 8), we conclude that Case I CA are generally more complex than ECA evolved according to fixed 
dynamical rules, and this is especially true for OEE cases.

We also analyzed the ECA rules implemented in sampled Case I trajectories relative to the Wolfram Rule 
complexity classes. We find that Case I CA, on average, implement more Class I and II rules than Class III or IV, 
as shown in the frequency distribution of Fig. 9 for Case I CA with wo = we (see Supplement Figs 5 and 6). Thus, 
we can conclude that the complexity generated by Case I CA is intrinsic to the state-dependent mechanism, and 
is not attributable to Class III and Class IV ECA rules dominating the rule evolution of o.

Discussion
We have provided formal definitions of unbounded evolution (UE) and innovation (INN) that can be evaluated 
in any finite dynamical system, provided it can be decomposed into two interacting subsystems o and e. Systems 
satisfying both UE and INN we expect to minimally represent mechanisms capable of OEE. Testing the criteria 
for UE and INN against three different CA models with time-dependent rules reveals what we believe to be quite 
general mechanisms applicable to a broad class of OEE systems.

Mechanisms for OEE.  Our analysis indicates that there are potentially many time-dependent mechanisms 
that can produce OEE in a subsystem o embedded within a larger dynamical system, but that some may be more 
“interesting” than others. An externally driven time-dependence for the rules of o (Case II), while producing 
the highest statistics of OEE cases sampled for small o, does not provide a scalable mechanism for producing 
OEE with increasing system size, unless the structure of o itself is fundamentally altered (such that the rule space 
changes). Stochastically driven rule evolution displays rich transient dynamics, but ultimately subsystems con-
verge on dynamics with low complexity (Case III). An alternative is to introduce stochasticity to the states, rather 
than the rules, which would avert this issue. This has the drawback that the mechanism for OEE is then not as 
clearly mappable to biological processes (or other mechanisms internal to the system), where the genotype (rules) 
evolve due to random mutations that then dictate the phenotype (states).

We regard Case I as the most interesting mechanism explored herein for generating conditions favoring OEE: 
it is scalable and the dynamics generated are novel. We note that the state-dependent mechanism represents 
a departure from more traditional approaches to modeling dynamical systems, e.g. as occurs in the physical 
sciences, where the dynamical rule is usually assumed to be fixed. In particular, it represents an explicit form of 
top-down causation, often regarded as a key mechanism in emergence19, 28 that could also play an important role 
in driving major evolutionary transitions29. The state-dependent mechanism is also consistent with an important 
hallmark of biology – that biological systems appear to implement self-referential dynamics such that the “laws” 
in biology are a function of the states19, 21, 22, a feature that also appears to be characteristic of the evolution of 
language30, 31.

Applicability to Other Dynamical Systems.  We have independently explored openness to an environ-
ment, stochasticity and state-dependent dynamics as we expect these to be general and apply to a wide-range of 
dynamical systems that might similarly display OEE by satisfying Definitions 1 and 2. An important feature of 
these definitions is that UE and INN must be driven by extrinsic factors (an environment)32, although the mecha-
nisms driving the dynamics characteristic of OEE should be intrinsic to the subsystem of interest. OEE can there-
fore only be a property of a subsystem. We have not explored the case of feedback from o to e that might drive 
further open-ended dynamics, as characteristic of the biosphere, for example in niche construction33, but expect 

Figure 9.  Rank ordered frequency distributions of rules implemented in the attractor dynamics of o for all 
sampled Case I CA (top) and OEE cases only (bottom). Highlighted are Wolfram Class III (light blue) and IV 
rules (dark blue).
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even richer dynamics to be observed in such cases. For large or infinite dynamical systems INN is an effective 
proxy for UE, and we expect highly innovative systems to be the most likely candidates for open-ended evolution.

Conclusions
Our results demonstrate that OEE, as formalized herein, is a general property of dynamical systems with 
time-dependent rules. This represents a radical departure from more traditional approaches to dynamics where 
the “laws” remain fixed. Our results suggest that uncovering the principles governing open-ended evolution and 
innovation in biological and technological systems may require removing the segregation of states and fixed 
dynamical laws characteristic of the physical sciences for the last 300 years. In particular, state-dependent dynam-
ics have been shown to out-perform other candidate mechanisms in terms of scalability, suggestive of paths 
forward for understanding OEE. Our analysis connects all four hallmarks of OEE and provides a mechanism for 
producing OEE that is consistent with the self-referential nature of living systems. By casting the formalism of 
OEE within the broader context of dynamical systems theory, the proof-of-principle approach presented opens 
up the possibility of finding unifying principles of OEE that encompass both biological and artificial systems.
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