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a Military audio Dataset for 
Situational awareness and 
Surveillance
June-Woo Kim, Chihyeon Yoon & Ho-Young Jung ✉

Audio classification related to military activities is a challenging task due to the high levels of 
background noise and the lack of suitable and publicly available datasets. To bridge this gap, this paper 
constructs and introduces a new military audio dataset, named MaD, which is suitable for training and 
evaluating audio classification systems. The proposed MAD dataset is extracted from various military 
videos and contains 8,075 sound samples from 7 classes corresponding to approximately 12 hours, 
exhibiting distinctive characteristics not presented in academic datasets typically used for machine 
learning research. We present a comprehensive description of the dataset, including its acoustic 
statistics and examples. We further conduct a comprehensive sound classification study of various 
deep learning algorithms on the MAD dataset. We are also releasing the source code to make it easy to 
build these systems. The presented dataset will be a valuable resource for evaluating the performance 
of existing algorithms and for advancing research in the field of acoustic-based hazardous situation 
surveillance systems.

Background & Summary
Recent breakthroughs in deep learning have resulted in substantial advancements across diverse domains 
including audio classification. Generally, the creation of trustworthy artificial intelligence (AI) models hinges on 
the utilization of datasets characterized by high quality and representativeness1–3. Poor-quality datasets, facing 
many issues such as errors, inconsistencies, or missing values, have tend to yield AI models that are both inac-
curate and biased. Furthermore, AI models trained on datasets that fail to represent the real world may exhibit 
poor performance when they are confronted with real-world applications. Moreover, limited data and a lack of 
diversity can also lead the AI models to be oversimplified and biased. To address the concerns raised above, it is 
essential to carefully construct high-quality datasets.

Audio classification is the task of automatically assigning audio signals into predefined categories. It is a rap-
idly expanding field with many real-world applications such as urban sound planning4–7, bioacoustic monitoring 
as well as healthcare8–10, multimedia event detection11–14, large-scale event discovery, surveillance15–19, and noise 
monitoring20 for industrial purposes. Furthermore, the audio classification research community has experienced 
significant growth in recent years, driven by the Detection and Classification of Acoustic Scenes and Events 
(DCASE) Challenge21–24. This challenge assisted the research and evaluation of publicly available common audio 
datasets, which has played a pivotal role in advancing the field of audio classification. Moreover, recent break-
throughs in deep learning have also facilitated the extension of audio classification to human-computer interac-
tion tasks such as keyword spotting25, spoken language understanding26, and speech-based sentiment analysis27.

On the one hand, AI-based audio hazard detection systems are gaining traction in diverse applications and 
industries, leveraging AI to analyze audio data and detect potential hazards or dangers in the environment18,19. 
Despite the abundance of publicly available audio data, datasets suitable for training acoustic-based hazardous 
situation surveillance systems remain scarce. For instance, while siren-based28 systems can be helpful in traffic 
flow control and emergency response time reduction, they are ineffective in mass shooting or explosion scenar-
ios. Although the AudioSet29 dataset has unprecedented data volume and diversity (approximately 2 million 
audio samples and 527 classes), it remains insufficient for training acoustic-based hazard detection systems 
due to its lack of dangerous audio signals. Besides, the classification of potentially dangerous acoustic events 
solely based on gunshot and breaking glass audio samples30 exhibits insufficient and requires further exploration 
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of broader acoustic indicators. Therefore, developing a robust acoustic hazardous situational awareness and 
surveillance system requires a specific, varied, and wide range of dangerous audio signals such as explosions, 
shelling, and gunshots.

In this paper, we address these challenges by building and introducing the MAD for situational awareness 
and surveillance. Fig. 1 illustrates the overall data collection framework for the MAD dataset, which can be 
summarized as follows: 

•	 Data selection: Identify the audio content types for the seven military-related categories.
•	 Audio event segmentation: Identify the start and end times of each audio event.
•	 Data refinement: Refine the data using a variety of techniques, such as formatting, resampling, and extracting.
•	 Data labeling: Label all audio events into one of the seven predefined classes.
•	 Data configuration: Randomly split all the data into train/test sets with an approximately 9:1 ratio.

As shown in Fig. 2, the MAD dataset is derived from diverse military videos, consequently categorized into 
seven classes, comprising 8,075 sound samples totaling approximately 12 hours of audio. In contrast to academic 
and research datasets commonly employed for machine learning research, the MAD dataset exhibits distinctive 
characteristics that facilitate the detection of acoustic-based hazard situations, such as gunshots, shelling or 
explosions, and fighter jets. We also present an overall description of the dataset including its acoustic statistics 
and examples.

In addition, we conduct a comprehensive evaluation of various deep learning algorithms for audio classi-
fication on the MAD dataset. Specifically, we benchmark the sound classification accuracy of several popular 
models widely used in the audio classification domain, including ResNet31, EfficientNet32, CNN-N (PANNs)33, 
and AST10,34. We also release the source code for the reproducibility of the paper and to help other researchers 
easily build such systems.

The proposed MAD dataset can be used to evaluate the performance of existing acoustic hazardous situation 
surveillance algorithms on a variety of hazards and environments, enabling the identification of strengths and 
weaknesses of various deep learning algorithms and guiding the development of improved methods. Overall, 
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Fig. 1 Illustration of MAD dataset collection procedure.
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Fig. 2 Demonstration of the overall MAD dataset.
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the MAD dataset represents a valuable resource for the research community working to develop and improve 
acoustic hazardous situation surveillance systems. We believe that the MAD dataset can be a valuable asset to the 
field of audio-based hazard detection, contributing to a safer world.

Methods
This section discusses the methodology used to collect the MAD dataset as described in Fig. 1.

Data selection. To gather realistic and dangerous audio data suitable for hazard detection systems, we first 
considered the appropriate data environment. In general, military activities, such as gunshots and explosion 
sounds, provide a rich source of audio data that can fulfill these requirements. Therefore, we decided to collect 
audio data related to military activities and further categorize it into seven distinct classes. Fig. 2 represents the 
overall classes of the MAD dataset: communication, gunshot, footsteps, shelling, vehicle, helicopter, and fighter. 
This comprehensive categorization ensures that the dataset encompasses a wide range of military-relevant sounds.

We subsequently queried YouTube for military activity videos. To collect more specific audio data related to 
military activities, we configured the search to identify audio event segments for predefined classes, leveraging 
videos collected from diverse countries and real-world environments. In particular, our dataset primarily com-
prises military-related training and education videos, which provide practical scenarios enriched with authen-
tic background noises, such as wind, behavioral sounds, and shouting. Note that we intentionally excluded 
audio clips from hypothetical scenarios, such as games or simulations, to ensure the authenticity and practical 
acoustic-based hazard detection applicability of the dataset.

Audio event segmentation. Once we select appropriate videos containing audio related to military activ-
ities, we then segmented each audio event to ensure its relevance and suitability for training deep learning mod-
els. Considering the vast range of audio event durations and the substantial time and computational resources 
required to train deep learning models on long audio sequences, we standardized the duration of all audio events 
to below 10 seconds. Despite the extensive time and effort involved in audio event segmentation, this strict pro-
cess is crucial for constructing a high-quality dataset. To maintain the high-quality data, we thoroughly verified 
each segmented audio event with five annotators.

Data refinement. We refine the collected data by formatting, resampling and extracting as described below.

Formatting. Following the data collection procedures outlined earlier, we downloaded the MP4 format videos 
and performed audio event segmentation. Nevertheless, since the primary objective of this study is to collect 
audio data, the videos are converted to WAV format. As part of the data preparation process, we utilized Python 
yt_dlp library for downloading YouTube videos and FFmpeg tool for subsequent audio extraction and for-
matting. This approach yielded the proposed MAD dataset of audio files with consistent characteristics of 192 
Kbps bitrate, 48 kHz sampling rate, and a single audio channel. This allows for minimizing the space required 
for data storage without compromising audio quality.

Resampling. Sampling rate determines the frequency at which the audio signal is sampled and digitized, and 
varies depending on the recording device and software used, potentially introducing inconsistencies in the data-
set. To ensure data consistency, we resampled all audio samples to a unified sampling rate of 16 kHz with the 
Python Librosa library. Resampling audio samples to a consistent sampling rate can be an effective technique 
for improving the performance of AI models in audio classification. This standardization process ensures that 
AI models are trained on more uniform data, leading to better generalization performance and reduced overfit-
ting. Additionally, resampling facilitates the comparison of various models that utilize different sampling rates, 
providing a more comprehensive evaluation of their performance.

Extracting. We leveraged the Python Librosa and SoundFile library which are widely used tools for 
audio signal analysis for cropping audio data events following their corresponding segmentation labels. In other 
words, each audio sample was extracted by slicing the audio file from the start to the end time of its correspond-
ing segmentation label. We subsequently saved these extracted and segmented audio events derived from the 
converted audio file obtained from the original video.

Data labeling. Audio data labeling is the process of assigning predefined labels to audio clips to indicate the 
categories of specific sound events. In general, this process can be accomplished manually or using automated 
tools. While automated tools can annotate large amounts of data quickly and cheaply, they may not be as accurate 
as human annotators. To ensure accurate labeling, we chose a manual approach, employing human annotators 
to label every audio clip. Considering that each audio clip may contain a variety of sounds, our labeling process 
focused on identifying and annotating the most prominent or dominant sound class (i.e., clear or loud sound) 
within each clip. Subsequently, we subjected all labeled audio samples to a strict review and validation process, 
involving five annotators who independently voted on each label. This double-checking procedure improved the 
reliability of the audio data.

Data configuration. Typically, the training set is designated for training machine learning models, while the test 
set serves as the means to evaluate the performance of the trained models on previously unseen data. In other words, 
splitting the data into training and test sets is essential to avoid overfitting, where the model becomes too specialized 
to the training data and cannot generalize well to new data. Moreover, evaluating the model on the test set which has 
not been encountered during training yields a more precise and reliable assessment of its overall performance.
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To enable comparable experiments on the released dataset, we define train and test splits. We randomly split 
the whole dataset into training and test sets using the scikit-learn(could you make this “scikit-learn” word with 
the same format as “yt_dlp”, “FFmpeg” and “Librosa” format?) library in Python. The split was set with a ratio 
of 90% for training and 10% for test sets. Note that all audio events are divided into either training or test sets at 
the video level, thus audio events derived from the same video should belong to the same split. In other words, 
splitting the data into training and test sets is essential to avoid overfitting, where the model becomes too spe-
cialized to the training data and cannot generalize well to new data. Moreover, evaluating the model on the test 
set which has not been encountered during training yields a more precise and reliable assessment of its overall 
performance.

Data release. In this section, we present a specific description of the MAD dataset, including its statistics 
and acoustic examples.

As shown in Table 1, we have gathered 8,075 audio events from various videos, corresponding to 12.05 hours. 
Following the training/test set split, the MAD dataset was split into a training set of 7,393 audio samples (10.98 
hours), and the test set contains 682 audio samples (1.07 hours). All the audio events were meticulously labeled 
and categorized, ensuring the dataset’s high quality and suitability for deep learning-based audio classification 
tasks. All audio events within the MAD dataset have durations between 1 and 10 seconds, with a distribution 
illustrated in Fig. 3. Notably, both the training and test sets exhibit the highest sample count at 3 seconds, while 
1 second has the lowest. 

Table 2 provides a detailed breakdown of the data statistics for each class within the MAD dataset, including 
the number of samples, percentage, and total time duration across training and test sets. The Gunshot class 
stands out with the highest percentage, accounting for 1,589 (21.23%, 2.35 hours). Conversely, the Footsteps 
class demonstrates the lowest percentage, with 921 (11.41%, 1.19 hours) instances. 

Fig. 4 provides illustrative visualizations for each of the audio classes within the MAD dataset. This figure 
depicts the raw waveforms and Mel filterbanks for each class. From top to bottom, the classes are posted in the 
following order: communication, gunshot, footsteps, shelling, vehicle, helicopter, and fighter. The middle part of 
each row shows a randomly sampled raw waveform from the corresponding audio class. Furthermore, the right 
part of each row visualizes the Mel filterbank that will be used as the input speech features for the deep learning 
model. The Mel filterbank representations effectively capture the spectro-temporal characteristics of the audio 
signals, providing insights into the distinctive acoustic features of each class. Details of the pre-processing for 
deep learning model input will be provided in the Technical Validation section.

Data records
The MAD dataset is available for download at Figshare35. To facilitate dataset utilization and promote repro-
ducibility, we provide comprehensive instructions within the README file at the provided URL, detailing the 
MAD dataset processing pipeline. This includes guidance on downloading YouTube videos using the supplied 

train test sum

sample size (pcs) 7,393 682 8,075

total time (hours) 10.98 1.07 12.05

Table 1. Overview of total data volume and time on MAD dataset.
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Fig. 3 Bar chart illustrating the distribution of training and test sets according to various times.
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metadata annotation files. Readers can leverage the supplied metadata annotations to efficiently download rel-
evant YouTube videos for research purposes. Besides, we divided all audio events into training and test folders 
based on the corresponding label files. The audio clips are in WAV format with a total data size of approximately 
1.4 GB. The label files are in CSV format and include data paths, audio event labels, video titles, and correspond-
ing URLs. We only provide the annotation files (CSV files); details on audio feature extraction for the deep 
learning model are discussed in the next section. The source to download the YouTube videos and process as 
well as extract the audio events for building models can be found in the GitHub repository (https://github.com/
kaen2891/military_audio_dataset). Furthermore, the source code for training AI models is also available, which 
will be presented in the Code Availability section.

class

number of audio samples (total time, ratio)

train test sum

Communication 1,061 (1.79H, 14.35%) 89 (0.15H, 13.05%) 1,150 (1.94H, 14.24%)

Gunshot 1,589 (2.15H, 21.49%) 125 (0.20H, 18.33%) 1,714 (2.35H, 21.23%)

Footsteps 827 (1.07H, 11.19%) 94 (0.12H, 13.78%) 921 (1.19H, 11.41%)

Shelling 1,084 (1.04H, 14.66%) 89 (0.09H, 13.05%) 1,173 (1.13H, 14.53%)

Vehicle 987 (1.57H, 13.35%) 136 (0.23H, 19.94%) 1,123 (1.80H, 13.91%)

Helicopter 939 (1.79H, 12.70%) 70 (0.13H, 10.26%) 1,009 (1.92H, 12.50%)

Fighter 906 (1.57H, 12.26%) 79 (0.15H, 11.59%) 985 (1.72H, 12.20%)

Total 7,393 (10.98H, 91.55%) 682 (1.07H, 8.45%) 8,075 (12.05H, 100%)

Table 2. Overall details of the MAD dataset.

Communication
(Label: 0)

Gunshot
(Label: 1)

Footsteps
(Label: 2)

Shelling
(Label: 3)

Vehicle
(Label: 4)

Helicopter
(Label: 5)

Fighter
(Label: 6)

Fig. 4 The overall pre-processing task for converting waveform to Mel filterbank.
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technical Validation
To evaluate the performance of the MAD dataset constructed in this paper, we conduct a comprehensive analysis 
of various deep learning-based algorithms for audio classification. Specifically, we compare the sound classifi-
cation accuracy of several popular neural networks, including ResNet31, EfficientNet32, CNN-N (PANNs)33, and 
AST (Audio Spectrogram Transformer)10,34, which are widely used in the audio classification domain and have 
demonstrated strong performance on various benchmark datasets.

Pre-processing. To train deep learning models with audio clips, we converted the audio waveforms to log 
Mel filterbank features using the TorchAudio library in Python. Specifically, we used a window size of 25 mil-
liseconds and an overlap size of 10 milliseconds to extract 80-dimensional log Mel filterbank features from the 
audio waveforms. We ensured that all audio samples had the same length of 10 seconds, corresponding to 998 
frames. For audio events shorter than 10 seconds, we performed zero padding with a fade in/out operation until 
the desired length. Moreover, we applied standard normalization to the spectrograms to ensure zero mean and 
unit variance. This process of converting audio waveforms to log Mel filterbank features is a common practice in 
audio classification tasks, as it allows the deep learning model to focus on the most relevant information in the 
audio signal. The normalization step further ensures that the features are evenly distributed, which can improve 
the performance of the model.

Deep learning models. Table 3 provides a comprehensive overview of the various deep learning archi-
tectures used in this study, encompassing ResNet31, EfficientNet32, CNN-N (PANNs)33, and AST10,34. These 
architectures were chosen to represent a range of model complexities, with ResNet being represented by four 
distinct types (ResNet18, ResNet34, ResNet50, and ResNet101), EfficientNet being represented by three types 
(EfficientNet-B0, EfficientNet-B1, and EfficientNet-B2), and CNN-N being represented by three types (CNN6, 
CNN10, and CNN14). In addition, AST models include fine-tuning with AST34 and AST-Patch-Mix10 (AST 
model with Patch-Mix augmentation), with the former training with Cross Entropy loss between the input audio 
events and labels while the latter includes an augmentation method at the patch level.

The parameters listed in Table 3 represent the number of neurons in the deep learning models, with higher 
values generally indicating increased complexity and training time. Consequently, the CNN6 model exhibits 
the lowest parameter count of 4.8M, while the AST model possesses the highest, reaching 87.7M. Fig. 5 depicts 

architecture parameters pretrain

ResNet18 11.7M

ResNet34 21.8M ImageNet

ResNet50 25.6M

ResNet101 44.7M

EfficientNet-B0 5.3M

EfficientNet-B1 7.8M ImageNet

EfficientNet-B2 9.2M

CNN6 4.8M

CNN10 5.2M AudioSet

CNN14 80.7M

AST (CE) 87.7M ImageNet + AudioSet

AST (Patch-Mix)

Table 3. Overall details of the various architectures, including number of parameters and pretraining datasets.

Fig. 5 Illustration of overall deep learning-based audio classification process.
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the overall audio classification pipeline using deep learning models. In other words, the architectures presented 
in Table 3 can serve as audio feature encoders, and an additional linear layer acts as a classifier for 7-class audio 
classification.

Experimental setting. To prevent overfitting, we employed SpecAugment36 augmentation with a maximum 
mask length of 50 frames and 20 bins applied twice in both the time and frequency domains, respectively. The 
average value of the given spectrogram was used for masking during SpecAugment implementation. For the 
AST10,34 model, the recommended mean and standard deviation values of –4.27 and 4.57 were employed. The 
audio classification model was trained using various architectures with cosine scheduling and the Adam optim-
izer. Except when training the AST model, the model was trained with a learning rate of 1e–3, a batch size of 64, 
and a maximum of 400 epochs. For AST model training, a learning rate of 5e–5, a batch size of 8, and a maximum 
of 50 epochs were employed. Momentum update with a coefficient of 0.5 and a decay rate of 1e–6 is applied to all 
learnable parameters to ensure stable training.

The software environment for conducting our experiments comprised Python version 3.8, CUDA version 
11.3, Pytorch, and TorchAudio version 2.0, operating on Ubuntu 18.04 OS. NVIDIA TITAN RTX 24GB 
GPU is used for AI model training. Considering the potential impact of data training order on AI model perfor-
mance, five seeds were fixed, and results were reported as averages across these seeds.

Experimental results. As summarized in Table 4, we conducted an overall comparison of the MAD data-
set for the audio sound classification task. We trained various deep learning models with pretrained weights 
and training from scratch (i.e., without pretrained) using the MAD training set respectively, and evaluated their 
performance on the MAD test set. For models trained with pretrained weights, accuracy ranged from 88.04% 
to 91.07%. Among these, the AST-Patch-Mix model achieved the highest accuracy on the MAD dataset. The 
findings generally indicate a positive correlation between model parameter count and accuracy, the higher the 
parameters of the AI model, the better the performance. Interestingly, the CNN10 model with 5.2M parameters 
achieved 89.53% accuracy (0.5% lower than AST), despite having only 6% of the AST model’s parameter count. 
Conversely, ResNet101, with 44.7M parameters, demonstrated performance inferior to EfficientNet families, as 
well as CNN6 and CNN10 models with less than 10M parameters.

In contrast, when models were trained from scratch, their accuracy ranged from 81.17% to 89.47%. The 
CNN14 model with 80.7M parameters achieved the highest performance in this setting. Surprisingly, the AST 
model families, despite having the largest number of parameters and being trained on two large-scale datasets, 
exhibited the lowest performance.

Fig. 6 offers a more intuitive visualization of the aforementioned results. Employing the pretrained weights 
leads to the highest performance, particularly for the AST model, while training from scratch yields the 
lowest results. This trend is evident across the range of model parameters evaluated. Consequently, employ-
ing pre-trained weights generally leads to higher performance, but at the expense of longer training times. 
Researchers can select the most appropriate approach based on the specific requirements and constraints of 
their project.

Discussion
In this section, we discuss the potential limitations of the proposed MAD dataset.

Limited scope. While the dataset covers seven categories related to military environments, there may be 
scenarios or sounds not adequately represented in the dataset, potentially limiting its applicability to real-world 
situations. For instance, the sound of a nuclear explosion and that of a dive engagement at sea as well as the drone 

architecture parameters pretrain

accuracy (%)

pretrained weights scratch

ResNet18 11.7M 88.04±0.59 86.83±0.38

ResNet34 21.8M ImageNet 88.27±0.29 87.07±0.74

ResNet50 25.6M 88.24±0.41 86.51±0.38

ResNet101 44.7M 88.62±0.31 86.86±0.60

EfficientNet-B0 5.3M 88.92±0.17 87.32±1.00

EfficientNet-B1 7.8M ImageNet 88.85±0.28 87.71±0.33

EfficientNet-B2 9.2M 89.11±0.64 88.02±0.27

CNN6 4.8M 89.53±0.26 87.57±0.81

CNN10 5.2M AudioSet 90.76±0.47 . ± .89 03 0 37

CNN14 80.7M 90 97 0 34. ± . 89.47±0.22

AST 87.7M ImageNet + AudioSet 90.03±0.23 81.17±0.77

AST-Patch-Mix ImageNet + AudioSet 91.07±0.19 82.20±1.13

Table 4. A comprehensive comparison of various deep learning-based architectures was conducted to assess 
their performance on the MAD dataset for audio classification. Employing pretrained model weights from 
the ImageNet42 and AudioSet29 datasets is denoted as pretrained weights, while not using pretrained weights is 
denoted as scratch, respectively. Best and second best results.
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could be included. To the best of our knowledge, this kind of category is hard to obtain, therefore we will regularly 
update this category of data to the audio community in the future.

Limited size. Although our proposed dataset is large-scale data related to the military environment, with 8,075 
sound samples totaling approximately 12 hours of audio is not very big. This may be taken into consideration 
relatively small compared to some other audio datasets, such as AudioSet29 and FSD datasets14. To address this, 
we plan to encourage other researchers to overcome the limited number of data issues by deep learning-based 
modeling.

Hardware information missing. Although the proposed MAD dataset is military environment data, we 
are interested in identifying dangerous situations for the general public in our lives. Therefore, we aim to con-
struct the characteristics of audio events with data from various recording devices to identify dangerous situations 
in a device-independent manner. In addition, we can easily find these trends in the recent papers or datasets that 
collected from YouTube, which has been widely used in the recent audio or video classification domains. They 
are also collected regardless of recording device characteristics. Unfortunately, YouTube videos typically lack 
information about the recording hardware information, resulting in a common limitation for datasets built from 
publicly available online sources13,14,29,37–40.

In that respect, we aimed to improve the audio event classification performance regardless of recording equip-
ment. The reason for this is that our dataset is intended to help ordinary people identify dangerous situations, 
and even in the real world, audio information comes from different devices, and we cannot handle all of them. 
Therefore, we designed our dataset to be device-agnostic from an AGI (Artificial General Intelligence) perspective.

Noise in shelling audio. While the absence of frequency response and the hardware information for the 
recording devices limits a detailed analysis of shelling sounds, the MAD dataset remains valuable for training 
classifiers that utilize time-domain features, as demonstrated in Table 4. We believe that further research focused 
on controlling environments with calibrated microphones could provide a deeper understanding of shelling noise 
characteristics.
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Audio compression. We acknowledge that the .mp4 format used by YouTube employs lossy compression, 
which can potentially impact the temporal characteristics of the audio data. However, recent audio and speech, 
as well as video datasets13,14,29,37–40 derived from YouTube are generally deployed with .mp4 or .wav as well as 
.avi format, and various researchers mainly have used these datasets. In that respect, we believe that its poten-
tial effects on the classification model are not critical.

By acknowledging these limitations and outlining potential future improvements, we hope to demonstrate 
transparency and a strong understanding of the MAD dataset’s characteristics. We believe that this will ulti-
mately strengthen the overall value of the dataset for researchers working on acoustic scene classification in 
military environments.

Usage Notes
Our proposed MAD dataset offers a comprehensive collection of real-world acoustic event recordings related to 
military activities, spanning a wide range of hazard types and scenarios. In other words, the MAD dataset has 
the potential to serve as a valuable resource for evaluating the performance of existing algorithms and for foster-
ing advancements in the field of acoustic-based hazard detection systems. Besides, the MAD dataset can be uti-
lized for training the AI model which can detecting unidentified objects, explosions, combat objects, and other 
sound-based hazards, thereby enhancing situational awareness and enabling effective countermeasures against 
potential threats. By providing researchers with access to this diverse and high-quality data, the MAD dataset 
facilitates the development and evaluation of more robust and effective acoustic hazard detection algorithms.

Code availability
The complete source code and script files employed for format conversion, refinement, and pre-processing of the 
MAD dataset, as well as deep learning training, are readily available at https://github.com/kaen2891/military_
audio_dataset. The majority of libraries and frameworks employed in the code include Python, PyTorch, 
TorchAudio, Librosa, and Numpy. To execute the code, please follow the instructions provided on the 
website. Besides, pretrained model weights for each model based on the MAD dataset are publicly accessible. 
This facilitates researchers in effortlessly loading and employing the AI model corresponding to the performance 
presented in the paper.
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