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Climate data for building 
simulations with urban heat island 
effects and nature-based solutions
Henry Lu    ✉, Abhishek Gaur & Michael Lacasse   

As cities face a changing climate, buildings will be subjected to increasing energy demand, heat stress, 
thermal comfort issues, and decreased service life. Therefore, evaluating building performance under 
climate change is essential for maintaining sustainable and resilient communities. To better prepare 
building simulation climate data with urban effects, a computationally efficient approach is used to 
generate “urbanized” data, where the city’s unique signature is obtained through the dynamic Weather 
Research and Forecasting model for the Ottawa, Canada region. We demonstrate this process using 
existing climate data and extend it to prepare projections for scenarios where nature-based solutions, 
such as increased greenery and albedo, were implemented. The data consists of several 31-year time 
series of climate variables such as temperature, humidity, wind speed and direction, pressure, cloud 
cover, and precipitation over different global warming thresholds. Such a dataset allows building 
practitioners to evaluate building performance under both historical and future climate conditions,  
as well as to evaluate the impacts of nature-based solutions to mitigate future climate change risks.

Background & Summary
Cities are at the forefront of climate change impacts, being home to the majority of the global population and 
built assets, and at the same time, facing challenges such as rising temperatures, increased frequency of extreme 
weather events, and altered precipitation patterns. The changes in the frequency, magnitude, and duration of 
the natural hazards as a consequence of a changing climate, can have profound implications for buildings, such 
as, increased energy demand of buildings, heat stress and thermal comfort issues for building occupants, and 
decreased service life of building components from exposure to extreme weather events1,2. In this context, the 
evaluation of the performance of buildings under systematically changing climate conditions during their design 
lives is important for maintaining existing and developing new, sustainable, and resilient communities across 
the globe.

The evaluation of building performance is commonly conducted by undertaking building simulations, which 
require climate data files as inputs. The files contain information on a number of climate parameters to which 
buildings are exposed, such as temperature, humidity, solar radiation, wind speed, and precipitation. The data 
needs to be provided in high temporal and spatial resolutions to accurately reflect the response of the building 
to the exterior climate. Typically, climate files reflecting historical patterns are prepared using data recorded 
at climate gauging stations around the globe. On the other hand, to account for the effects of cliamte change, 
long-term projected climate data is derived from global climate models (GCMs) which simulate the response of 
the global climate system under plausible future green house gas pathways3–5. Whereas GCMs provide valuable 
insights into future climate trends6,7, their coarse spatial resolution, often ranging in the hundreds of kilometers, 
limits their utility towards simulating data appropriate for building level impact assessments8–10.

Cities have unique climate characteristics because of their complex configurations, especially compared to 
the rural areas around them11,12. For example, the phenomenon of the urban heat island effect (UHI) is well 
established and understood13. It describes the process where urban areas experience elevated temperatures 
due to human activities and the built environment. Additionally, the aerodynamic roughness of urban surfaces 
reduces the wind speed through a city, and can alter its prevailing direction14,15. While the effects of urbanization 
on precipitation are still not entirely understood, several factors that affect the precipitation as a result of the 
built environment have been identified. For example, the building landscape and aerosols from human activi-
ties have been shown to alter the precipitation in a city16,17. Therefore, when evaluating a building’s response to 
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atmospheric conditions, it is critical to account for these alterations to the local weather pattern. However, these 
characteristics of urban climate are not well simulated by GCMs or even by regional climate models (RCMs), 
because the configuration of cities and their morphology, are not well represented. Therefore, to effectively sim-
ulate the urban environment, climate simulations are often conducted at convection permitting scales (≤4 km) 
to achieve the most accurate results12,18,19; since they do not rely on convective parameterization schemes and 
can greatly improve the representation of surface and orographic fields.

To generate GCM projections that are useful for local level impact assessments, it requires that they be spatially 
downscaled using either statistical and/or dynamical methods8,20,21. Statistical downscaling involves developing 
statistical relationships between large-scale climate variables from GCMs and local-scale variables observed at 
weather stations. Alternatively, dynamical downscaling, involves using physics-based models to simulate the cli-
mate at finer resolutions than traditional GCMs or RCMs. In the past, a large majority of projected climate data 
intended for use in building simulations have been prepared using statistical downscaling methods22–24, where 
the morphing method is most often used25. The morphing method combines historical measured weather data 
with a climate change signal derived from GCMs to generate future projections for a particular location26–28. This 
method is computationally inexpensive and allows for the quantification of uncertainty in future climate projec-
tions, however, statistical methods such as this are prone to deliver unrealistic and physically inconsistent data29,30. 
Gaur and Lacasse (2022) introduced an alternative approach and used long-term climate projections directly 
simulated by the Canadian Regional Climate Model 4 (CanRCM4) and bias-corrected them using a multivariate 
quantile delta mapping procedure to prepare building simulation climate data across Canada. This approach 
allowed them to preserve the inherent variability in the climate system as modelled by CanRCM4, and at the same 
time correct for biases associated with the simulated variables. However, statistical downscaling methods are not 
well suited to incorporate complex urban phenomenon, such as UHI effects, in downscaled GCM projections. 
Ideally, a detailed physics-based model should be used to dynamically downscale the GCM projections.

Consequently, the dynamical downscaling of climate simulations has become a useful tool in understanding 
the urban climate. For instance, a review of the use of dynamical models to study urban climates found that most 
studies examined the UHI, followed by local air circulation, surface energy balance, urban planning, air quality, 
precipitation, thermal comfort, and building energy consumption31. One prominently used model is the Weather 
Research and Forecasting (WRF) model32, which is a widely employed numerical convection-permitting mesos-
cale model often used for short-term weather forecasting and studying UHI33,34. To assess the effects of climate 
change, simulations need to be performed over 30 years to minimize the effects of natural variability of the 
climate in the analysis. However, this length of simulations with urban effects are rarely performed in experi-
ments due to the high computational costs associated with dynamically downscaling GCMs to kilometer-scale 
resolutions. While several experiments have performed decadal scale downscaling of GCMs at the continental to 
city scale35–37, the large costs required to perform such simulations makes it difficult to quantify the uncertainty 
in these results because only a limited number of experiments can be performed. To accurately assess the effects 
of climate change, one needs to take into consideration multiple climate models, downscaling methods, and ini-
tial/boundary conditions into the analysis. As a result, assessing uncertainty in downscaled climate projections, 
particularly in the building modelling context, remains challenging.

To address this gap, a few novel statistical-dynamical downscaling methods have emerged, leveraging the 
strengths of both approaches to generate long-term climate projections to explicitly incorporate urban effects. 
For example, Hoffman et al.38 studied the evolution of the UHI through a weather pattern classification system. 
The UHI is obtained by dynamically downscaling to 1-km for representative years, and the average UHI for a 
particular climate period is statistically reconstructed by comparing the distribution of the weather patterns. 
Duchêne et al.39 and Le Roy et al.40 incorporated the distinct urban signature of a city into long-term RCM data 
by performing two concurrent dynamic downscaling simulations of the local climate; one considering the urban 
environment and the other substituting the city scape with natural covers. The urban signature, representing the 
climate effects of the city, were determined as the difference between these simulations and superimposed on 
projected RCM data. While these methods demonstrate their capability to capture urban effects, it’s important 
to note that the data generated from them may not be directly applicable for building simulations; because they 
are not bias corrected, which is a crucial step for ensuring accuracy in local-scale impact assessments.

Furthermore, in the face of rapidly warming cities due to the combined effects of global warming and urban 
heat island, some Nature-Based Solutions (NBS) such as increasing greenery and albedo of urban areas, have 
presented themselves as promising strategies to alleviate the risks of exposure to extreme heat41–43. For instance, 
by increasing the albedo of the surfaces in the urban areas such as the roads, roofs, and walls of buildings, signif-
icant cooling benefits can be found42,44 and comparable benefits can come from increasing the fraction of urban 
greenery45. Li and Bou-Zeid used the WRF model to downscale re-analysis data to characterize the UHI and 
subsequently used the results to evaluate the value of NBS such as cool and green roofs46. Similarly, Lu et al.47 
analyzed the cooling effectiveness of increasing albedo and vegetation in several Canadian cities. Their findings 
suggest that the temperature can vary significantly across the same city, and the effectiveness of NBS is highly 
dependent on the landscape. Therefore, studying the effects of NBS in cities over the long term can provide 
valuable information for communities to understand the potential benefits different adaptation measures may 
have on building performance.

In this work, we demonstrate how global climate model data can be modified to prepare building simulation 
files while incorporating urban effects. The process is used to generate building simulation climate files for the 
city hall located in Ottawa. Furthermore, the process is extended to prepare projections for cases where two 
widely used NBS solutions: increased greenery and albedo in urban areas, are implemented in the city. These cli-
mate files will allow building practitioners to evaluate the performance of buildings near the city hall of Ottawa 
under potential future changes in climate taking into account atmospheric interactions with urban morphology 
and implementation of nature-based solutions.
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Methods
The process to generate long-term urban climate data for the city hall located in Ottawa involves obtaining 
bias-corrected building simulation climate files for the Ottawa International Airport location as provided by 
Gaur et al. (2022). These are used as a reference dataset devoid of urban or NBS effects, and on which these 
effects are added by implementing the steps outlined in Fig. 1 and summarised below.

A WRF model at 1 km spatial resolution is configured over regions surrounding the city of Ottawa. The 
model is used to conduct several experiments with and without urban parameterization and the implementation 
of nature-based solutions. From an analysis of the differences in these simulations, the urban and NBS effects are 
isolated, following Duchene et al.39, and to obtain long-term climate projections, those effects are subsequently 
acquired at the city hall location and are integrated onto the reference datasets from Gaur et al. (2022).

Study area.  The city of Ottawa is the capital city of Canada with a population of just over 1million people. 
As shown in Fig. 2, the Ottawa river passes through the northern part of the city, with the city of Gatineau 
located north of the river and Ottawa to the south. The areas surrounding Ottawa consists mostly of farmland 
or are otherwise covered by natural vegetation. On the other hand, the developed areas largely consist of open 
low-rise buildings spread over a large area, and a small dense urban core which is relatively close to city hall. The 
climate in Ottawa is typically warm and humid in the summer. The city receives nearly 40% of its precipitation 
during the summer months (May-Aug) at 347.5 mm, and has an average summer temperature of 18.3 °C between 
1981–2010. The highest temperature recorded over this period for May, June, July, and August, is 35.0 °C, 36.7 °C, 
37.8 °C, and 37.8 °C, respectively.

Modelling urban and nature-based effects.  The WRF model was used to simulate the climate over the 
Ottawa region taking into consideration the urban and NBS effects. The North American Regional Re-analysis 
(NARR)48 data was chosen as the initial and boundary condition for the simulations. The urban and NBS effects 
were modelled for diverse summertime (May-August) climates experienced by this region to prepare a compre-
hensive database of urban and NBS effects, which were later mapped onto the long-term climate projections. 
To identify a diverse range of months, all summer months between 1979–2021 were ranked according to their 
average temperature and total precipitation in the domain. The individual months were given a score based on 
their rank from highest to lowest temperature, where a small rank indicates warmer temperatures while a large 
rank represents colder. Additionally, that was added to their rank with respect to the total monthly precipitation, 

Fig. 1  Overview of study design and methodology.

Fig. 2  Location of the Ottawa airport weather station (OTAP) and city hall (HALL).

https://doi.org/10.1038/s41597-024-03532-5


4Scientific Data |          (2024) 11:731  | https://doi.org/10.1038/s41597-024-03532-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

which is calculated in a similar manner. The procedure was performed to find the coldest extreme months as well. 
In total, four reference summer months were selected for their extreme characteristics, including: the coldest and 
wettest month (May 1984), the warmest and driest (July 2002), the coldest and driest (May 2005), and the warm-
est and wettest (July 2008) as illustrated in Fig. 3. Subsequently, WRF simulations of urban and NBS effects were 
performed over these climatologically diverse months.

To precisely model the urban effects, it was coupled to the multi-layer urban canopy model, Building Effect 
Parameterization (BEP) and Building Energy Model (BEM)49, which simulates the three-dimensional transfer 
of heat, moisture, and momentum, and allows the urban canopy to directly interact with the planetary boundary 
layer. While some studies found that multi-layer urban canopy models can lead to poorer model performance 
due to the difficulty in configuring them50,51, it has been shown that this particular model setup, utilizing BEP 
and BEM, yield the best result for this study area11,12,52. The study area illustrated in Fig. 4 consisted of three 
two-way nested domains with 276 × 296, 250 × 283, and 391 × 364 grid points at a resolution of 9 km, 3 km, 
and 1 km, respectively. For the purposes of this study, only the 1 km resolution data was analyzed. To select the 
best physics parameterizations for our study region, several tests were conducted using different combinations 
of physics options, and it was found that this combination resulted in the best overall accuracy and is well sup-
ported by previous experiments53–55. This particular WRF model setup, as listed in Table 1, has been extensively 
validated in previous studies for this specific region over Ottawa, Canada11,52, and therefore was not repeated in 
this study. Overall, a total of 20 different variations of the reference summer months were simulated with WRF.

The following scenarios were examined for the baseline reference and NBS effects; these were implemented 
in WRF by simulating different increasing albedo (ALBD) and greenery (GRN) conditions:

•	 Baseline Urban (UP): The baseline urban scenario was performed as the control experiment where the model 
was intended to represent real conditions. To that end, the most appropriate inputs were used, such as a 100 m 
local climate zone map56,57 to represent detailed land use and cover in the city. In addition to an active urban 
canopy model, the most realistic urban parameters were used.

•	 Non-Urban (noUP): The urban canopy model was deactivated and represented a scenario in which the city 
was replaced with natural vegetation. From these differences in the baseline urban and non-urban scenarios, 
the urban signature was derived.

•	 Scenario 1 (ALBD): In this scenario, the albedo of roofs was increased to 0.80, whereas the roads and walls 
of buildings were increased to 0.40. A choice was made to keep the albedo of roads and walls at a lower level 
(0.4) as compared to roofs in all scenarios due to the potential adverse effects that highly reflective materials 
could have on pedestrians and drivers when implemented on the ground and wall surfaces58.

•	 Scenario 2 (GRN): In this scenario, the urban vegetation fraction was increased to cover 80% of the existing 
urban areas. This is modelled by replacing the existing built surfaces with vegetation.

•	 Scenario 3 (COMB): In this scenario, a combination of the previous two scenarios was used, i.e., both albedo 
and greenery were modified simultaneously as discussed above.

Fig. 3  Summer reference months selected (circled) by ranking their monthly average temperature and total 
precipitation.
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Additionally, we have simulated less extreme variations of these NBS scenarios, where the values were set to 
0.40 or 40% for albedo and greenery, respectively; as well as a combined case. Although these results were not 
discussed in the following sections, the data is made available as referenced in the data records.

Isolating signatures.  The simulations with and without urban and NBS effects were used to calculate the 
urban signature or nature-based signature as defined in Eq. (1), for variable i, at location r and s, and time t. For 
each day in the database (i.e. 4 reference months), a signature was acquired by calculating the difference between 
the baseline urban scenario (UP), denoted XUP (d), and one of the modified scenarios (i.e. noUP, ALBD, GRN, 
or COMB), X(d). We define the urban signature as the difference between the UP and noUP cases, while the 
nature-based signature is the difference between the UP and ALBD, GRN, or COMB scenarios. The signatures 
were acquired for each climate variable, including: global horizontal irradiance, rainfall, relative humidity, wind 
speed, wind direction, total cloud cover, temperature, atmospheric pressure.

Signature d X d X d( ) ( ) ( ) (1)i r t i r t
UP

i s t, , , , , ,= −

Fig. 4  WRF model domains for simulating the city of Ottawa.

Parameterization Option

Microphysics WRF Single–Moment 3

Long Wave Radiation RRTM

Short Wave Radiation Dudhia

Surface Layer Eta Similarity

Land Surface Model Unified Noah

Planetary Boundary Layer BouLac

Cumulus Kain–Fritsch (outer domain only)

Urban BEP+BEM

Table 1.  WRF physics options used for simulations in Ottawa.
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Integrating signatures onto climate projections.  The integration of urban and NBS effects onto the 
RCM data was conducted by finding an analogous day between the RCM and noUP dataset. The analogous day 
was calculated by first standardizing each variable for each day. Then the analogous day (dmin) was found by min-
imizing the cost function described in Eq. (2), where X  represents the standardized data, for each climate variable 
i, at all spatial points r, and all times of day t. In this case, the spatial points considered were those within the 
boundaries of the inner-most domain of the WRF model. Lastly, the RCM data was calibrated by adding the sig-
nature acquired in Eq. (1), following Eq. (3), where Xr

RCM is the regional climate model projection bias corrected 
with respect to a climate gauging station at r (commonly available at airports), and Signatures is the signature 
dervied at an arbitrary location s in the city (in this case, Ottawa city hall). Therefore, the resultant data is an 
urbanized version of bias-corrected climate projections, originally situated for the airport, which can now be used 
as inputs to building simulations near Ottawa city hall (Fig. 5).

∑∑∑= −C d X d X d( ) ( ( ) ( ))
(2)i r t

i r t
RCM

RCM i r t
noUP

noUP, , , ,
2

Y X d Signature d( ) ( ) (3)i r t i r t
RCM

RCM i s t mi, , , , , , in= +

Regional climate model data.  The RCM data that was used in this step comes from the Canadian 
Regional Climate Model 4 (CanRCM4) Large Ensemble data59, which consists of 15 realizations with slightly per-
turbed initial conditions, and was run continuously from 1950–2100 under RCP8.5 with an hourly time step. The 
CanRCM4 ensemble was divided into several 31-year ranges which correspond to different levels of global warm-
ing thresholds compared to the historical period60, as listed in Table 2. Furthermore, the data was bias-corrected 
with reference to a local climate gauging station located at the Ottawa International Airport (OTAP). The mul-
tivariate bias correction with N-dimensional probability density function transform (MBCn) was chosen as it is 
able to correct the marginal distribution of variables and the dependence structure between them61. Studies have 
shown the importance of considering the internal variability of climate when bias-correcting an ensemble of 
climate model data62,63. Therefore, data was generated following the proposed methodology for all 15 runs of the 
bias corrected RCM to allow users to take into account the uncertainty of climate change. However, the following 
results are discussed as an average of the whole ensemble, unless otherwise specified.

Fig. 5  Process to integrate urban and nature-based effects onto long-term climate projections.

Global Warming Scenario Time Period

Historical 1991–2021

Global Warming 0.5 °C 2003–2033

Global Warming 1.0 °C 2014–2044

Global Warming 1.5 °C 2024–2054

Global Warming 2.0 °C 2034–2064

Global Warming 2.5 °C 2042–2072

Global Warming 3.0 °C 2051–2081

Global Warming 3.5 °C 2064–2094

Table 2.  Historical and future global warming thresholds and their corresponding time periods.

https://doi.org/10.1038/s41597-024-03532-5


7Scientific Data |          (2024) 11:731  | https://doi.org/10.1038/s41597-024-03532-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

Data Records
The full dataset is publicly available at: https://zenodo.org/records/1124399864. This includes all the time peri-
ods listed in Table 2 and hourly variables from Table 3, as well as several other NBS scenarios which were not 
discussed. The data are stored in large CSV files, where the rows consists of all 15 realizations of the CanRCM4 
ensemble and the variables make up the columns. For example, each 31-year period is repeated 15 times, once 
for each of the RCM realizations. Therefore, there are 4,073,400 (15 × 31 × 8760) rows in each file. The column 
names and detailed description of what each represents is shown in Table 4.

Technical Validation
Assessing climate data with urban effects.  To evaluate the suitability of the methodology, a split-sample 
approach was used. WRF simulations with and without urban and NBS effects were conducted over the four diverse 
reference months selected for this region. In the split-sample approach, the entire sample of WRF simulations of 
the four selected months is randomly divided into two equal halves: a training dataset and a validation dataset. The 
training dataset is used to isolate the urban and nature-based solution effects from the WRF experiments. These 
effects are then integrated into the non-urban WRF results to predict a new dataset that emulates WRF simulations 
with urban and NBS effects. This predicted dataset is compared to results directly obtained from WRF simulations 
with urban and NBS effects over the validation time-period to evaluate the performance of the new data.

The diurnal variations of the three climate variables obtained for the validation period from noUP-WRF, 
UP-WRF, and UP-Predicted cases are shown in Fig. 6. We find that the UP-Predicted data is better aligned 
with UP-WRF than the noUP-WRF profile. For example, the temperature is significantly improved during the 
morning hours, where the difference between noUP-WRF and UP-WRF is greatest. Meanwhile, the differences 
during the night between the UP-Predicted, UP-WRF, and noUP-WRF data are more subtle. A similar pattern 
emerges from the comparison of relative humidity, where UP-Predicted and UP-WRF humidity are well aligned 

Climate Variable Units

Global Horizontal Irradiance kJ/m2

Rainfall mm

Relative Humidity %

Wind Speed m/s

Wind Direction Degrees clockwise from North

Total Cloud Cover %

Temperature °C

Atmospheric Pressure Pa

Snow Depth cm

Table 3.  Generated climate variables for building simulations.

Variable Description

RUN Run number (R1-R15) of Canadian Regional Climate Model, CanRCM4 large ensemble associated 
with the selected reference year data

YEAR Year associated with the record

MONTH Month associated with the record

DAY Day of the month associated with the record

HOUR Hour associated with the record

YDAY Day of the year associated with the record

DRI_kJPerM2 Direct horizontal irradiance in kJ/m2 (total from previous HOUR to the HOUR indicated)

DHI_kJperM2 Diffused horizontal irradiance in kJ/m2 (total from previous HOUR to the HOUR indicated)

DNI_kJperM2 Direct normal irradiance in kJ/m2 (total from previous HOUR to the HOUR indicated)

GHI_kJperM2 Global horizontal irradiance in kJ/m2 (total from previous HOUR to the HOUR indicated)

TCC_Percent Instantaneous total cloud cover at the HOUR in % (range: 0–100)

RAIN_Mm Total rainfall in mm (total from previous HOUR to the HOUR indicated)

WDIR_ClockwiseDegFromNorth Instantaneous wind direction at the HOUR in degrees (measured clockwise from the North)

WSP_MPerSec Instantaneous wind speed at the HOUR in meters/sec

RHUM_Percent Instantaneous relative humidity at the HOUR in %

TEMP_K Instantaneous temperature at the HOUR in Kelvin

ATMPR_Pa Instantaneous atmospheric pressure at the HOUR in Pascal

SnowC_Yes1No0  Instantaneous snow-cover at the HOUR (1 - snow; 0 - no snow)

SNWD_Cm Instantaneous snow depth at the HOUR in cm

Table 4.  Variable name and description of the climate data in CSV files.
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in the morning. Lastly the wind speed in the UP-WRF and UP-Predicted case are expectantly lower than the 
noUP-WRF case, consistently by 2 m/s throughout the day. The improvements in temperature, relative humidity, 
and wind speed can be attributed to the approach’s ability to capture the localized effects of the urban canopy. 
For instance, in urban areas, buildings and pavement absorb and retain heat, leading to higher temperatures 
compared to non-urban areas. Therefore, by incorporating urban effects back into the noUP-WRF data, the 
model can better replicate the physical urban environment. Similarly, urban structures can alter wind patterns 
by creating drag or re-directing airflow. The model predicts lower wind speeds in areas with increased building 
density, leading to better alignment with wind speeds in UP-WRF simulations.

The mean bias (MBE) and root mean square error (RMSE) is calculated between the UP-Predicted and 
UP-WRF data, as shown in Table 5. The calculation includes data for the entire Ottawa region that is classified 
with urban land cover, and ignoring natural land cover types in the domain. This subsetting of the WRF model 
domain eliminates the negligible effects that are present in the model grids that have natural vegetation coverage, 
and which may negatively skew the results. The results shows that there is an extremely small bias between these 
two datasets, with a slight positive bias (0.02 K) in near-surface air temperature, and slight negative bias in wind 
speed and relative humidity at −0.03 m/s and −0.4%, respectively.

Climate projections.  The results for the historical period show that the methodology used in this study can 
reliably integrate and mimic urban and NBS effects onto a “non-urbanized” climate dataset. The methodology is 
expanded to prepare projected building simulation climate files for a highly urbanized location in Ottawa, near 
the city hall. As discussed earlier, an existing set of building simulation climate files60 was used as the baseline 
RCM data, to which urban and NBS effects will be added. To integrate urban and NBS effects of the city hall 

Fig. 6  Diurnal cycle of the calibrated temperature, wind speed, and relative humidity compared with the WRF 
simulations with and without urban parameterizations. Boxplots represent the spread at each hour (considering 
all days) and the solid line shows the mean. The analysis is only conducted for WRF grids in the domain 
considered to be urban.
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location onto the airport location, their signatures are calculated as the difference between the WRF simulated 
data at the airport versus the city hall. Thus generating urbanized and bias corrected climate data at the city hall 
which can be used for building simulations. Finally, the results will focus on the historical (1991–2021) and 3.5 °C 
of global warming (2064–2094) scenarios to be concise and to clearly validate the most extreme climate change 
scenario. However, data will also be accessible for other global warming periods.

Figure 7 is a result of combining the urban and nature-based signatures with the bias-corrected CanRCM4 
(BC-RCM) for data under the historical and 3.5 °C global warming scenarios. The diurnal profile is calculated 
as an average of 15 CanRCM4 realizations and across a 31-year period. As expected, the daytime temperature 
is somewhat greater (~2 °C) when interactions between the urban canopy and atmosphere are considered for 
the city (URBAN)65–67. However, in the presence of NBS such as increasing albedo (ALBD) or greenery (GRN), 
we observe a marginal decrease in the daytime air temperatures compared to the BC-RCM and especially the 
URBAN case. Nighttime temperatures are much more elevated due to the UHI effect, which may be as high 
as 5 °C whereas, no mitigation solutions were in place. The impacts of increasing albedo at night is marginal, 
where the muted effect is likely a result of the reduced heat absorbed by construction materials during the day. 
Alternatively, increasing the greenery yields a consistent cooling effect throughout the day and night. Lastly, the 
combined case (COMB) gets the benefits of increased albedo during the day and moderating effects of more 
vegetation at night. In the early evening hours (18:00–20:00), we observed somewhat elevated temperatures even 
though it becomes cooler at night.

Under 3.5 °C of global warming, the diurnal profile closely resembles the relative difference between those 
found in the historical scenario. As the scenario implies, the BC-RCM data is observed to be 3–4 °C greater dur-
ing this period than in the historical. While the analogous days selected for the historical and projected period 
are different, the resultant urban effects exhibit similar diurnal patterns and comparable cooling effects. It is of 
interest to note that the average temperature of the historical URBAN dataset is nearly as warm as the future 
BC-RCM data at night. This implies that the historical nighttime UHI effect is similar to the end of century 
global warming magnitude under RCP8.5, illustrating the severe underestimation of nighttime air temperature 
as would typically be encountered from the use of this climate data for building simulations.

Similar to temperature, we find that climate change will lead to an increase in the total accumulated rainfall 
during the summer, as illustrated in Fig. 8. Consistent with many past findings that suggest climate change 
will lead to more precipitation68–70, in Ottawa, this will lead to an overall increase of 50 mm of accumulated 
rainfall over the summer time. Examining the different cases, we also find that the URBAN, ALBD, GRN, and 
COMB data exhibit significantly more rainfall than the BC-RCM data. As a result of the coarse spatial resolution 
(~50 km) of the raw CanRCM4 data, the CanRCM4 model relies on the parameterization of convection which 

Fig. 7  Summertime average of the diurnal pattern for the urban and nature-based cases compared to the 
reference bias-corrected CanRCM4 (BC-RCM) data during the historical (dashed line) and future (solid line) 
time period under 3.5 °C of global warming.

TEMP [K] WSP [m/s] RH [%]

MBE 0.019 −0.033 −0.38

RMSE 1.17 1.12 7.72

Table 5.  Mean bias and root mean square error of the calibrated data compared to the WRF modelled urban data.
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is a known source of uncertainty in RCMs12,18,19. On the other hand, the primary improvements brought by 
convection permitting climate models is found in the intensity of extreme precipitation events which are a result 
of the explicit handling of deep convection and the integration of more realistic model dynamics. In fact, when 
combining the BC-RCM with the downscaling approach outlined in our methodology, which includes the urban 
effects in WRF simulations at convection permitting scales, the URBAN data estimates significantly more rain-
fall accumulated throughout the summer in Ottawa. For example, there is nearly a 100 mm difference between 
the BC-RCM and URBAN case, for both the historical and projected period.

Figure 9 shows the distribution of wind speed and wind direction for all of the different cases under the his-
torical and climate change scenario. In these figures, we observe extreme differences in the wind speed between 
the BC-RCM and URBAN data. The wind speeds are often greater than 5 m/s in the BC-RCM case, with a 
smaller frequency of speeds less than 5 m/s. However, by correcting for the urban effects in Ottawa, we find sig-
nificant reductions in the overall windspeed, where it is most often between 0–2 m/s. One reason for the reduced 
windspeed when considering urban effects is that the urban boundary layer poses a larger aerodynamic rough-
ness length than the surrounding natural environments. This roughness results in greater frictional resistance 
to airflow, slowing down wind speeds compared to surrounding natural environments71–73. This comparison is 
also applicable with the BC-RCM case since the CanRCM4, of which it is based, does not have urban parameter-
izations, and therefore the urban area acts as if it is covered by natural vegetation. This phenomenon is further 
exacerbated by the compact layout of urban infrastructure, which can cause wind to be channeled and deflected 
around buildings, leading to lower wind speeds in urban canyons and streets. The discrepancy highlights the 
importance to accurately incorporate urban features and their effects on airflow dynamics in climate data to 
improve the representation of wind patterns. Additionally, comparing the prevailing wind direction between 
these two cases, we find that the BC-RCM data shows a common westerly wind pattern, but the dominant winds 
come from the south-west and less frequently from the east. On the other hand, URBAN data exhibits a more 
uniform distribution of the wind direction, with more wind coming from the north and east. However, the pre-
vailing winds in this case still come from the south-west.

Usage Notes
While we focused on the city of Ottawa, these general ideas can be applied to any period and location to 
generate a continuous long-term series of climate data for any city. Additionally, whereas more emphasis was 
placed on the temperature, the process is applicable for many other climate variables such as precipitation, 
wind direction, cloud cover, and pressure, as listed in Table 3. By combining the bias corrected RCM data 
with the urban or nature-based signature, we are essentially overlaying the urban effects experienced at the 
urban center with reliable climate data at the airport. This transposing between the two locations helped 
to generate robust urban climate data at Ottawa’s city hall which will be useful for climate change impact 
analyses on buildings.

The dataset generated through our study provides a comprehensive resource for evaluating building perfor-
mance and urban climate resilience in the context of a changing climate. The dataset includes hourly climate data 
for Ottawa, Canada, spanning the period from 1991 to 2094. It encompasses various global warming scenarios 
(0.5–3.5 °C), urban heat mitigation strategies (changes in albedo and greenery), and 15 ensemble members. The 
data files are organized by scenario and time period for ease of use. It is tailored for use in building hygrothermal 
and energy modeling software. We expect practioners to perform some pre-processing of the data files before 

Fig. 8  The average summer accumulated rainfall over for the historical (dashed line) and global warming (solid 
line) period.
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inputting into a building model, for example, to find a typical/extreme warm year out of the 31-year 15-member 
ensemble. We recommend the data be processed through a simple Python or R script.

Code availability
The custom Python and R scripts used to extract CanRCM4 data, calculate the signatures, and generate projected 
UHI and NBS climate data for building simulations can be found on Github at: https://github.com/henrylu2/
Climate-projections-to-support-building-adaptation.
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