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Improved high quality sand fly 
assemblies enabled by ultra low 
input long read sequencing
Michelle Huang1, Sarah Kingan2, Douglas Shoue1, Oanh Nguyen3, Lutz Froenicke3, 
Brendan Galvin2, Christine Lambert2, Ruqayya Khan4,5, Chirag Maheshwari4,5, David Weisz4,5, 
Gareth Maslen6, Helen Davison  7, Erez Lieberman aiden4,5,8,9, Jonas Korlach2, 
Olga Dudchenko4,5,8, Mary ann McDowell1,10 ✉ & Stephen Richards  11 ✉

Phlebotomine sand flies are the vectors of leishmaniasis, a neglected tropical disease. High-quality 
reference genomes are an important tool for understanding the biology and eco-evolutionary 
dynamics underpinning disease epidemiology. Previous leishmaniasis vector reference sequences were 
limited by sequencing technologies available at the time and inadequate for high-resolution genomic 
inquiry. Here, we present updated reference assemblies of two sand flies, Phlebotomus papatasi and 
Lutzomyia longipalpis. These chromosome-level assemblies were generated using an ultra-low input 
library protocol, PacBio HiFi long reads, and Hi-C technology. The new P. papatasi reference has a 
final assembly span of 351.6 Mb and contig and scaffold N50s of 926 kb and 111.8 Mb, respectively. 
the new Lu. longipalpis reference has a final assembly span of 147.8 Mb and contig and scaffold N50s 
of 1.09 Mb and 40.6 Mb, respectively. Benchmarking Universal Single-Copy Orthologue (BUSCO) 
assessments indicated 94.5% and 95.6% complete single copy insecta orthologs for P. papatasi and Lu. 
longipalpis. These improved assemblies will serve as an invaluable resource for future genomic work on 
phlebotomine sandflies.

Background & Summary
Phlebotomine sand flies (family Psychodidae, order Diptera) include several genera of hematophagous arthro-
pods that vector important emerging and re-emerging infectious diseases. They transmit bacterial, viral, and, 
most notably, the protozoan pathogen Leishmania, to humans and animals. Leishmaniasis is a group of diseases 
that range in clinical manifestation, from self-healing cutaneous lesions to disfiguring mucocutaneous ulcers 
to fatal visceral disease. Clinical tropisms can be highly dependent on infective species and vectoring sand fly. 
Over 90 species of sand flies found across Latin America, Africa, the eastern Mediterranean, Southeast Asia, 
and Europe have been implicated as vectors for approximately 20 species of Leishmania parasites that cause 
leishmaniasis1,2.

Phlebotomus papatasi vectors Leishmania major, an etiological agent of cutaneous leishmaniasis, across 
North Africa, the Middle East, and the Indian subcontinent3. It is a restrictive vector in that it can only transmit 
a single Leishmania species, Le. major. However, P. papatasi also transmits viral febrile illnesses across its dis-
tribution4,5. Lutzomyia longipalpis is the major vector responsible for transmission of the visceral leishmaniasis 
causing parasite, Leishmania infantum, in the Americas6. Lu. longipalpis is a permissive vector in the laboratory, 
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transmitting several Leishmania species, however in nature it only transmits Le. infantum7. Lu. longipalpis has 
a wide geographic distribution inhabiting a range of diverse ecological habitats and has garnered interest as a 
species complex. Others have observed differences in spot numbers, pheromones, mating songs, and noted 
reproductive isolation between different populations collected throughout Brazil8. Leishmaniasis pathogenesis 
is thought to be dependent on complex host, vector, and parasite interactions and, although the epidemiological 
implications of a Lu. longipalpis species complex remain unclear, understanding the molecular underpinnings 
that that lead to vector competence, reproductive isolation and adaptation is critical from an epidemiological 
and disease control perspective.

In mosquito research, high-quality reference genomes have enabled inquiries into population genetics and 
metagenomics, identification of gene markers of senescence, vector competence, insecticide resistance, and 
experimental gene drive approaches to vector control. These have ultimately improved understanding and man-
agement of the vector in the disease transmission cycle9. Unfortunately, the fragmented nature of current sand 
fly references slowed similar inquiries for Leishmania transmission.

Previous reference genomes for P. papatasi and Lu. longipalpis10 suffered very low contiguity. Using the best 
sequencing technology at the time, read lengths were limited to ~400 bp - too short to span many repeats. More 
damaging to assembly contiguity, previous library protocol DNA input minimums required DNA to be pooled 
from many individuals, inserting many different haplotypes into the assembly algorithm. Genome heterozygo-
sity could not be controlled for by inbreeding in sand flies, and haplotype sequence variation – for example, a 
short insertion polymorphism – caused assembly tools designed for a single haplotype to create sequence gaps in 
areas of uncertainty. Together, these constraints led the genome assemblies for P. papatasi and Lu. longipalpis to 
be the 2nd and 3rd worst available in VectorBase11, with contig N50 lengths at 5,795 bp and 7,481 bp, respectively. 
For reference, across all genomes in VectorBase at the time, the median assembly contig N50 was 51,691 bp. 
Additionally, no Hi-C or chromosome scale data was available, and these fragmented genome assemblies were 
inadequate for many genome analyses.

Here, we update these two important sand fly vector genome references leveraging a decade’s worth of tech-
nological advances. Specifically, very high quality long read sequences of Q20 or even Q30 are available in 
lengths longer than the previous assemblies contigs. Second, Hi-C technologies have become de rigueur and 
have higher chromosomal completion rates when paired with the significantly longer contigs generated by high 
quality long read assembly. Finally, an ultra-low input library protocol developed by Pacific Biosciences12 ena-
bled the sequencing of a single individual sand fly. This greatly simplified assembly of sequence information 
from only 2 haplotypes derived from a single individual rather than many haplotypes from a pool of individuals. 
A small compromise, as only 30 ng of genomic DNA can be isolated from a single sand fly male, is the use of 
whole genome amplification. Together these three techniques have generated the greatly improved reference 
assemblies we describe here.

Genome Sequence Report
The genomes of P. papatasi and Lu. Longipalpis were each sequenced from a single male from colonies main-
tained at the University of Notre Dame. The P. papatasi colony was established in the 1970s from the Israeli 
strain and the Lu. Longipalpis colony was established in 1988 from the Jacobina strain caught from Bahia State, 
Brazil. P. papatasi sequencing generated 102x coverage and Lu. longipalpis sequencing generated 53x coverage 
of PacBio HiFi long reads. Additional material from other individuals from the same colonies was used for Hi-C 
library preparation.

The final P. papatasi assembly has a span of 351.6 Mb, 646 scaffolds, and a scaffold N50 of 111.8 Mb. The final 
Lu. Longipalpis assembly has a span of 147.8 Mb, 4 scaffolds, and a scaffold N50 of 40.6 Mb (Table 1, Figs. 1 & 2). 
The updated assemblies improved upon several deficiencies from the previous assemblies (Table 2). Compared 
to the previous assemblies, contiguity has improved over 100-fold and these larger contigs are placed in a chro-
mosomal context.

Two genome annotations are available for each species. The first is a new NCBI RefSeq13 annotation based 
on not just this assembly but also new long read transcript data generated to support new annotation. Gene 
numbers derived from this annotation are shown in Table 2 and BUSCO analysis in Table 3. The number of com-
plete single copy insecta single copy orthologs increased by ~10%. That is, an additional 10% of genes that were 
previously incomplete or missing are now easily accessible in the improved assembly. In addition to this updated 
annotation resource, we wished to preserve previous annotations, especially user contributed curated annota-
tions, which connect the genome to previously published analyses. To preserve previous annotation informa-
tion, we utilized the new open-source pipeline Transfer-annotations14 developed by VectorBase engineers to 
iteratively run Liftoff15 to accurately transfer previous annotations to new VectorBase Apollo browser tracks and 
generate a downloadable GFF3 annotation file for each species.

Methods
Sample acquisition and nucleic acid extraction. Single males were chosen for sequencing to capture 
the heterogametic sex chromosomes, and to ensure only high quality long read sequence data from a single dip-
loid genome was presented to the assembly software for facile assembly. A single male adult sand fly was aspirated 
from each of our P. papatasi and Lu. Longipalpis colonies and frozen at −80 °C. Each specimen was chilled in liq-
uid nitrogen and ground into a fine powder preceding DNA extraction using a modified Puregene® kit extraction 
protocol (Qiagen, Hilden, Germany). DNA was eluted in 30 μl of TE buffer and concentration was assessed using 
a Nanodrop Spectrophotometer.

Long read library construction and sequencing. Pacific Biosciences HiFi Libraries were constructed 
using an ultra-low input library protocol12. The P. papatasi library was prepared at Pacific Biosciences using a 
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pre-production version of the library kit. The Lu. Longipalpis library was prepared at the UC Davis DNA tech-
nologies core using the commercially available SMRTbell gDNA Sample Amplification Kit (Pacific Biosciences, 
Menlo Park, CA; Cat. #101-980-000) and the SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences; Cat. 
#100-938-900) according to the manufacturer’s instructions. Briefly, approximately 10 kb sheared DNA by the 
Megaruptor 3 system (Diagenode, Belgium; Cat. #B06010003) was used for removal of single-strand overhangs at 
37 °C for 15 minutes, DNA damage repair at 37 °C for 30 minutes, end repair and A-tailing at 20 °C for 30 minutes 
and 65 °C for 30 minutes, and ligation of overhang adapters at 20 °C for 60 minutes. To prepare for library ampli-
fication by PCR, the library was purified with ProNex beads (Promega, Madison, WI; Cat. # NG2002) for two 
PCR amplification conditions at 15 cycles each then another ProNex beads purification. Purified amplified DNA 
from both reactions were pooled in equal mass quantities for another round of enzymatic steps that included 
DNA repair, end repair/A-tailing, overhang adapter ligation, and purification with ProNex Beads. The PippinHT 
system (Sage Science, Beverly, MA; Cat # HPE7510) was used for SMRTbell library size selection to remove frag-
ments <6–10 kb. The 10-11 kb average HiFi SMRTbell library was sequenced using one 8 M SMRT cell, Sequel IIe 
sequencing chemistry 2.0, and 30-hour movies each on a PacBio Sequel II sequencer.

Phlebotomus papatasi Lutzomyia longipalpis

Project accession data

Assembly identifier Ppap_2.1 ASM2433408v1

Specimen Single male, Notre Dame Colony, Israeli Strain Single male, Notre Dame Colony, Jacobina Strain

NCBI taxonomy ID 29031 7200

BioProject PRJNA85845236 PRJNA84927430

BioSample ID SAMN15793614 SAMN29048364

Isolate information M1 SR_M1_2022

SRA long reads SRX894893433 SRX1615013528

SRA Hi-C reads SRX1844049137 SRX1844049031

Genome assembly

GenBank accession GCA_024763615.234 GCA_024334085.129

RefSeq accession GCF_024763615.1 GCF_024334085.1

Sequence length 351,623,088 147,838,017

Number of contigs 1,350 255

Contig N50 length 926,603 1,092,454

Number of scaffolds 646 4

Scaffold N50 length 111,783,093 40,620,313

# chromosomes 6 4

Table 1. Genome data and global statistics.

Fig. 1 Snail plot summaries of assembly statistics. (a) Lutzomyia longipalpis assembly ASM2433408v1.  
(b) Phlebotomus papatasi assembly JANPWV01. Both plots were generated using blobtoolkit43.
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Long read assembly. The draft Lu. longipalpis genome assembly was assembled using hifiasm16 from HiFi 
data generated from a single male individual at the UC Davis Genome Core using the ultra-low input protocol. 
Filtering input reads to have an average quality >Q30 was found to give a more contiguous final assembly for this 
dataset than Q20 filtered reads and was used for the final assembly. The draft genome assembly for P. papatasi was 
generated at Pacific Biosciences based on HiFi reads generated at Pacific Biosciences with a library made from 

Fig. 2 Blobplots of base coverage against GC proportion. (a) Lutzomyia longipalpis assembly ASM2433408v1. 
(b) Phlebotomus papatasi assembly JANPWV01 with no-hits filtered out. Both plots were generated using 
blobtoolkit43.

P. papatasi Lu. longipalpis

Old New Old New

Genome Size 363,767,908 bp 351,623,088 bp 154,229,266 bp 147,838,017 bp

Coverage 15.1x 113.5x 38.9x 53x

Contig N50 5.8 kb 926.6 kb 7.5 kb 1,092.5 kb

Contig Count 139,199 1,349 35,969 255

Scaffold N50 27,956 bp 111.8 Mbp 85,093 bp 40.6 Mbp

Scaffold Count 106,826 645 11, 532 4

Coding Genes 11,377 11,610 10,422 11,236

Noncoding Genes 444 995 338 778

BUSCO 86.5% 95.2% 86.1% 96.6%

NCBI Accession # GCA_000262795.1 GCF_024763615.1 GCA_000265325.1 GCF_024334085.1

VectorBase Past Current Reference Past Current Reference

Table 2. Comparison of old and new assembly statistics.

Reference Dataset Buscos Complete Duplicated Fragmented Missing

P. papatasi

diptera_odb10 3,285 2,910 (88.6%) 32 (1.0%) 150 (4.6%) 225 (6.8%)

endopterygota_odb10 2,124 1,968 (92.7%) 26 (1.2%) 63 (3.0%) 93 (4.4%)

insecta_odb10 1,367 1,301 (95.2%) 20 (1.5%) 24 (1.8%) 42 (3.1%)

Lu. longipalpis

diptera_odb10 3,285 2,943 (89.6%) 22 (0.7%) 117 (3.6%) 225 (6.8%)

endopterygota_odb10 2,124 2,006 (94.4%) 11 (0.5%) 45 (2.1%) 73 (3.4%)

insecta_odb10 1,367 1,320 (96.6%) 6 (0.4%) 18 (1.3%) 29 (2.9%)

Table 3. BUSCO results for two new sandfly references.
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a single adult male individual using an ultra-low input library kit. The long-read assembly was performed using 
HGAP and Falcon17.

3D sequencing and assembly. The high-quality drafts were upgraded to chromosome-length using Hi-C 
data derived from different male individuals from the same respective colonies at the University of Notre Dame. 
The in situ Hi-C libraries were generated as described in Rao, Huntley et al.18. Briefly, whole insect bodies were 
crosslinked with 1% formaldehyde for 10 minutes at room temperature. Nuclei were extracted via grinding and 
permeabilized using SDS. DNA was digested with a cocktail of Csp6I and MseI, and the ends of restriction frag-
ments were labeled using biotinylated nucleotides then ligated. After reversal of crosslinks, ligated DNA was 
purified and sheared to a length of ~400 bp, at which point ligation junctions were pulled down with streptavidin 
beads and prepped for Illumina sequencing. The resulting libraries were sequenced using Illumina NovaSeq 6000 
instruments. Hi-C data were aligned to the draft references using Juicer19, and 3D assembly for both species was 
performed using 3D-DNA pipeline20. In view of the large number of alternative haplotypes incorporated in the 
draft assembly as separate sequences21, 3D-DNA pipeline was run with the “merge” step option for Lu. longipalpis 
(see Matthews et al.22) to remove alt haplotypes from the anchored portion of the assembly. The resulting assem-
blies were reviewed and curated using Juicebox Assembly Tools23. The resulting contact maps (Fig. 3) can be 
explored interactively at multiple resolutions via Juicebox.js24 at the DNA Zoo website pages25,26.

Removal of non-chromosomal sequences from Lu. longipalpis. During BUSCO analysis the Lu. 
longipalpis draft assembly contained high numbers of duplicate BUSCO genes. This was due to the presence of 
alternative haplotype sequences in the unanchored portion of the assemblies. As expected, removing unanchored 
sequences during annotation greatly reduced the duplicates.

Gene annotation lift-over. We used the pipeline Transfer-Annotations14 and the program Liftoff15 to move 
previous gene annotations and manual curations to the new reference assembly. Liftoff distance and flank param-
eters were determined by incrementally changing them to find the combination with the lowest flank number 
and the fewest missing features. We used agat_sp_fix_cds_phases27 to calculate phase information and identify 
any transferred gene models that are incomplete or altered. AGAT’s agat_sp_extract_sequences27 was used to 
extract CDS protein sequences for the transferred genes on the new genome. The Transfer-annotations pipeline 
then identifies missing CDS regions, and it produces a corrected GFF3 with metadata regarding model validity 
in the GFF3 attributes column. This process includes if a protein sequence contains stop codons, if it matches the 
original sequence, or if it has any missing CDS regions. Transfers were considered invalid if the coding sequence 
had a missing CDS region or internal stop codon, or ncRNA sequences did not match between the source and 
transfer sequences. Coding sequences with mismatched protein sequences were not considered invalid and are 
flagged for future examination.

A final GFF3 of the transferred annotation is available at VectorBase as an Apollo genome browser track 
color coded by estimated transfer quality. A majority of genes transferred from each original source genome to 
its replacement assembly (Table 4). However, 30.3% and 22.0% were invalidated by missing CDS regions and 
internal stop codons, and 73.2% and 62.8% of CDS had mismatched protein sequences. That not all annotations 
could be transferred is likely unavoidable due to the differences in genome quality.

Fig. 3 Hi-C contact maps. (a) Lutzomyia longipalpis (b) Phlebotomus papatasi. Chromosome-length Hi-C 
contact maps visualized in Juicebox44.
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Data Records
Lutzomyia longipalpis PacBio HiFi28 long reads and final assembly29 are available at the NCBI with BioProject 
accession number PRJNA84927430. Lutzomyia longipalpis HiC short reads are available at the NCBI SRA31 with 
BioProject accession number PRJNA51290732. Phlebotomus papatasi PacBio HiFi long reads33 and final assem-
bly34 are available at the NCBI with BioProject accession numbers PRJNA65724535 and PRJNA85845236 respec-
tively. Phlebotomus papatasi HiC short reads are available at the NCBI SRA37 with BioProject accession number 
PRJNA51290732. Additional sub-accessions are shown in Table 1.

technical Validation
One of our aims was for these new genome references to meet the Earth BioGenome Project standards38 despite 
the small amounts of input materials. Specifically, we aimed to have >1 Mb contig N50, and achieved full chro-
mosome lengths using Hi-C data.

We assessed reference gene model completeness using BUSCO39 (V3.0.2). For both sandfly references the 
diptera_odb10 set of 2,910 single copy orthologs are missing 225 (6.8%) of the genes (Table 3). This number 
decreases when the analysis is performed on larger taxonomic groups with smaller BUSCO gene sets. For exam-
ple, only ~3% of genes (P. papatasi (42) and Lu. longipalpis (29)) are missing from the 1,367 insecta_odb10 
BUSCO gene set. Whilst this is a vast improvement on the previous assemblies, future work is required to deter-
mine which missing genes are due to assembly problems such as gaps between 1 Mb N50 contigs or genuine gene 
loss during >150 million years of divergence time between these species and others in the orthoDB database at 
the current time40,41.

While assessing base coverage and GC content for P. papatasi, we noticed a blob that stood out from the 
rest of the Arthropoda hits, with several-fold less base coverage (accession #: CM045756.1). Hits for this “blob” 
included families Culicidae, Curculionidae, formicidae, Kalotermitidae, Noctuidae, and Drosophilidae. To 
assess for contamination, we blasted these regions against the NCBI nucleotide database. The top hits returned 
P. papatasi. To investigate the possibility of a sex chromosome, we blasted Y chromosome-linked scaffolds in 
Lu. longipalpis identified by Vigoder et al. against the NCBI nucleotide database42. While there were several P. 
papatasi hits, none were localized to this blob. Interestingly, other hits included the X chromosome for several 
different species of flies, three of which have an XY sex chromosome system. Finally, we blasted our blob of inter-
est against the Drosophila Y chromosome (NC_024512.1). There was no significant similarity found.

Code availability
No custom code was used to generate these assemblies. Long read assembly was performed hifiasm16, HGAP and 
Falcon17. Hi-C chromosomal scale assembly was performed using the Juicer/3D-DNA/Juicebox Assembly Tools 
pipeline19,20,23. For gene content analysis we used BUSCO version 339. “Transfer-Annotations”, the code used to lift 
over previous curations to the new assembly is available on github14. This pipeline makes use of the tool Liftoff15.
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