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Stroke is a leading cause of disability, and Magnetic Resonance Imaging (MRI) is routinely acquired 
for acute stroke management. Publicly sharing these datasets can aid in the development of machine 
learning algorithms, particularly for lesion identification, brain health quantification, and prognosis. 
These algorithms thrive on large amounts of information, but require diverse datasets to avoid 
overfitting to specific populations or acquisitions. While there are many large public MRI datasets, few 
of these include acute stroke. We describe clinical MRI using diffusion-weighted, fluid-attenuated and 
T1-weighted modalities for 1715 individuals admitted in the upstate of South Carolina, of whom 1461 
have acute ischemic stroke. Demographic and impairment data are provided for 1106 of the stroke 
survivors from this cohort. Our validation demonstrates that machine learning can leverage the imaging 
data to predict stroke severity as measured by the NIH Stroke Scale/Score (NIHSS). We share not only 
the raw data, but also the scripts for replicating our findings. These tools can aid in education, and 
provide a benchmark for validating improved methods.

Background & Summary
Stroke is a leading cause of long-term disability in the United States. Despite a decrease in stroke incidence per 
year of life among the elderly, this decline is counteracted by extended life expectancies and significant upswings 
in occurrences among younger adults. When paired with effective acute interventions that enhance survival, the 
overall result is a growing number of individuals living with stroke-related impairments1. Our overarching goal 
is to provide a large, public and diverse dataset that combines the medical imaging that is typical of acute stroke 
management along with demographic and impairment measures. These datasets can aid developers of tools to 
map brain injury, determine residual brain health, and create reliable diagnostic and prognostic measures.

Many “risk scores” have been developed to estimate the impact of acute ischemic stroke (AIS) and intracra-
nial hemorrhage (ICH) in individual patients2–5 and 94 individual de novo Clinically Predictive Models (CPMs) 
of stroke outcome were found in the Tufts PACE Clinical Prediction Model Registry (as of July 26, 2023)6. Stroke 
risk and stroke outcomes are influenced by many factors such as sex, racial/ethnic group, and socioeconomic 
class6,7. Validated CPMs for stroke are needed for predicting various outcomes, including overall functional 
recovery and the development of vascular dementia6,8.

Prisma Health-Upstate has been collecting Get with the Guidelines (GWTG-stroke) data on all acute strokes 
seen at Greenville Memorial Hospital since 2009. GWTG data includes basic demographic information (age, 
race, sex), zip code, stroke etiology, vitals and blood work at admission and discharge, medical history and cur-
rent medications, time to and type of thrombolytic therapy administered, complications, in-patient treatment 
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and interventions, lifestyle interventions, stroke interventions, and neuroimaging data9. Because the GWTG 
data also includes two measures of post-stroke function, the NIH stroke scale (NIHSS) and modified Rankin 
Scale (mRS), we used these as the primary indicators of stroke severity for this dataset. However, we would 
note that each of these scales has its own limitations, and the best metrics of stroke impact should ideally be 
composed of data from multiple assessments, and include instructions for central adjudication, consistent rater 
training and correct application of novel statistical techniques10. More than 15,000 subjects are included in our 
local GWTG dataset. GWTG is used to promote the quality of hospital stroke care by tracking key processes and 
demographics known to relate to favorable outcomes, such as door-to-needle time or whether an AIS patient 
received thrombolytic11. Approximately 1100–1300 unique subjects are entered into our comprehensive stroke 
centers (CSC) GWTG database each year. GWTG data are important for understanding AIS outcomes, because 
they capture the systems of care that are influential in such outcomes. Collection and distribution of the data 
described in the SOOP repository is approved under protocol Pro00078716 of the Prisma Health Committee 
A (initial approval 10/29/2018, status = ongoing). Notably, the informed consent requirement for the current 
retrospective data analysis was waived by this Institutional Review Board. SOOP participants treated by study 
investigators may be recontacted and consented in person or remotely with the help of a legally authorized rep-
resentative if needed, making future, prospective, longitudinal investigations a possibility. There are many dis-
tinct AIS outcomes. For example, weakness, numbness, visual loss, and cognitive dysfunction often result from 
stroke. Interactions among these factors may vary among subjects with an isolated, first-time AIS, compared to 
those individuals with recurrent or multifocal AIS. Also, stroke related cognitive impairments occur in up to 
a third of stroke patients12,13. Relatively few studies have attempted to predict specific outcomes such as motor 
function, aphasia, neglect, and depression14–16. Regardless of the measure of interest, a comprehensive approach 
to outcome prediction requires consideration of both known and unknown predictor variables and confounds–
the quality of AIS care processes, patient characteristics, structural and functional consequences of acute and 
pre-existing brain damage, rehabilitation strategies, resilience factors, and other influences17–21. For example, 
age at stroke22,23 and exercise are correlated with recovery, and factors like age, lesion volume, and residual brain 
health synergistically predict outcome. Large data repositories may capture information on a broad range of 
known and unknown outcome predictors and confounders to promote public health research22,23. Consequently, 
there is growing interest in data sharing consortia for AIS24,25. Such large data sharing collaboratives have been 
valuable adjuncts to understanding many diseases and disorders.

As an example, members of our team have experience applying machine learning to predict stroke sequelae 
and recovery trajectories in chronic and acute stroke. While these approaches have demonstrated potential, their 
effectiveness is often tempered by limitations such as small sample sizes, which can lead to overfitting or under-
fitting depending on the complexity of the algorithm used. Moreover, each algorithm carries inherent strengths 
and weaknesses that must be carefully considered to optimize model performance and ensure generalizability 
across diverse patient populations. The results to date demonstrate AIS outcome classification that is statistically 
significant, but insufficiently rigorous to change the standard of care for individuals.

While the majority of our group’s research has focused on diagnostic aspects of acute and chronic stroke, 
such as the relationship between lesion size, lesion location and chronic impairment, we acknowledge the critical 
importance of prognostic studies in predicting long-term outcomes on the basis of data available in the acute stage. 
Indeed, early prediction of likely recovery trajectories and chronic outcome is of paramount importance to stroke 
survivors, as well as their caregivers, as it can provide both a roadmap for future recovery as well as a set of expecta-
tions/limits in which to frame treatment outcomes. Accurate prediction of long-term outcomes likely requires the 
creation of comprehensive models that considers multiple factors, including lesion size and location and overall 
brain health along with various data such as demographic, medical, health and lifestyle factors. Additionally, it 
may be that the relative prognostic and diagnostic value of each of these factors differs in the acute and chronic 
stages of stroke recovery. Ultimately, gaining a better understanding of these interactions may be informative to 
clinicians and rehabilitation scientists striving to understand and manage stroke across time.Therefore, we com-
bine GWTG quality data, clinical data from the electronic health record, and magnetic resonance imaging (MRI) 
morphometry data to examine a large population of AIS subjects from a large comprehensive stroke center (CSC). 
This paper introduces our efforts to develop a reproducible, sharable AIS CPM. An AIS data sharing consortium 
using these or similar methods could vastly improve outcome predictions in acute stroke26.

The term prognosis implies a type of clinical prediction model (CPM) that clinicians and families value 
immensely. AIS prognosis has both clinical and research significance. Stroke patients and their families are eager 
to know how they will recover, and how likely it is that long-term consequences like vascular dementia may 
develop. Likely, therapy teams rely on prognostic information to tailor their approach, deciding on the intensity 
and type of rehabilitation efforts. These can range from strategies aimed at restoring lost functions (rehabilita-
tion) to those designed to help patients adapt to impairments through alternative techniques (compensatory 
strategies). Both forms are integral parts of the rehabilitation process, and the decision to emphasize one over 
the other, or how to effectively combine them, is heavily informed by an individual’s predicted recovery trajec-
tory. Prognosis guides expectations and suggests the approaches we recommend clinically for every individual 
with AIS. Perfect prognostic information would enable research teams to detect meaningful effects of treatment 
interventions with smaller sample sizes, thus accelerating and economizing clinical trials. We focus in this report 
on our initial efforts to develop a CPM for prediction of stroke impairment using a large AIS population from 
a single CSC.

Publicly sharing clinical data can empower discoveries by scientists who do not have access to medical data. 
Further, datasets can also be aggregated to improve performance and overcome problems with local overfitting. 
Open datasets can also aid in education as well as providing shared benchmarks for validating and comparing 
competing solutions. Our SOOP dataset is similar to two other recent shared datasets. While we emphasize the 
differences, we note the potential for using these large, curated datasets synergistically. The ISLES 2022 dataset 
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includes MR images and lesion maps from 400 stroke survivors. All individuals are from Europe, with conse-
quences on training diversity27. The images are already completely brain extracted, which might limit methods 
that attempt to model image intensity homogeneity biases, as well as developing robust methods that can cope 
with diverse features such as wide diploic spaces and post bregmatic dips. The data also lacks demographic 
details beyond age, which limits the utility to developing automated lesion identification. Liu et al.28 provide 
acute imaging and demographic data from 2888 individuals from the state of Maryland in the USA, capturing 
a more diverse population. This dataset also includes rich demographic and outcome measures. However, a 
limitation of this dataset is that the distribution the dataset is released as a restricted-use collection under a Data 
Use Agreement (DUA) which requires collaboration with a data review board and restrictions on data handling 
(e.g. data must be contained on an external drive where the computer is disconnected from the internet during 
all analyses). These restrictions limit the ability to use this dataset in many educational settings. In contrast 
to these existing works, our Stroke Outcome Optimization Project (SOOP) provides truly open imaging data 
from stroke survivors as well as similar data from individuals where stroke was excluded. Also, we provide both 
demographic measures as well as popular acute measures of stroke impairment and quality metrics.

While BIDS-capable pipelines exist for data from neurologically healthy adults, the presence of stroke can 
disrupt spatial normalization of imaging data29. Beyond providing the normalized acute stroke MRIs and associ-
ated clinical data, we also describe, validate and share a full processing pipeline that imports clinical data stored 
in the emerging BIDS-format for data sharing and generates impairment predictions. Adding data processed 
through this pipeline from additional stroke datasets may expand the range of impairments and outcomes that 
may be predicted.

Methods
ethical statement. This retrospective evaluation of GWTG data, electronic health records extracts, and 
imaging data was approved by the local ethics boards. The dataset is considered exempt based on the retro-
spective nature of the study and the rigorous patient de-identification. Approval for re-contact and prospective 
examination of survivors from this cohort and their care partners has also been obtained. IRB approval for col-
lection of the data contained in this repository was obtained from Prisma Health Committee A, Greenville SC 
(Pro00078716, 10-29-2018).

Cohort. Our study sample included individuals captured within the GWTG database at Prisma Health-Upstate 
from the start of 2019 through the end of 2020, representing all identified acute stroke encounters over the entire 
two-year period. All participants included in this study were exempt from informed consent prior to participa-
tion, in accordance with approval received from the Institutional Review Board. Exclusion criteria were then 
applied. Individuals with subarachnoid, subdural, or intracerebral hemorrhage were excluded. Individuals lacking 
brain MRI were excluded. Individuals with stroke mimics, transient ischemic attacks, or other confounding struc-
tural or functional brain disorders (e.g., brain tumor, refractory epilepsy) were also excluded. The final sample 
included all eligible individuals with AIS, deemed unlikely to have significant major comorbidities to common 
clinical sequelae of stroke that could adversely impact outcome (n = 1415). Out of 1415 total participants, 305 
had large-artery atherosclerosis, 343 had cardioembolism (e.g. atrial fibrillation/flutter, prosthetic heart valve, 
recent mI), 107 had small-vessel disease (e.g. subcortical, brain stem or lacunar infarct < 1.5 cm), 80 had a stroke 
of other determined etiology. In our study, 526 cases were reported as cryptogenic strokes, indicating that despite 
thorough diagnostic evaluations, no definitive cause could be identified. Additionally, 54 participants were clas-
sified as unable to determine (UTD), reflecting instances where insufficient documentation or inconclusive evi-
dence prevented any stroke etiology classification. We also included 254 individuals where stroke was initially 
suspected (requiring the same imaging as for stroke) but later excluded as a probable diagnosis. Behavioral and 
demographic data were available and are provided for 1106 stroke survivors, with details including gender, age, 
race, body mass index, NIH stroke scale, mortal status, and acute Modified Rankin Scale. Speech and language 
pathology findings for the Western Aphasia Battery are provided for each of the subjects for whom this infor-
mation is available. Of these, medical records listed 784 as white, 257 as black or African American, with 538 
women and 568 men, age (after being limited to individuals aged 89 or less due to privacy concerns associated 
with distribution of age data above this value30) ranges from 16 to 89 years with a median of 65, mean of 64.8 
and a standard deviation of 14. NIHSS scores ranged from 0 to 30 with a median of 5 and a mean of 8 (standard 
deviation of 7.90).

Magnetic resonance imaging data. MRI scans for each person were completed within 30 days fol-
lowing their admission to the hospital. Most were obtained within 48 hours days of the acute stroke. For each 
individual we selected the T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery (FLAIR), and dif-
fusion sequence that provided the best brain coverage and signal to noise ratio. The diffusion sequence included 
a TRACE image as well as an image with a contrast similar to an apparent diffusion coefficient (ADC). However, 
scan settings varied greatly between individuals, with sequence details stored in the text-based BIDS-format ‘side-
car’ provided with each Neuroimaging Informatics Technology Initiative (NIFTI) format image. In particular the 
T1w-modality varied tremendously, both in terms of coverage, resolution and contrast. We note that the clinically 
useful Gadolinium-enhanced T1w scans differ considerably from typical unenhanced sequences popular with 
basic science.

MRI images were converted from Digital Imaging and Communications in Medicine (DICOM) format to 
NIfTI format using dcm2niix31. We extended the ‘spm_deface’ script included with the latest version of Statistical 
Parametric Mapping software (SPM12)32 to remove identifiable features from the face and neck. While some 
teams distribute images after complete brain extraction, we intentionally share images that include the scalp. 
Our rationale is that these regions can aid in modeling image inhomogeneity and our diverse dataset can help 
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others develop brain extraction tools trained on a diverse dataset with features such as post-bregmatic depres-
sion and wide diploic spaces.

We also conducted stroke lesion mapping to identify and demarcate the extent of the injury. Specifically, 
three trained neuroscientists (RNN, MG, SW) manually traced lesion boundaries on each axial slice of par-
ticipants’ T2w structural image. The percentage of patients with strokes including specific vascular regions, as 
defined by Faria’s digital arterial territory atlas33, can be found in Fig. 1.

While there is no universally accepted method for demarcation of acute stroke lesions, our process adheres 
to several established guidelines. All raters used MRIcroGL1234 software to manually inspect and trace lesions 
on ADC diffusion weighted images (DWI) in which acute lesions appeared as hypointense. Three raters trained 
in the use of MRIcroGL12 in our lab, and experienced with the process of creating lesion masks performed the 
lesion demarcations (authors RN, MG, and SW). The first step in lesion demarcation was to scroll through the 
entire ADC image and locate area(s) that, with absolute certainty, contained acutely lesioned tissue. From there, 
the trained rater demarcated the region in all spatially adjacent (in the superior inferior direction) slices that 
appeared to contain contiguous lesioned tissue. Lesions data were then exported as binary NIFTI formatted files 
in subject native DWI space. In these files, a value of ‘1’ denotes lesioned voxels and ‘0’ denotes non-lesioned 
voxels. Notably, this newly created NIFTI file was aligned with and had the same dimensions as the DWI image 
on which it was drawn. Lesion masks were produced in native (subject specific) space, and the resulting lesion 
masks were also normalized to standard anatomical (MNI) space and associated neuroanatomical atlases. A 
similar process was used to identify participants that additionally showed evidence of chronic stroke lesions, 
which showed up as hypointense on the same ADC images (acute and chronic stroke lesion files are stored 
separately in the SOOP OpenNeuro database). Video recordings were made of all lesion demarcation, using 
Quicktime’s ‘New Screen Recording’ function, and are available upon reasonable request to the corresponding 
author.

Importantly, recent evidence suggests that not all lesioned tissue exhibits uniform damage characteristics. 
Specifically, work by Krishnamurthy and colleagues demonstrated that T2w/T1w MRI signal ratios can be used 
to identify pericavitational areas with varying degrees of tissue integrity, termed Tissue Integrity Gradation 
via T2w T1w Ratio (TIGR)35. This method reveals a gradient of damage within lesions, rather than a binary 
map like the one generated by our manual lesion demarcation approach, and this may provide for more sensi-
tive lesion-symptom mapping. We acknowledge these developments and propose incorporating such advanced 
methodologies in future protocols to enhance the precision of lesion identification and characterization36.

Data Records
The anonymized images for the Stroke Outcome Optimization Project (SOOP) are available from OpenNeuro 
(https://openneuro.org/datasets/ds004889). The imaging, demographic and behavioral measures are organized 
using the brain imaging data structure (BIDS)35 and shared publicly on the OpenNeuro web site37. This curated 
structure provides human readable filenames with a clear file hierarchy for storing data. A benefit of this system 

Fig. 1 Percentage of patients experiencing damage to 32 distinct vascular territories described by the digital 
arterial territory atlas created by Faria and colleagues33. The largest percentage of patients experienced MCA 
injury, but a significant number also experienced ACA and MLS/LLS injuries. The wide variety of lesion 
location, as well as the bilateral distribution (see Fig. 3) makes SOOP particularly useful to researchers and 
clinicians interested in recovery of functions that are primarily lateralized (i.e. language) or considered bilateral 
(i.e. motor).
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is that it allows automated tools to process and aggregate datasets. Beyond the raw imaging data, the data is pro-
vided in text formats that allow inspection. Specifically, the demographic and impairment measures are stored 
in the tab-separated value text format spreadsheet ‘participants.tsv’, which includes a labeled header row to 
describe the variables, and each subsequent row provides the values for a single participant with the first column 
providing participant identification (e.g. ‘sub-11’). The text file ‘participants.json’ provides in-depth descriptors 
for each of these labels. The defaced imaging data is stored in a separate folder for each individual (e.g. ‘sub-11’). 
Each participant’s folder contains two subfolders: the ‘anat’ folder stores the anatomical scans (here the T1 and 
FLAIR modalities) and the ‘dwi’ folder stores the diffusion data (here the TRACE and ADC images). The MR 
images are stored in NIfTI format, with each including a text-format JSON file that provides sequence details. 
The root directory also contains a folder named ‘derivatives’ which includes the folder ‘lesion_masks’ containing 
one folder (e.g. ‘sub-11’) for each patient where a stroke was observed. These folders provide the lesion maps, 
drawn on the individual’s TRACE image. For individuals who had pre-existing injuries a total of three lesion 
maps are provided (‘-lesionChronic_mask’, ‘-lesionAcute_mask’, ‘-lesion_mask’) while those with only recent 
injury exclusively include the latter two images. The normalized FLAIR images for the SOOP participants are 
available from the Open Science Framework (OSF)38.

technical Validation
Our focus on predicting NIH stroke scale, which is a popular but notably non-comprehensive measure of AIS 
severity10, may facilitate education, data sharing and collaboration. We emphasize that the provided dataset can 
be used by others to improve clinical tools, including automatic lesion mapping, spatial normalization, brain 
integrity measurements, and predicting outcomes. To demonstrate the richness of the data, we have provided 
simple scripts that illustrate current best practices to allow easy replication, education and a basic validation 
benchmark for comparing future tools and methods. Specifically, these scripts use the lesion maps drawn on the 
TRACE image to predict impairment on the NIH stroke scale.

Briefly, the first task is to warp the lesion masks drawn in the native space of each individual’s TRACE 
image to a common template image. Here we leverage the Clinical Toolbox for SPM39 to first coregister the 

Fig. 2 Example data for one individual (participant 342). For each individual we provide a scan with T1-
weighting (A), a T2-weighted fluid-attenuated inversion recovery (FLAIR) (B), as well as two images from an 
echo-planar imaging diffusion sequence. With regards to the diffusion sequences shown, this study chose to 
use very short DWI sequences referred to Apparent Diffusion Coefficient (ADC) (C) and TRACE (D) scans, 
as opposed to longer (10–20 minute) DWI sequences used to calculate tractography. These shorter DWI scans 
allowed for detection of abnormal diffusion using a very short acquisition time, which is apt for clinical settings.
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low-resolution TRACE image to the high resolution FLAIR image (this warps the lesion to FLAIR space) and 
subsequently conducts unified segmentation and normalization40 to warp the individuals FLAIR image to a 
common template (so that the lesion maps from all individuals are in a standard space), as shown in Figs. 2 and 3.  
We then calculate the proportion of injury for each region in a vascular atlas33, resulting in a tab separated value 
where each row provides information from a single subject and each column lists the proportion injury for each 
territory in the atlas. A script removes columns that are damaged in fewer than a specified proportion of the pop-
ulation. We chose 5% of the participants, following conventions to improve statistical power and spatial biases41. 
Therefore, Fig. 3 appears to omit anterior cerebral artery strokes, which occur at a frequency lower than 5%42,43.  
Note that these spreadsheets match the layout of the ‘participants.tsv’, allowing us to concatenate the lesion infor-
mation, demographics and outcome measures for our subsequent analyses.

Finally, we provide a script (deep_learn.py) that computes a simple leave-one-out prediction of the NIH 
stroke scale based on the imaging measures as well as participant age (see Code Availability section). Users 
can simply download the entire SOOP project from our GitHub repository (https://github.com/neurolabusc/
StrokeOutcomeOptimizationProjectDemo) and run the python file, deep_learn.py, to generate the graph in this 
manuscript (more detailed instructions for running deep_learn.py using Python are included on the GitHub 
page for this project). Note that the goal of machine learning is to use features synergistically to provide the best 
prediction. Participant age is known to predict initial stroke score44, though in our sample it does not prove a 
reliable predictor on its own. The analysis utilizes a TensorFlow-based implementation in Python, employing a 
sequential neural network architecture. The model consists of three layers: an initial dense layer with 64 nodes 
and a rectified linear unit (ReLU) activation function, followed by a second dense layer with 32 nodes and ReLU 
activation, and finally, an output layer with a single node. We also provide an identical analysis using support vec-
tor machines, which can sometimes be more robust for relatively small datasets. We wish to emphasize that our 
data is amenable to more sophisticated analyses, but our goal is to provide a simple solution using off-the-shelf 
solutions. Both models significantly predict stroke scale, with the Neural Network correlation r = 0.543, 
p-value < 0.00001, and the SVR r = 0.550, p-value < 0.00001. Results for both models are shown in Fig. 4.

Usage Notes
The Stroke Outcome Optimization Project is publicly shared on OpenNeuro using the community developed 
BIDS structure to enable usage with any BIDS-compatible pipeline. We hope that this will encourage the devel-
opment, validation and education for novel tools that are capable of handling multiple types of data that influ-
ence stroke outcome. The Technical Validation section describes a simple set of analyses using current best 

Fig. 3 Top Panel: Bitmap image generated by our validation scripts for a single participant (#23). This image 
shows axial, sagittal and coronal slices, as well as a rendered image, in standard MNI space. The lesion, located 
in the right caudate nucleus, is depicted in red. White matter hyperintensities (periventricular) are visible on 
the anterior boundary of the left and right ventricles. Users can inspect this bitmap can as part of the quality 
assurance process. In particular, the unified segmentation and normalization method we use develops a virtuous 
cycle between the spatial warping and the tissue segmentation that drives the brain extraction. Therefore, an 
accurate volume rendering (right panel) is consistent with a successful spatial warping to standard space. Middle 
Panel: Despite the variable differences in quality and resolution of each individual FLAIR scan (renderings for 
four representative individuals shown on the left side), all are normalized into a standard space, as seen by the 
rendering of the mean normalized FLAIR scan from all individuals (right side). Bottom Panel: Lesion incidence 
map (N = 1461) for the SOOP dataset. Hotter colors show regions with higher injury incidence.
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practices. The Matlab and Python scripts for reproducing these results are available from GitHub. By design, 
these scripts focus on simplicity for clarity and training. These scripts provide a basic validation benchmark so 
others can evaluate the performance of more sophisticated solutions.

Anonymizing and curating large datasets for public sharing requires substantial investment of resources. Our 
initial release focuses specifically on ischemic stroke. We recognize that our exclusion criteria impact the gener-
alizability of machine learning predictions by omitting structural and clinical comorbidities, and hemorrhagic 
strokes, that are represented in our entire stroke cohort; by omitting infrequent stroke subtypes such as anterior 
cerebral artery strokes and hemorrhages, generalizability to an entire stroke population is limited. However, our 
future goal is to remove exclusion criteria systematically. We provide code and methodology that may be used 
for data collection across comprehensive stroke centers. Larger datasets will be required to model the impact of 
uncommon or rare influences on stroke outcome, and we plan to systematically incorporate such comorbidities 
into our evolving models. Educational and occupational background, race and ethnicity, tobacco, alcohol and 
drug use, treatment timing and success, and many other factors impact long term stroke outcome. The current 
work is our initial effort to develop a CPM for stroke using electronic health records (EHR) and MRI data 
that are routinely acquired during acute ischemic stroke management. We hope to stimulate machine learning 
methods that will enable a comprehensive accounting of many factors that may influence aphasia outcomes 
in particular, and eventually other stroke outcomes. We also plan on releasing additional behavioral data to 
researchers. These additional data will eventually include GWTG data including, comprehensive medical history 
and current medication information, medications, comorbidities, as well as estimated SES (based on zip-code) 

Fig. 4 We created an easy-to-modify script that attempts to predict NIH Stroke Scale (NIHSS) scores based 
on participant age and lesion load to each brain region described in the vascular territory brain atlas created 
by Faria and colleagues33. Our script deep_learn.py, which is contained in our open-source GitHub repository: 
https://github.com/neurolabusc/StrokeOutcomeOptimizationProjectDemo), can be run in a Python 
environment or using Jupyter Notebooks, to predict NIHSS scores using two different algorithms: support 
vector regression (SVR - red) and neural network (NN - green). This GitHub page contains more detailed 
instructions on dependencies and how to run this script. Comparison of the performance of these algorithms 
shows that NN outperforms SVR for this classification task. Other researchers can easily modify this script to 
run it on subsets of our data (e.g. males vs. females, large vs. small lesions determined by a median split, etc) or 
compare the performance of other types of machine learning or AI models. *Each circle represents a unique 
participant. Lesion sizes were converted to z-scores and are represented by the size of each dot. Data points with 
predicted NIHSS Values > = 30 (N = 2) or < = 0 (N = 8) were excluded from the graph for visualization.
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and possibly other MRI-derivatives (such as quantity and location of white matter hyperintensities, perivascular 
space and microbleeds) These details will be generalized to protect identities.

Code availability
We refined dcm2niix for converting the source DICOM MRI scans to BIDS format, with improvements 
incorporated in this open source software (https://github.com/rordenlab/dcm2niix). Our defacing method is 
available from GitHub (https://github.com/neurolabusc/mydeface). We provide minimal Matlab and Python 
scripts to organize, process, and analyze these data using machine learning. These scripts are all stored in a self-
contained archive at GitHub (https://github.com/neurolabusc/StrokeOutcomeOptimizationProjectDemo), 
allowing others to replicate and extend the findings we describe in the Technical Validation section.
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