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Lower and upper bounds for 
entanglement of Rényi-α entropy
Wei Song1, Lin Chen2,3 & Zhuo-Liang Cao1

Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement 
of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement 
Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the 
application our bound for some concrete examples. Moreover, we establish the relation between 
entanglement Rényi-α entropy and some other entanglement measures.

Quantum entanglement is one the most remarkable features of quantum mechanics and is the key resource cen-
tral to much of quantum information applications. For this reason, the characterization and quantification of 
entanglement has become an important problem in quantum-information science1. A number of entanglement 
measures have been proposed for bipartite states such as the entanglement of formation (EOF)2, concurrence3, 
relative entropy4, geometric entanglement5, negativity6 and squashed entanglement7,8. Among them EOF is one 
of the most famous measures of entanglement. For a pure bipartite state ψ AB in the Hilbert space, the EOF is 
given by

ψ ρ=E S( ) ( ), (1)F AB A

where ρ ρ ρ= −S( ) : Tr logA A A is the von Neumann entropy of the reduced density operator of system A. Here “log” 
refers to the logarithm of base two. The situation for bipartite mixed states ρAB is defined by the convex roof

∑ρ ψ=E p E( ) min ( ),
(2)F AB

i
i F i AB

where the minimum is taken over all possible pure state decompositions of ρ ψ ψ= ∑ pAB i i i AB i  with ∑ipi = 1 and 
pi > 0. The EOF provides an upper bound on the rate at which maximally entangled states can be distilled from ρ 
and a lower bound on the rate at which maximally entangled states needed to prepare copies of ρ9. For two-qubit 
systems, an elegant formula for EOF was derived by Wootters in ref. 3. However, for the general highly dimen-
sional case, the evaluation of EOF remains a nontrivial task due to the the difficulties in minimization proce-
dures10. At present, there are only a few analytic formulas for EOF including the isotropic states11, Werner states12 
and Gaussian states with certain symmetries13. In order to evaluate the entanglement measures, many efforts have 
also been devoted to the study of lower and upper bounds of different entanglement measures14–32. Especially, 
Chen et al.18 derived an analytic lower bound of EOF for an arbitrary bipartite mixed state, which established a 
bridge between EOF and two strong separability criteria. Based on this idea, there are several improved lower and 
upper bounds for EOF presented in refs 33–36. While the entanglement of formation is the most common meas-
ure of entanglement, it is not the unique measure. There are other measures such as entanglement Rényi-α 
entropy (ERαE) which is the generalization of the entanglement of formation. The ERαE has a continuous spec-
trum parametrized by the non-negative real parameter α. For a bipartite pure state ψ AB, the ERαE is defined as37

ψ ρ
α

ρ= =
−α α

αE S( ) : ( ) : 1
1

log(tr ), (3)AB A A

where Sα(ρA) is the Rényi-α entropy. Let µ µ, , m1  be the eigenvalues of the reduced density matrix ρA of ψ AB. 
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where µ�� is called the Schmidt vector µ µ µ( , , , )m1 2 . The Rényi-α entropy is additive on independent states and 
has found important applications in characterizing quantum phases with differing computational power38, 
ground state properties in many-body systems39, and topologically ordered states40,41. Similar to the convex roof 
in (2), the ERαE of a bipartite mixed state ρAB is defined as

∑ρ ψ= .α αE p E( ) min ( )
(5)AB

i
i i AB

It is known that the Rényi-α entropy converges to the von Neumann entropy when α tends to 1. So the ERαE 
reduces to the EOF when α tends to 1. Further ERαE is not increased under local operations and classical com-
munications (LOCC)37. So the ERαE is an entanglement monontone, and becomes zero if and only if ρAB is a 
separable state.

An explicit expression of ERαE has been derived for two-qubit mixed state with α ≥ − .( 7 1)/2 0 82337,42. 
Recently, Wang et al.42 further derived the analytical formula of ERαE for Werner states and isotropic states. 
However, the general analytical results of ERαE even for the two-qubit mixed state with arbitrary parameter α is 
still a challenging problem.

The aim of this paper is to provide computable lower and upper bounds for ERαE of arbitrary dimensional 
bipartite quantum systems, and these results might be utilized to investigate the monogamy relation43–46 in 
high-dimensional states. The key step of our work is to relate the lower or upper bounds with the concurrence 
which is relatively easier to dealt with. We also demonstrate the application of these bounds for some examples. 
Furthermore, we derive the relation of ERαE with some other entanglement measures.

Lower and upper bounds for entanglement of Rényi-α entropy. For a bipartite pure state with 
S c h m i d t  d e c o m p o s i t i o n  ψ µ= ∑ = iii

m
i1 ,  t h e  c o n c u r r e n c e  o f  ψ  i s  g i v e n  b y 

ψ ρ µ= − = − ∑ =c( ) : 2(1 Tr ) 2(1 )A i
m

i
2

1
2 . The expression ρ−1 Tr A

2 is also known as the mixedness and lin-
ear entropy47,48. The concurrence of a bipartite mixed state ρ is defined by the convex roof ρ ψ= ∑c p c( ) min ( )i i i  
for all possible pure state decompositions of ρ ψ ψ= ∑ pi i i i . A series of lower and upper bounds for concurrence 
have been obtained in refs 19,24,25. For example, Chen et al.19 provides a lower bound for the concurrence by 
making a connection with the known strong separability criteria49,50, i.e.,

ρ ρ ρ≥
−

−c
m m

( ) 2
( 2)

(max( , ( ) ) 1),
(6)

TA

for any m ⊗ n(m ≤ n) mixed quantum system. The ‖·‖ denotes the trace norm and TA denotes the partial trans-
pose. Another important bound of squared concurrence used in our work is given by refs 24,25.

ρ ρ ρ ρ ρ⊗ ≤ ≤ ⊗V C KTr( ) [ ( )] Tr( ), (7)i i
2

with = − ⊗− + −V P P P4( )1
(1) (1) (2), = ⊗ −− − +V P P P4 ( )2

(1) (2) (2) , = ⊗−K P I4( )1
(1) (2) , = ⊗ −K I P4( )2

(1) (2)  and − +P P( )i i( ) ( )  
is the projector on the antisymmetric (symmetric) subspace of the two copies of the ith system. These bounds can 
be directly measured and can also be written as

ρ ρ ρ ρ⊗ = −VTr( ) 2(Tr Tr ), (8)A1
2 2

ρ ρ ρ ρ⊗ = −VTr( ) 2(Tr Tr ), (9)B2
2 2

ρ ρ ρ⊗ = −KTr( ) 2(1 Tr ), (10)A1
2

ρ ρ ρ⊗ = − .KTr( ) 2(1 Tr ) (11)B2
2

Below we shall derive the lower and upper bounds of ERαE based on these existing bounds of concurrence. 
Different states may have the same concurrence. Thus the value of µα

��H ( ) varies with different Schmidt coefficients 
μi for fixed concurrence. We define two functions

∑µ µ= − ≡α =
��{ }( )R c H c( ) max ( ) 2 1 ,

(12)U i
m

i1
2

∑µ µ= − ≡ .α =
��{ }( )R c H c( ) min ( ) 2 1

(13)L i
m

i1
2

The derivation of them is equivalent to finding the maximal and minimal of µα
��H ( ). Notice that the definition 

of µα
��H ( ), it is equivalent to find the maximal and minimal of µ∑ α

=i
m

i1  under the constraint µ− ∑ ≡= c2(1 )i
m

i1
2  
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since the logarithmic function is a monotonic function . With the method of Lagrange multipliers we obtain the 
necessary condition for the maximum and minimum of µ∑ α

=i
m

i1  as follows

αµ λ µ λ= −α− 2 , (14)i i
1

1 2

where λ1, λ2 denote the Lagrange multipliers. This equation has maximally two nonzero solutions γ and δ for each 
μi. Let n1 be the number of entries where μi = γ and n2 be the number of entries where μi = δ. Thus the derivation 
is reduced to maximizes or minimizes the function

α
γ δ=

−
+α αR c n n( ) 1

1
log( ), (15)n n 1 21 2

under the constrains

γ δ γ δ+ = − − =n n n n c1, 2(1 ) , (16)1 2 1
2

2
2 2

where n1 + n2 = d ≤ m. From Eq. (16) we obtain two solutions of γ

γ =
± − + − −

+
± n n n n n n c

n n n
( )[1 (1 /2)]

( )
,

(17)n n
1 1

2
1 1 2 2

2

1 1 2
1 2

δ
γ

=
−±

±n

n

1
,

(18)n n
n n1

2
1 2

1 2

with − − ≤ ≤ −n n n n c d dmax { 2( 1)/ , 2( 1)/ } 2( 1)/1 1 2 2 . Because γ δ δ γ= =− + − +,n n n n n n n n2 1 1 2 2 1 1 2
, we should 

only consider the case for γ +
n n1 2

. When n2 = 0, γ can be uniquely determined by the constrains thus we omit this 
case.

When m = 3, the solution of Eq. (15) is R12(c) and R21(c) for < ≤c1 2/ 3 . After a direct calculation we find 
R12(c) and R21(c) are both monotonically function of the concurrence c, and =R R(2/ 3 ) (2/ 3 )12 21 . In order to 
compare the value of R12(c) and R21(c) we only need to compare the value of them at the endpoint c = 1. For con-
venience we divide the problem into three cases. If 0 < α < 2, then R12(1) > R21(1); If α = 2, then R12(1) = R21(1); 
If α > 2, then R12(1) < R21(1). Thus we conclude that the maximal and minimal function of µα

��H ( ) is given by 
R21(c) and R12(c) respectively for α > 2. When α < 2, the maximal and minimal function of µα

��H ( ) is R12(c) and 
R21(c) respectively. When α = 2, we can check that the two functions R21(c) and R12(c) always have the same value 
for < ≤c1 2/ 3 . In the general case for m = d, numerical calculation shows the following results

(i) When α > 2,

γ γ
α

=
+ − −

−

α α α
−

+ −
−

+

R c
d

( )
log [( ) ( 1) (1 ) ]

1
, (19)L

d d1, 1
1

1, 1

γ γ
α

=
+ − −

−

α α α
−

− −
−

−

R c
d

( )
log [( ) ( 1) (1 ) ]

1
, (20)U

d d1, 1
1

1, 1

with − − < ≤ −d d c d d2( 2)/( 1) 2( 1)/ , 1 ≤ d ≤ m − 1 and 
γ = ± − − −−

± d d c d(2 2( 1)[ (2 ) 2] )/2d1, 1
2 .

(ii) When α < 2,

γ γ
α

=
+ − −

−

α α α
−

− −
−

−

R c
d

( )
log [( ) ( 1) (1 ) ]

1
, (21)L

d d1, 1
1

1, 1

γ γ
α

=
+ − −

−
.

α α α
−

+ −
−

+

R c
d

( )
log [( ) ( 1) (1 ) ]

1 (22)U
d d1, 1

1
1, 1

(iii) When α = 2, these lower and upper bounds give the same value.

We use the denotation co(g) to be the convex hull of the function g, which is the largest convex function that 
is bounded above by g, and ca(g) to be the smallest concave function that is bounded below by g. Using the results 
presented in Methods, we can prove the main result of this paper.

Theorem. For any m ⊗ n(m ≤ n) mixed quantum state ρ, its ERαE satisfies

ρ≤ ≤αco R C E ca R C[ ( )] ( ) [ ( )], (23)L U

where
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ρ ρ= − −{ }C min 2(1 Tr ) , 2(1 Tr ) , (24)A B
2 2

and

ρ ρ

ρ ρ ρ ρ

= − − − −

− − .

C m m m mmax{0, 2/ ( 1)( 1) , 2/ ( 1)( ( ) 1) ,
2(Tr Tr ), 2(Tr Tr )} (25)

T

A B

2 2 2

2 2 2 2

A

Next we consider how to calculate the expressions of co(RL(c)) and ca(RU(c)). As an example, we only consider 
the case m = 3. In order to obtain co(RL(c)), we need to find the largest convex function which bounded above by 
RL(c). We first set the parameter α = 3, then we can derive

=






< ≤

< ≤

=






< ≤

< ≤ .

R c
R c
R c

R c
R c
R c

( )
, 0 1
, 1 2/ 3 ,

( )
, 0 1
, 1 2/ 3 (26)

L

U

11

12

11

21

We plot the function R11, R12 and R21 in Fig. 1 which illustrates our result. It is direct to check that ″ ≥R 011 , 
therefore co(R11) = R11 for 0 < c ≤ 1. The second derivative of R12 is not convex near =c 2/ 3  as shown in Fig. 2. 
In order to calculate co(R12), we suppose = − +l c k c( ) ( 2/ 3 ) log 31 1  to be the line crossing through the point 

R[2/ 3 , (2/ 3 )]12 . Then we solve the equations l1(c) = R12(c) and dl1(c)/dc = dR12(c)/dc = k1 and the solution is 
k1 = 5.2401, c = 1.1533. Combining the above results, we get

=











< ≤
< ≤ .

. − +

. < ≤ .

co R c

R c
R c

c
c

( ( ))

(0 1)
(1 1 1533)

5 2401( 2/ 3 ) log3
(1 1533 2/ 3 ) (27)

L

11

12

0.0 0.2 0.4 0.6 0.8 1.0
c

0.5

1.0

1.5

Figure 1. The plot of lower bound (dashed line) and upper bound (dotted line) for α = 3, m = 3. The upper 
bound consists of two segments and the lower bound consists of three segments. The solid line corresponds to 
R11, R12 and R21.

Figure 2. The plot of the second derivative of R12 for < ≤c1 2/ 3 .
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Similarly, we can calculate that ″ ≥R 011  and ″ ≥R 021 , thus co(RU(c)) is the broken line connecting the following 
points: [0, 0], [1, log2], [2/ 3 , log3]. In Fig. 3 we have plotted the lower and upper bounds with dashed and 
dotted line respectively.

Then we choose the parameter α = 0.6, and we get

=






< ≤

< ≤
R c

R c
R c

( )
(0 1)
(1 2/ 3 ), (28)

L
11

21

=






< ≤

< ≤ .
R c

R c
R c

( )
(0 1)
(1 2/ 3 ) (29)

U
11

12

Since ″ ≤R 011 ,  ″ ≤R 021 ,  we have that co(RL(c)) is  the broken line connecting the points: 
[0, 0], [1, log2], [2/ 3 , log3]. In order to obtain ca(RU(c)), we need to find the smallest concave function which 
bounded below by RU(c). We find ″ ≤R 011 , ″ ≥R 012 , therefore ca(RU(c)) is the curve consisting R11 for 0 < c ≤ 1 
and the line connecting points [1, R12(1)] and R[2/ 3 , (2/ 3 )]12  for < ≤c1 2/ 3 . As shown in Fig. 3, the lower 
and upper bound both consists of two segments in this case.

Generally, we can get the expression of co(RL(c)) and ca(RU(c)) for other parameters α and m using similar 
method.

Examples. In the following, we give two examples as applications of the above results.

Example 1. We consider the d ⊗ d Werner states

ρ =
−

− + −
d d

d f I df1 [( ) ( 1) ],
(30)f 3

where −1 ≤ f ≤ 1 and   is the flip operator defined by φ ψ ψ φ⊗ = ⊗( ) . It is shown in ref. 51 that the concur-
rence C(ρ f) =  −f  for f  <  0 and C(ρ f) =  0 for f  ≥  0. According to the theorem we obtain that 

α− + − + − − ≤ ≤ −α αf f E r f1/(1 )log[((1 1 )/2) ((1 1 )/2) ] ( )a f
2 2  for −1 ≤ f ≤ 0 when m = 3.

Example 2 .  The second example is the 3 ⊗  3 isotropic state ρ ψ ψ= + −x I x( /9) (1 ) ,  where 
ψ = +a a( , 0,0,0,1/ 3 , 0, 0, 0,1/ 3 ) / 2/3t 2  with 0 ≤ a ≤ 1. We choose x = 0.1, it is direct to calculate that

ρ ρ ρ ρ= − = − =
. + . − .

+
C Tr Tr Tr Tr a a

a
2( ) 2( ) 2 6 53 41 46 1 71

3(2 3 )
,

(31)A B1
2 2 2 2

2 4

2

ρ= − =
+ . − . + . +

+
C a a a a

a
1
3

( 1) 2(5 6 9 0 9 9 353 (2 3 ))
3(2 3 )

,
(32)

T
2

2 4 2

2 2
A

ρ= − =
. + .
. +

C R
a

1
3

( ( ) 1) 0 346 1 2a
0 667

,
(33)3 2

0.0 0.2 0.4 0.6 0.8 1.0
c

0.5

1.0

1.5

Figure 3. The plot of lower bound (dashed line) and upper bound (dotted line) for α = 0.6, m = 3. The upper 
bound consists of two segments and the lower bound also consists of two segments. The solid line corresponds 
to R11, R12 and R21.
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ρ ρ= − = − =
. + . + .

+
.C Tr Tr a a

a
2(1 ) 2(1 ) 6(6 38 33 72 3 42 )

3(2 3 ) (34)A B
2 2

2 4

2

When α = 0.6, we can calculate the lower and upper bounds and the results is shown in Fig. 4. The solid red line 
corresponds to the lower bound of Eα by choosing the lower bound of concurrence is C1, and the dash-dotted and 
dashed line correspond to the cases when we choose the lower bound of concurrence is C2 and C3, respectively. We can 
choose the maximum value of the three curves as the lower bound of Eα. The blue solid line is the upper bound of Eα.

Relation with other entanglement measures. In this section we establish the relation between ERαE 
and other well-known entanglement measures, such as the entanglement of formation, the geometric measure of 
entanglement52, the logarithmic negativity and the G-concurrence.

Entanglement of formation. Let ρ be a bipartite pure state with Schmidt coefficients (μ1, μ2, …). We 
investigate the derivative of ERαE w.r.t. α as follows.

∑ ∑

∑

ρ
α α

µ

µ
µ µ

α

µ

µ
µ

=
−





 ∑
+







≤
−






∑

∑
+






= .

α
α

α
α α

α
α

−dE
d

( ) 1
(1 )

log log

1
(1 )

log log

0 (35)

j

j

k k
j

k
k

j j

k k k
k

2
1

2

The inequality follows from the concavity of logarithm function. The last equality follows from the fact 
∑jμj = 1. Hence the ERαE is monotonically non-increasing with α ≥ 0. Since it becomes the von Neumann 
entropy when α tends to one, we have

ρ ρ ρ≥ ≥α βE E E( ) ( ) ( ) (36)F

where 0 ≤ α ≤ 1 and β ≥ 1. Using the convex roof, one can show that (36) also holds for mixed bipartite states ρ.

Geometric measure of entanglement. The geometric measure (GM) of entanglement measures the clos-
est distance between a quantum state and the set of separable states52. The GM has many operational interpreta-
tions, such as the usability of initial states for Grovers algorithm, the discrimination of quantum states under 
LOCC and the additivity and output purity of quantum channels, see the introduction of ref. 48 for a recent 
review on GM. For pure state |ψ〉 we define ψ ϕ ψ= −G ( ) log maxl

2, where the maximum runs over all prod-
uct states |ϕ〉. it is easy to see that ϕ ψmax 2 is equal to the square of the maximum of Schmidt coefficients of 
|ψ〉. For mixed states ρ we define

∑ρ ψ= pG ( ) : min G ( ) ,
(37)i

i il
c

l

where the minimum runs over all decompositions of ρ = ∑ipi|ψi〉 〈ψi|48. We construct the linear relation between 
the GM and ERαE as follows.

Lemma. If α > 1 then

α
α

ρ ρ
−

≥ .αE
2( 1)

G ( ) ( )
(38)l

c

0.0 0.2 0.4 0.6 0.8 1.0
a

0.5

1.0

1.5

Figure 4. Lower and upper bounds of Eα(ρ) for α = 0.6 where we have set x = 0.1. Red solid line is obtained by 
C1, the dash-dotted and dashed line is obtained by C2 and C3, respectively. The blue solid line is the upper bound 
of Eα(ρ).
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If α = 1 and ρ is a pure state then

ρ ρ≤ .αEG ( ) ( ) (39)l
c

If α < 1 then

ρ α
α

ρ
α

+
−

≤
−αE d( )

2(1 )
G ( ) 1

1
log ,

(40)l
c

where d is the minimum dimension of A  and B. The details for proving the lemma can be seen from Methods.

logarithmic negativity. In this subsection we consider the logarithmic negativity53. It is the lower bound of 
the PPT entanglement cost53, and an entanglement monotone both under general LOCC and PPT operations54. 
The logarithmic negativity is defined as

ρ ρ= .LN( ) log (41)TA

Suppose ρ ψ ψ= ∑ | 〉pi i i i  is the optimal decomposition of ERαE Eα(ρ), and the pure state |ψi〉 has the standard 
Schmidt form ψ µ= ∑ | 〉a b,i j i j i j i j, , , . For 1/2 ≤ α ≤ (2n − 1)/2n and n > 1, we have

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑

ρ ρ ψ ψ ψ ψ

µ µ
α

µ

ψ ρ

× = ≥ ≥

=











≥ ≥

−

= =

α α

α α

n LN n n p n p

n p n p p

p E E

( ) log log ( ) log ( )

2 log 2 log 1
1

log

( ) ( )
(42)

T

i
i i i

T

i
i i i

T

i
i

j
i j

i
i

j
i j

i
i

j
i j

i
i i

, , ,

A A A

where the first inequality is due to the property proved in ref. 54, the second inequality is due to the concavity of loga-
rithm function, and in the last inequality we have used the inequality 2n ≥ 1/(1 − α) for 1/2 ≤ α ≤ (2n − 1)/2n, n ≥ 1.

G-concurrence. The G-concurrence is one of the generalizations of concurrence to higher dimensional case. 
It can be interpreted operationally as a kind of entanglement capacity55,56. It has been shown that the G-concurrence 
plays a crucial role in calculating the average entanglement of random bipartite pure states57 and demonstration of 
an asymmetry of quantum correlations58. Let |ψ〉 be a pure bipartite state with the Schmidt decomposition 
ψ µ= ∑ = iii

d
i1 . The G-concurrence is defined as the geometric mean of the Schmidt coefficients55,56

ψ µ µ µ= .G d( ) : ( ) (43)d
d

1 2
1/

For α > 1, we have

∑ψ
α

µ

α
µ µ

α
α µ µ

α
α

α
ψ

=
−

≤
−









=
−

+

− −

=
−

+ .

α
α

α α

α





E

d

d

d

G d

( ) 1
1

log

1
1

log ( )

1
(1 )

[ log log ( )

( 1)log ]

1
log ( ) log

(44)

i
i

d d

d d

1

1

1

For 0 < α < 1, we have

ψ α
α

ψ≥
−

+ .αE G d( )
1

log ( ) log (45)

Discussion and Conclusion
Entanglement Rényi-α entropy is an important generalization of the entanglement of formation, and it reduces to 
the standard entanglement of formation when α approaches to 1. Recently, it has been proved59 that the squared 
ERαE obeys a general monogamy inequality in an arbitrary N-qubit mixed state. Correspondingly, we can con-
struct the multipartite entanglement indicators in terms of ERαE which still work well even when the indica-
tors based on the concurrence and EOF lose their efficacy. However, the difficulties in minimization procedures 
restrict the application of ERαE. In this work, we present the first lower and upper bounds for the ERαE of arbi-
trary dimensional bipartite quantum systems based on concurrence, and these results might provide an alternative 
method to investigate the monogamy relation in high-dimensional states. We also demonstrate the application our 
bound for some examples. Furthermore, we establish the relation between ERαE and some other entanglement 
measures. These lower and upper bounds can be further improved for other known bounds of concurrence60,61. 
After completing this manuscript, we became aware of a recently related paper by Leditzky et al. in which they also 
obtained another lower bound of ERαE in terms of Rényi conditional entropy62.
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Methods
Proof of the theorem. Suppose ρ ψ ψ= ∑ | 〉〈 |pj j j j  is the optimal decomposition of ERαE Eα(ρ), and the con-
currence of ψ| 〉j  is denoted as cj. Thus we have

∑ ∑
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≥ ≥
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j
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j
j L j L
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L

where the first inequality is due to the definition of co(g); in the second inequality we have used the monotonically 
increasing and convex properties of co(RL(cj)) as a function of concurrence cj; and in the last inequality we have 
used the lower bound of concurrence. On the other hand, we have
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where the first inequality is due to the definition of ca(g); the second inequality is due to the monotonically 
increasing and concave properties of ca(RU(cj)) as a function of concurrence cj; and in the last inequality we have 
used the upper bound of concurrence. Thus we have completed the proof of the theorem.

Proof of the lemma. Suppose the minimum in (37) is reached at ρ = ∑ipi|ψi〉 〈ψi|. Let the Schmidt decom-
position of |ψi〉 be ψ µ= ∑ | 〉a b,i j i j i j i j, , ,  where μi,1 is the maximum Schmidt coefficient. For α > 1, we have
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We have proved (38). For α = 1, let μi be the Schmidt coefficients of ρ, we have
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We have proved (39). For α < 1, we have
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The inequality holds because the pure state |ψi〉 is in the d × d space. So we have proved (40).
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