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RAS Dataset: A 3D Cardiac LGE-MRI 
Dataset for Segmentation of Right 
Atrial Cavity
Jinwen Zhu1,4, Jieyun Bai   1,2,4 ✉, Zihao Zhou1, Yaqi Liang1, Zhiting Chen1, Xiaoming Chen3 & 
Xiaoshen Zhang3

The current challenge in effectively treating atrial fibrillation (AF) stems from a limited understanding 
of the intricate structure of the human atria. The objective and quantitative interpretation of the 
right atrium (RA) in late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) scans relies 
heavily on its precise segmentation. Leveraging the potential of artificial intelligence (AI) for RA 
segmentation presents a promising solution. However, the successful implementation of AI in this 
context necessitates access to a substantial volume of annotated LGE-MRI images for model training. 
In this paper, we present a comprehensive 3D cardiac dataset comprising 50 high-resolution LGE-MRI 
scans, each meticulously annotated at the pixel level. The annotation process underwent rigorous 
standardization through crowdsourcing among a panel of medical experts, ensuring the accuracy and 
consistency of the annotations. Our dataset represents a significant contribution to the field, providing 
a valuable resource for advancing RA segmentation methods.

Background & Summary
Atrial fibrillation (AF) is a globally significant chronic disease, being the most common cardiac arrhythmia, 
and is associated with substantial morbidity and mortality1,2. The suboptimal clinical management of AF 
largely stems from a fundamental lack of understanding of atrial anatomy3. Recent advancements, particularly 
the widespread use of gadolinium-based contrast agents in assessing atrial fibrosis and scarring through late 
gadolinium-enhanced magnetic resonance imaging (LGE-MRI)4, have significantly improved the visualization 
of organ structures and related components5. Clinical investigations utilizing LGE-MRI in AF patients have 
highlighted that the extent and distribution of atrial fibrosis can reliably predict the success of ablation proce-
dures6. Recent studies using LGE-MRI for atrial assessments have further emphasized the crucial role of atrial 
structure in comprehending and treating AF3,7. Therefore, a direct analysis of atrial structure is vital for effective 
AF treatment.

Atrial segmentation is a fundamental process involving the extraction of atrial cavity structures from 
LGE-MRI images. This process serves as a crucial preliminary step in enabling the objective evaluation and 
quantitative analysis of atrial structure within the context of AF. While extensive research has been conducted 
on the automatic and semi-automatic segmentation of the left atrium (LA), given its central role in AF studies, 
it is equally imperative to conduct comprehensive structural assessments of the right atrium (RA)8,9. Despite the 
relatively limited exploration of the pathological changes occurring in the RA within the context of AF, existing 
evidence strongly suggests that AF exerts its impact on both atria10. Therefore, it is imperative to delve into the 
intricate relationship between AF and the RA. This connection is primarily attributed to a complex interplay of 
structural, electrical, and metabolic remodeling processes that transpire within the RA11. Consequently, research 
endeavours dedicated to the segmentation of the RA from LGE-MRI scans are indispensable.

Manual segmentation is essential for precise analysis but can be time-consuming and labour-intensive, espe-
cially in the context of medical research. To enhance efficiency and accuracy, automated and semi-automated 
segmentation methods play a crucial role. In the 2018 Left Atrium Segmentation Challenge12, 15 teams utilized 
CNN-based segmentation methods, but 12 proposed CNN designs based on the popular U-Net architecture, 
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achieving outstanding performance. The adoption of the popular U-Net architecture effectively enhanced the 
effectiveness of atrial segmentation. For instance, D. Borra et al.13 utilized a CNN-based U-SWNN for 3D left 
atrium segmentation, achieving a Dice score of 0.911. Xiong et al.14 employed a dual-branch multi-scale con-
volutional neural network, significantly improving segmentation results. In contrast, D. Borra et al.15 proposed 
a comprehensive two-stage workflow for automatic LA cavity segmentation, involving traditional automated 
segmentation algorithms for LA localization (first stage) and refined LA segmentation based on CNN out-
puts (second stage). Although algorithms for the LA are very advanced, there are currently no algorithms for  
the RA.

However, the development and evaluation of these automated approaches heavily rely on access to extensive 
datasets with comprehensive annotations. Presently, a noticeable gap exists in dedicated research focused on RA 
segmentation, and publicly available datasets catering to this specific need are limited. For instance, one available 
dataset is derived from the 2017 Multi-Modality Whole Heart Segmentation (MM-WHS) challenge16–18, which 
is based on non-contrast MRI scans. While non-contrast MRI yields precise images, contrast MRI, particularly 
LGE-MRI, offers superior clarity for detecting smaller tissue structures and assessing their extent within the 
surrounding tissues. LGE-MRI scans have proven invaluable for studying atrial fibrosis14. In the field of AF 
research, several datasets targeting LGE-MRI have been established, such as the 2018 Left Atrial Challenge12 and 
the 2022 Left Atrial and Scar Quantification and Segmentation Challenge19–21. However, datasets specifically 
dedicated to RA segmentation from LGE-MRI scans remain notably absent.

Thus, we introduce the RAS dataset22, a valuable resource comprising 50 high-resolution LGE-MRI scans, 
each with spatial dimensions of either 576 × 576 × 88 or 640 × 640 × 88 pixels. These scans have undergone 
meticulous pixel-wise manual annotation, performed by four highly trained graduate students and subsequently 
validated by three experienced advisors. The RAS dataset22 represents a significant contribution to the field, 
serving as a valuable resource for researchers engaged in developing and evaluating automatic RA segmenta-
tion algorithms. Furthermore, it has the potential to support the creation of image-based personalized models, 
thereby advancing our understanding and treatment of AF.

Methods
Data collection.  The RAS dataset22 only provides labels for the right atrium, while the original data belongs 
to the 2018 Left Atria Challenge12 (https://www.cardiacatlas.org/atriaseg2018-challenge/atria-seg-data/) and has 
been made public. Each 3D MRI patient data in the dataset was acquired using a clinical MRI scanner, specifically 
a 1.5 Tesla Avanto or 3.0 Tesla Verio whole body MRI scanner. These scans were performed approximately 20–25 
months after the injection of gadolinium contrast agent (Multihance, manufactured by Bracco Diagnostics Inc., 
Princeton, NJ).

Image annotation.  The annotation team consisted of a group of highly qualified individuals, including three 
experienced physicians and four postgraduates specializing in biomedical-related fields. These annotators under-
went comprehensive training, which included online meetings and in-person guidance from the three experi-
enced physicians. The primary focus of this training was to familiarize the annotators with the structure of the RA 
as it appears in LGE-MRI images. Each trained annotator was responsible for segmenting 25 LGE-MRI images 
using the pencil tool in Slicer 5.0.3, a software tool available at https://www.slicer.org/. This segmentation process 
involved pixel-wise annotation, where each pixel was carefully labelled to identify the RA structures, including 
the tricuspid valve (TV) and right atrial appendages (RAA) as well as the ostia of the superior/inferior vena cava 
(SVC/IVC). The resulting annotations were subjected to individual evaluations by the physicians. If an annotation 
was deemed unsatisfactory or inaccurate, the respective image was returned to the student for re-labelling (as 
illustrated in Fig. 1). During this annotation process, the following points should be followed: (1) ideally, there is a 
continuous relationship of adjacent pixels in the contour of each two-dimensional image, and there is a hierarchi-
cal relationship between the shape and size changes; and (2) Fibrosis in the right atrial wall appears bright white. 
When there is no obvious white border, the border is determined based on the difference in local gray values. The 
ground truths are binary, representing the presence or absence of RA structures, and are stored in the Near Raw 
Raster Data (NRRD) format.

In the following, we detail the process of labelling a 3D LGE-MRI image with spatial dimensions of either 
576 × 576 × 88 (Fig. 2Ai) or 640 × 640 × 88 (Fig. 2Bi). This labelling procedure can be broken down into the 
following key steps:

•	 Step 1 - Identifying SVC Region: To begin, we observed the SVC region, which typically exhibits a circular or 
oblate shape. This region was annotated in approximately the first 12 slices (Fig. 2Aii or Fig. 2Bii).

•	 Step 2 - Marking RAA Area: Moving above the SVC area, the RAA, often appearing as a smaller ellipse or 
triangle, was annotated in the subsequent 4–6 slices (Fig. 2Aiii or Fig. 2Biii).

•	 Step 3 - Defining the RA Region: The RAA area, connected to the SVC region, forms the broader RA region. 
This region was labeled in approximately the following 30 slices (Fig. 2Aiv or Fig. 2Biv). Throughout the 
annotation process, we relied on several anatomical landmarks to ensure precise labelling of the RA: a) Tri-
cuspid Valve (TV): Serving as a reference point, the TV helped us delineate the boundary of the RA in specific 
image slices (e.g., Fig. 2Av or Fig. 2Bv). b) RV-LV Connection: The clear connection between the Right Ven-
tricle (RV) and the Left Ventricle (LV) (e.g., Fig. 2Avi or Fig. 2Bvi) served as a visual guide for accurate RA 
labelling. c) RA-LA Wall: The wall separating the RA from the LA (e.g., Fig. 2Avii or Fig. 2Bvii) was another 
vital reference point used for precise identification and labelling of the RA. At this stage, we encountered 
approximately 25 slices with both RA and RV (e.g., Fig. 2Aviii or Fig. 2Bviii).
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•	 Step 4 - Transition to IVC Region: As the LA region gradually disappeared, the IVC region with a circu-
lar shape emerged below the RA region. Approximately 15 slices featured both RA and IVC regions (e.g., 
Fig. 2Aix or Fig. 2Bix). Subsequently, the following slices exclusively featured the IVC region.

•	 Step 5 - Fine-Tuning Corrections: After labelling in the Z-axis direction, we conducted adjustments in the 
X- and Y-axis directions to ensure the smoothness and continuity of the ground truth (Fig. 3).

Data Records
All data records22 are available as files on the web page https://doi.org/10.5281/zenodo.10781134. In the 
unzipped folder, the “lgemri.csv” file describes the correspondence between the original LGE-MRI image and 
its RA cavity label file, and the “ras” folder contains the ground truth label corresponding to the RA cavity. The 
specific images in the “ras” folder are the ground truth for the corresponding images12 (https://www.cardiacatlas.
org/atriaseg2018-challenge/atria-seg-data/), and their correspondences are described in the “lgemri.csv” file. 
Images in the “ras” folder contain pixels labeled 0 and 1, where 0 represents the background and 1 represents 
the RA cavity .

Technical Validation
In this study, each LGE-MRI image underwent annotation by one annotator, followed by refinement by a physi-
cian. Consequently, inter-annotator consistency warrants investigation. We selected 25 LGE-MRI images from 
the complete dataset to form an annotation set and assigned these images to two annotators (Dr1 and Dr2). We 
also evaluated the quality of labels predicted by the classical U-Net model23 compared to manual annotations 
performed by human experts. Dice and Jaccard indices can be used to represent the overlap of validation results, 
while recall and specificity can indicate the positive-to-negative ratio of validation results. Table 1 displays their 
respective Dice, Jaccard, recall, and specificity scores, namely AI vs. Dr1, AI vs. Dr2, and Dr1 vs. Dr2. We 
found that the results between artificial intelligence and humans (AI vs. Dr1 and AI vs. Dr2) were lower than 
those among humans (Dr1 vs. Dr2), indicating the challenge of automated segmentation for the right atrium. 
Specifically, for Dr1 vs. Dr2, the average Dice coefficient was calculated to be 93.85%, the Jaccard coefficient 
was 85.52%, the specificity coefficient was 99.95%, and the recall coefficient was 93.71%, indicating a very close 
agreement between the annotators.

Fig. 1  The workflow of image annotation process.
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Fig. 2  The example process of labelling a 3D LGE-MRI image with the spatial size of 576 × 576 × 88 and 
640 × 640 × 88.

Fig. 3  Labelling the RA from the X-, Y- and Z-axis directions with the Slicer 5.0.3.
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Usage Notes
Users should cite this paper in their research output and acknowledge the contribution of this dataset in their 
study.

Code availability
No novel code used in the construction of RAS dataset22.
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Dice Jaccard recall specificity

AI vs. Dr1 90.66 83.09 93.63 99.20

AI vs. Dr2 90.47 82.78 92.82 99.16

Dr1 vs. Dr2 93.85 85.92 93.71 99.95

Table 1.  Intra-observer variability.
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