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National-scale remotely sensed 
lake trophic state from 1984 
through 2020
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Dina M. Leech8, Isabella A. Oleksy   9, Jesse C. Ross10, Matthew R. V. Ross11, 
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Julie C. Padowski16, Amina I. Pollard   17, Jianning Ren   18 & Jacob A. Zwart   19

Lake trophic state is a key ecosystem property that integrates a lake’s physical, chemical, and biological 
processes. Despite the importance of trophic state as a gauge of lake water quality, standardized and 
machine-readable observations are uncommon. Remote sensing presents an opportunity to detect and 
analyze lake trophic state with reproducible, robust methods across time and space. We used Landsat 
surface reflectance data to create the first compendium of annual lake trophic state for 55,662 lakes of 
at least 10 ha in area throughout the contiguous United States from 1984 through 2020. The dataset 
was constructed with FAIR data principles (Findable, Accessible, Interoperable, and Reproducible) in 
mind, where data are publicly available, relational keys from parent datasets are retained, and all data 
wrangling and modeling routines are scripted for future reuse. Together, this resource offers critical 
data to address basic and applied research questions about lake water quality at a suite of spatial and 
temporal scales.

Background & Summary
Lakes and reservoirs are of critical importance to society, directly providing drinking water and supporting 
food production, sanitation, and transportation. Millions of people worldwide face intermittent clean water 
availability due to climatic and anthropogenic stressors1. Current literature suggests that changes in surface 
water quantity and quality are highly heterogeneous, and trends globally suggest that factors such as ice cover, 
air temperature, humidity, and lake surface area are likely interacting regionally to affect freshwater ecosystems 
in synergistic ways2–7. To gain a better understanding of the potential threats to freshwater ecosystems, new 
technologies must be engaged. Satellite-based Earth observations (hereafter “remote sensing”) are particularly 
useful as they can provide information at spatial and temporal scales that are currently impossible to replicate 
via ground-based observations.

Although remote sensing’s usefulness to track changes in water quantity has enabled analyses of water avail-
ability from local-to-global scales8–11, investigations of water quality have historically been more limited in 
scale and scope. However, remote sensing now offers powerful approaches to assessing patterns and trends in 
water quality2,12–15, and data harmonization efforts allow for greater interoperability between in situ collections 
and remote sensing imagery16,17. Among studies of remotely sensed metrics of water quality, the majority have 
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centered around specific constituents, such as secchi disk depth, chlorophyll, or suspended sediment, without 
necessarily offering holistic metrics of ecosystem productivity.

Lake trophic state (LTS) is an example of a metric intended to provide holistic assessments of a lake’s aggre-
gate physical (e.g., light attenuation), chemical (e.g., nutrient concentrations), and biological processes (e.g., 
productivity). Broadly speaking, LTS is a property closely associated with a lake’s characteristic autochthonous 
and allochthonous productivity as well as water color18. Eutrophic lakes are green, oligotrophic lakes are blue, 
and dystrophic lakes are brown (Fig. 1). From color-trophic state connections, fundamental limnological prin-
ciples center around linking trophic states to characteristic properties (Fig. 1). For example, oligotrophic lakes 
are usually characterized by having lower phosphorus concentrations, low offshore but comparably higher near-
shore productivity, and low colored dissolved organic matter (Fig. 1). In contrast, eutrophic lakes have higher 
phosphorus concentrations and higher phytoplankton biomass (Fig. 1).

In a management context, the language of LTS has historically been used to describe conditions relative 
to nutrient enrichment. For example, following the 1971 announcement of US Federal efforts to limit the use 
of phosphorus in detergents, the U.S. Environmental Protection Agency (U.S. EPA) and state water resource 

Fig. 1  Nutrient-Color Paradigm (NCP) scheme for classifying oligotrophic, eutrophic, dystrophic, and 
mixotrophic lakes. Schematic is adapted from Williamson et al.22 and Webster et al.23, and characteristic 
lake descriptions broadly stem from results presented in Leech et al.24 and Oleksy et al.92 Within each NCP-
quadrant, there are a suite of physical, chemical, and biological characteristics that distinguish each type of lake: 
colored Dissolved Organic Matter (cDOM), primary production, cyanobacterial abundance, and higher order 
production. Lower cDOM concentrations (blue water drops) are characteristic in oligotrophic and eutrophic 
lakes. When cDOM is low, light can transmit through the water column more deeply, allowing for primary 
producers to undergo photosynthesis and zooplankton to consume primary producers (oligotrophic). When 
nutrients, such as phosphorus, are at higher concentrations and cDOM is low (eutrophic), primary production, 
cyanobacterial abundance, and higher order production can all increase, resulting in increased biomass. When 
cDOM concentrations are high (brown water drop) and nutrient concentrations are low (dystrophic), the 
increased light attenuation can result in decreased primary production, which can reciprocally cause decreased 
higher order production. Lastly, when nutrient and cDOM concentrations are both high (mixotrophic), 
primary production, cyanobacterial abundance, and higher order production can exceed values observed 
when solely cDOM or nutrient concentrations alone are higher. Phytoplankton and filled-in zooplankton 
cartoons were downloaded from the University of Maryland Center for Environmental Science Integration and 
Application Network (https://ian.umces.edu/media-library/). Phytoplankton were designed by Tracey Saxby of 
the Integration and Application Network, Dieter Tracey of the Water and Rivers Commission, Kim Kraeer and 
Lucy Van Essen-Fishman of the Integration and Application Network. Transparent crustacean zooplankton and 
rotifer cartoons were drawn by Stephanie E. Hampton.

https://doi.org/10.1038/s41597-024-02921-0
https://ian.umces.edu/media-library/


3Scientific Data |           (2024) 11:77  | https://doi.org/10.1038/s41597-024-02921-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

management agencies launched a National Eutrophication Survey19. The survey assessed trophic state, defined 
as nutrient enrichment, of lakes influenced by wastewater treatment plants. In this case, LTS language was used 
to focus on and communicate about eutrophication, whereas dystrophication aspects of the framework were 
not as prominent. These language patterns likely carry over to contemporary uses. Because discussions may 
have focused on eutrophication in the past, modern tools and frameworks could be enhanced by remotely 
sensed water quality data that capture aspects of both eutrophication and dystrophication. For example, as cli-
mate changes, drinking water utility managers will increasingly face compounding hazards that could negatively 
impact lakes and reservoirs that supply hundreds of millions of people with drinking water20. Data and tools that 
provide remotely sensed information on LTS could improve the ability to observe multidecadal changes in water 
quality and save resources by better targeting field monitoring.

Although LTS is often employed as a classification system for characterizing autotrophic production21, the 
Nutrient-Color Paradigm (NCP) is an empirically tested framework for discriminating LTS based off two varia-
bles: (1) phosphorus concentrations, a proxy for nutrient availability and primary productivity; and (2) colored 
dissolved organic matter or turbidity measured in platinum-cobalt units, both proxies for water transpar-
ency22–24. By combining characteristic metrics of a lake’s primary productivity and optical properties, the NCP 
presents a powerful system for discriminating LTS, where both autochthonous and allochthonous processes are 
considered. Leveraging the relationship between LTS, nutrient concentrations, and water clarity, it is possible to 
transform remotely sensed lake surface reflectance observations into meaningful limnological and ecosystem 
properties.

Here, we present the first national-scale compendium of LTS that has been built from remotely sensed lake 
color (i.e., red, green, blue, and near-infrared surface reflectances). The dataset, referred to as LTS-US, is derived 
from (1) coordinated, continental-scale in situ measurements, where LTS has been documented for select lakes 
and years, and (2) characteristic Landsat surface reflectance values for each lake’s Chebyshev center (the point in 
a polygon furthest from the edge). Using in situ LTS, we can build predictive models to associate LTS with char-
acteristic reflectance values, and then apply predictive models to lakes with unknown trophic states. Together, 
the dataset contains predictions for 55,662 lakes of at least 10 ha in area with annual estimates of LTS from 1984 
through 2020. By coupling satellite-based remote sensing with fundamental limnological principles, the LTS-US 
dataset provides the means to apply the NCP at the national scale to identify macroscale patterns and trends 
in LTS. Further, this approach moves beyond remote sensing of individual parameters to provide insights into 
lakes’ physical, chemical, biological, and ecosystem properties.

Methods
The LTS-US dataset is constructed using a four-part pipeline, as shown in Fig. 2: (1) aggregate training data, 
(2) create classification models, (3) apply predictions to lakes outside of the training data, and (4) assess model 
performance and prediction validity. Individual steps within the pipeline are described below.

Step 1: Identify Parent Datasets.  U.S. Environmental Protection Agency National Lakes Assessment.  In situ  
measurements of total phosphorus and true color were compiled from the U.S. EPA’s National Lakes Assessment 
(NLA)25–29, a synoptic sampling campaign of lakes, ponds, and reservoirs, hereafter collectively referred to as 
“lakes”, conducted in the contiguous U.S. every five years. Lakes used in this analysis were sampled in the summer 
(June-September) of 2007 (n = 1,028), 2012 (n = 1,038), or 2017 (n = 1,005). Lakes were selected from the National 
Hydrography Dataset (NHD, https://www.usgs.gov/national-hydrography/national-hydrography-dataset) using 
a randomized design stratified on aggregated Omernik level III ecoregion30 and lake surface area. The minimum 
surface area for inclusion in the 2007 assessment was 4 ha but owing to increasing resolution in the NHD was 
reduced to 1 ha for the 2012 and 2017 assessments. Natural lakes and reservoirs were treated equally in the site 
selection process.

To inform internal quality assurance within a campaign, 10% of the lakes were sampled twice within a field 
season. Approximately 25% of lakes were targeted for resampling in multiple years to examine temporal change. 
State, Tribal, Federal, and contractor field crews evaluated lakes on site to ensure that selected lakes met criteria 
for inclusion in the field campaign (e.g., lake ≥1 m deep). A wide set of measurements were collected at each 
sampled lake, but we only provide details on the variables used in this analysis. Additional details, protocols, and 
data are available online (https://www.epa.gov/national-aquatic-resource-surveys/nla).

Total phosphorus and true color were collected and processed in the 2007, 2012, and 2017 field cam-
paigns25,26,28. In natural lakes, field crews sampled in a deep area of the lake regardless of whether the sample 
location was in the geometric center of the system. In reservoirs, field crews were asked to find a midpoint in the 
reservoir that was reasonably lentic, deep, and away from a dam. In lakes and reservoirs deeper than 50 m, field 
crews sampled from a location with a maximum depth of 50 m. Water was collected from 0–2 m using a vertical 
integrated water sampler. In lakes where the photic zone (2x Secchi depth) was <2 m, sampling was limited to 
the photic zone to prevent sampling of hypolimnetic water. All water samples were placed on ice and shipped 
overnight to the Willamette Research Station in Corvallis, Oregon for analysis. True color was estimated by 
visual comparison of filtered water samples to a calibrated glass color disk31. Total phosphorus concentrations 
were measured with manual alkaline persulfate digestion, followed by automated colorimetric analysis (ammo-
nium molybdate and antimony potassium tartrate under acidic conditions, with absorbance at 880 nm) using a 
flow injection analyzer following standard method 4500-P-E32. Detailed descriptions of all water quality analyses 
are available in the NLA Laboratory Operations Manuals25,27,29.

HydroLAKES.  HydroLAKES (v1.0)33 is a compendium of more than 1.4 million lake and reservoir shape-
files globally, with surface area of at least 10 ha. For an individual waterbody, HydroLAKES contains its spatial 
extent and location (using georeferenced polygons), a unique identifier (ranging from 1 to 1,427,688), and its 
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morphological (area, mean depth, elevation, shoreline length etc.), hydrological (e.g., residence time, discharge, 
and watershed area), and geographical (e.g., name, country, continent) properties. HydroLAKES is a compila-
tion of existing lake databases, with sources from government agencies (e.g., Natural Resources Canada, U.S. 
Geological Survey, European Environment Agency) and from remote sensing studies (for example, Shuttle 
Radar Topographic Mission Water Body Data, Global Lakes and Wetlands Database, and Global Reservoir and 
Dam Database). Most of the lake polygons are sourced from the Shuttle Radar Topographic Mission Water Body 
Data for regions between 60°S and 60°N34, supplemented by other datasets for higher latitudes and for under-
represented regions. More detailed information on the creation and validation of the HydroLAKES dataset can 
be found in Messager et al.33.

LimnoSat.  The LimnoSat-US35 dataset comprises over 22 million remotely sensed observations of lake surface 
reflectance from 1984 to 2020. Observations cover 55,662 lakes greater than 10 ha33 aggregated from Landsat 5, 
7, and 8 Collection 1 imagery. Each observation was calculated by taking the median surface reflectance within 
120 meters of each lake’s Chebyshev center, defined as the point farthest from shore and usually located at the 
lake’s deepest point36. While many valid choices of buffer distance exist, LimnoSat-US employed a 120 m buffer 
to capture reflectances from a maximum of 64 Landsat pixels, which should prevent the values of a few pixels 
from influencing the mean. Further, extracting reflectance values from the Chebyshev center minimizes signals 
due to bottom reflectance and adjacent land pixels. For each Landsat observation, non-high confidence water 
pixels were masked using the Dynamic Surface Water Extent algorithm37. Observations were removed if the 
scene cloud cover was greater than 75%, any snow, ice, cloud, cloud shadow38, or hillshadow was detected over 
the lake’s Chebyshev center, or if there were fewer than eight high confidence water pixels within the 120 meter 
buffer of the lake’s Chebyshev center. For certain lakes, these filters lead to extended periods (i.e., months to 
years) with limited observations (see Fig. 2 in Topp et al.2). Data in LimnoSat-US are presented in a tabular for-
mat, where each row reflects a Landsat overpass for a given waterbody, and columns include median Collection 
1 surface reflectance values by band extracted from pixels within 120 m of the Chebyshev center, scene-wide 
cloud cover, date of imagery acquisition, and number of water pixels within 120 m of the Chebyshev center.

Step 2: Define lake trophic state.  Many lakes across the United States are experiencing simultaneous 
changes in their water clarity, with some lakes getting greener due to eutrophication, and others getting browner 
from increasing terrestrially-derived organic matter, and some are simultaneously ‘greening’ and ‘browning’24. 

Fig. 2  Flowchart for data harmonization, modeling, and prediction steps of the LTS-US dataset pipeline. 
Steps shaped as a file-folder correspond to an intermediary data product, and rectangles correspond to 
an intermediary model. Data aggregation combines data from the U.S. EPA’s National Lakes Assessment, 
HydroLAKES, and LimnoSat-US to create a single, harmonized dataset of in situ lake trophic states with paired 
remotely sensed surface reflectances. Model training steps create multinomial logistic regression, multilayer 
perceptron, and extreme gradient boosted regression tree models. Each fitted model is then applied to the 
entire LimnoSat-US data, where national-scale predictions are made for each modeling method. Probabilistic 
predictions are then averaged to create ensemble predictions of lake trophic state. Quality control steps 
(described in “Technical Validation”) use both the ensemble and individual model predictions to assess model 
performance. Each of these four components correspond to a piece of the overall data production pipeline: 
data aggregation functions are described in “1_aggregate”; model training functions are described in “2_train”; 
national-scale prediction functions are described in “3_predict”; quality control procedures are described in 
“4_qc”. Flowchart was designed with the “DiagrammeR” package93.
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Given the need to discriminate between lakes that may be browning and/or greening, the Nutrient Color 
Paradigm (NCP) is a useful tool to assign LTS based on a lake’s characteristic color.

The NCP was initially proposed in the early 20th century, emphasizing that both autochthonous and alloch-
thonous processes are important to understanding LTS39–41. Specifically, water color often affects algal biomass 
and light transparency independent of nutrient availability. Rodhe42 first assembled the four quadrants of the 
NCP, placing autochthony on the horizontal axis and allochthony on the vertical axis. This second dimension 
distinguishes “oligotrophic” (low nutrient, low color) and “eutrophic” (high nutrient, low color) lakes from 
“dystrophic” (low nutrient, high color) and “mixotrophic” (high nutrient, high color) lakes.

Although metrics such as Trophic State Index21 gained popularity for providing instantaneous assessments 
of a lake’s autotrophic production, Williamson et al.22 encouraged a focus on NCP for lake classification given 
the importance of both nutrients and colored dissolved organic matter to lake structure and function. The NCP’s 
implementation is empirically supported by studies like Webster et al.23, where an analysis of ~1,600 temper-
ate lakes in North America demonstrated that within lakes grouped by total phosphorus concentration (i.e., 
oligotrophic, mesotrophic, or eutrophic), those with ‘browner’ color (indicative of dissolved organic matter) 
had higher volumetric chlorophyll-a concentrations and shallower Secchi disk depths. A similar pattern was 
observed by Nürnberg and Shaw43, which analyzed 600 lakes spanning a latitude of 39°S to 82°N.

Here, we used the thresholds published in Webster et al.23 to classify lakes in the NLA dataset. Lakes were 
described as oligotrophic or ‘blue’ if total phosphorus concentration was less than 30 μg/L and true color was 
less than 20 platinum cobalt units (PCU), eutrophic or ‘green’ if total phosphorus was greater than 30 μg/L and 
true color was less than 20 PCU, dystrophic or ‘brown’ if total phosphorus was less than 30 μg/L and true color 
was greater than 20 PCU, and mixotrophic or ‘murky’ if total phosphorus was greater than 30 μg/L and true 
color was greater than 20 PCU (Fig. 1). Thresholds for total phosphorus are based on long established and widely 
accepted ranges affecting primary productivity18. True color thresholds are derived from Nürnberg and Shaw43. 
Eutrophic and mixotrophic classifications were combined into a single grouping due to similar spectral charac-
teristics (see Step 3). Notably, the NCP assumes that phosphorus is the limiting factor for primary production. 
While there are instances where nitrogen can be the limiting nutrient44,45, ecosystems with low concentrations 
of total phosphorus also tend to have low total nitrogen concentrations46.

Step 3: Create a training dataset.  First, to create a dataset of lakes with in situ LTS measurements, we 
aggregated all total phosphorus and true color measurements from the U.S. EPA NLA 2007, 2012, and 2017 data 
(Figs. S1–3, Table S1). Although the NLA includes lakes smaller than 10 ha, we only used lakes of at least 10 ha in 
area for consistency with the HydroLAKES database. We then assessed the extent to which seasonal shifts in total 
phosphorus concentrations and true color values may alter interpretation of trophic state for a given lake using 
the subset of lakes that were sampled intra-annually. For lakes that were sampled multiple times within a U.S. 
EPA NLA campaign, we calculated the percentage of lakes that transitioned between trophic states within a single 
year and found that lakes broadly remained in the same NCP trophic state throughout a given summer (85.1% 
of lakes). Of the lakes that changed trophic state during a sampling season (14.9%), the majority transitioned 
from oligotrophic (61.5% of changing lakes; 8.7% of all lakes) or dystrophic (15.4% of changing lakes; 2.2% of 
all lakes) to eutrophic/mixotrophic. Few lakes transitioned from oligotrophic to dystrophic (15.4% of changing 
lakes; 2.2% of all lakes), and even fewer transitioned to oligotrophic from either dystrophic (3.9% of changing 
lakes; 0.5% of all lakes) or eutrophic/mixotrophic (3.9% of changing lakes; 0.5% of all lakes). No lakes transitioned 
from eutrophic/mixotrophic to dystrophic across all three NLA campaigns. Broadly, lakes transitioned between 
trophic states when lakes were located near a threshold for trophic state delineation (15–45 μg/L total phosphorus 
or 11–29 PCU). These results mirror those in Leech et al.24 and suggest that despite some lakes changing trophic 
states within a summer, the majority of lakes do not transition and those that do transition usually fall along an 
edge of a NCP-determined trophic state. Thus, for lakes sampled twice in one sampling campaign, we averaged 
total phosphorus and true color estimates.

Second, to match the in situ trophic states with remotely sensed imagery, we merged the complete 2007, 2012, 
and 2017 NLA dataset with the LimnoSat-US dataset35, where each NLA lake-year had corresponding Landsat 
spectral data. Because the NLA is designed to describe lakes’ summertime conditions, we filtered LimnoSat-US 
observances for those only occurring in June, July, and August, which we a priori defined as the summertime 
season for the contiguous U.S.; then, to create a characteristic reflectance for a given lake-year, we computed each 
lake-year’s median summertime reflectance for red, blue, green, and near-infrared bands. Because LimnoSat-US 
compiles reflectance values from Landsat 5, 7, and 8, there are differences in the number of images per lake 
and year. In particular, images from 1984 through 1998 were solely collected from Landsat 5, when lakes aver-
aged 3.04 images per summer (minimum average images: 2.43 images; maximum average images: 3.64 images). 
From 1999 through 2012, summertime imagery was gathered from Landsat 5 and 7, when lakes averaged 5.64 
images per summer (minimum average images: 3.37 images; maximum average images: 6.42 images). From 
2013 through 2019, summertime imagery was collected from Landsat 7 and 8, when lakes averaged 5.42 images 
per summer (minimum average images: 4.87 images; maximum average images: 5.87 images).

Third, to better characterize spectral bands’ relative reflectance, we normalized each lake’s median sum-
mertime reflectance for the red, green, blue, and near-infrared band by the sum of the summertime reflectance 
values of all four bands. This normalization allowed us to differentiate lakes by trophic state based on their 
most prominent reflectances. For example, we anticipated that oligotrophic lakes would be dominated by high 
blue and green reflectances relative to the red and near-infrared bands. In contrast, dystrophic lakes would be 
dominated by the near-infrared band relative to green and red bands, because dystrophic lakes tend to have 
exceptionally low primary productivity and elevated dissolved organic matter. When assessing mixotrophic 
and eutrophic lakes, spectral characteristics were nearly identical, and to be conservative, we combined mix-
otrophic and eutrophic lakes into one category ‘eutrophic/mixotrophic’. These relative reflectances for all three 
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lake trophic states were ultimately intended to discriminate among lakes that were optically similar in the visible 
spectrum (i.e., oligotrophic and dystrophic lakes). Notably, the decision to use median summertime relative 
reflectances differed from previous work2 that focused on the dominant wavelength, which is an aggregation 
of wavelengths detected in the visible spectrum and has been used to discriminate autotrophic production 
(i.e., blue vs green lakes), but not dystrophic states. Thus, our methods are better suited towards discriminating 
between oligotrophic and dystrophic lakes, because the dominant wavelength approach would consider both of 
these lake types to be “blue”.

Step 4: Create classification models.  To find an optimal performing classifier for lakes with unknown 
LTS, we employed three classification methods to predict trophic state: multinomial logistic regression47, extreme 
gradient boosting regression48, and a neural network using multilayer perceptrons49. Logistic regression is a para-
metric classification method, whereas gradient boosted regression and multilayer perceptrons are machine learn-
ing methods. The methods differ in how they make classifications. Using trophic state as a categorical response 
variable, logistic regression applies a linear regression of log-odds ratios to model the probability of a given 
trophic state for each lake. In contrast, gradient boosted regression applies decision trees to iteratively improve its 
predictions. Multilayer perceptrons apply a type of feedforward artificial neural network in which a backpropaga-
tion algorithm is used to subsequently update the individual weights of each neuron unit by comparing modeled 
predictions to the training data.

For each modeling method, we used z-scored, relative red, green, blue, and near-infrared reflectances as 
predictors. Model performance and potential for overfitting were assessed using a 90:10 train:test data split with 
spatial-holdout cross-validation. Initial hyperparameters for the gradient boosted regression and multilayer 
perceptron models were tuned by holding out 20% of each trophic class from the training observations to use 
for validation and conducting a coarse grid-search across the hyperparameter space. For each combination of 
hyperparameters, models were trained until validation performance did not increase for 20 consecutive epochs 
using categorical cross entropy as the objective function. During the multilayer perceptron hyperparameter tun-
ing, we iterated through model fits using all combinations of 5, 10, and 20 hidden layers as well as a learning rate 
of 0.01, 0.001, and 0.0005. Multilayer perceptron hyperparameter tuning metrics were optimal for models with 
20 hidden units and a learning rate of 0.001. During the gradient boosted regression hyperparameter tuning, 
we iterated through model fits using all combinations of 2, 3, and 4 maximum tree depths, subsample as well as 
column samples of 0.5 and 0.8, step sizes of 0.01 and 0.1, as well as a minimum child weight of 1 and 3. Gradient 
boosted regression hyperparameter tuning metrics were optimal for models with a max depth of 4, subsample of 
0.5, column sample of 0.5, step size of 0.01, and minimum child weight of 1. For both multilayer perceptron and 
gradient boosted regression models, best performing hyperparameter tuning metrics were assessed by having 
lowest validation loss values.

These hyperparameters were then used in a spatial cross-validation routine50, where a given lake was held 
out as test data if it was included in the training data. During the spatial cross-validation routine, training data 
were divided into five folds, such that lakes within each test partition were not present in remaining training 
partitions (i.e., test metrics represent performance on unseen lakes). Training data within each fold were then 
partitioned into a 90:10 split with 10% of each trophic class set aside for an inner-loop fold validation. Models 
within each fold were trained using an early stopping criterion of 20 epochs to avoid overfitting on the training 
data. This inner-fold validation was additionally used to hypertune the best number of epochs for the final mod-
els. Finally, overall error metrics were calculated based on the mean prediction accuracy of the test partitions 
withheld from the inner-loop training of each fold. All reported metrics are based on the test partitions from the 
spatial cross-validation routine while final models were trained on the full dataset using the hyperparameters 
identified from the grid-search and inner-loop validation routines. We applied the final models to make predic-
tions for all 55,662 lakes in the LimnoSat-US dataset.

Step 5: Assess and compare model performance.  To evaluate the final fitted models, we used test 
data predictions from the spatial-holdout routine to calculate each model’s overall and balanced accuracy, 
receiver-operator-characteristic (ROC) curves, as well as the area under the curve (AUC) of the ROC curve. 
Overall accuracy was calculated as the sum of true positives and true negatives divided by the total number 
of LTS predictions. Balanced accuracy was calculated as the sum of a true positive and true negative results 
for a single lake trophic state. Whereas overall accuracy can be biased towards more prevalent trophic states 
(i.e., eutrophic and oligotrophic lakes), balanced accuracy is useful to assess a model’s capacity to predict 
more rare trophic states (i.e., dystrophic lakes). As an additional metric of model performance, we calculated 
the AUC of each model’s ROC curve. The ROC curve visually graphs the relationship between the rate of 
a correct classification with the rate of a false classification. An AUC of 0.5 indicates a false prediction rate 
increases 1:1 with the rate of a correct prediction. AUCs greater than 0.5 imply a model performing better 
than random, even when a false positive rate is artificially inflated. Thus, comparing overall and balanced 
accuracy as well as ROC curves and AUCs allowed us to assess how models performed broadly as well as 
how robustly models predicted trophic state correctly.

Beyond model performance, we also evaluated whether model coefficients and variable importance for 
trophic state discrimination reflected NCP groupings. For increased interpretability across all three models, we 
employed SHAP (SHapley Additive exPlanation) analysis51–53 to better understand individual feature impor-
tance and influence in model predictions. SHAP analysis yields insight into the marginal contribution of a given 
feature (e.g., near-infrared spectra) on model output - in this case trophic state - and helps decode ‘black box’ 
results. Understanding the relative contribution of individual features in trophic state prediction not only helps 
explain feature roles in model accuracy and misclassification but also quantitatively connects features, such 
as remotely sensed data, to the biophysical parameters in which LTS prediction is grounded. SHAP feature 
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contribution was calculated for blue, green, red, and near-infrared Landsat spectra. SHAP feature contribu-
tion was scored for oligotrophic, dystrophic, and eutrophic/mixotrophic classifications and across each of the 
three models. This scoring illuminates the relationship among feature values and SHAP contribution for a given 
trophic state classification and for a given model. Specifically, for classification problems, a positive SHAP value 
indicates that a given input contributed to a positive classification and a negative value indicates the input con-
tributed to a low probability for a given classification.

Data Records
The LTS-US dataset54 is available at the Environmental Data Initiative (https://doi.org/10.6073/
pasta/212a3172ac36e8dc6e1862f9c2522fa4) and is structured in a tabular format, where each row is a lake-year 
combination. The main dataset is contained in “ensemble_predictions.csv” and is structured in a way that pro-
vides both categorical LTS predictions as well as probabilities for each LTS prediction. The probabilities reported 
in “ensemble_predictions.csv” are averaged probabilities generated from each of the three modeling methodol-
ogies. An additional tabular dataset (“individual_predictions.csv”) contains probabilities generated for each of 
the three modeling methodologies and can be merged with “ensemble_predictions.csv” by the “Hylak_id” and 
“year” columns.

We provide raw and average predicted LTS probabilities as well as variance among models for a given LTS 
prediction to allow future users to filter predictions of a certain threshold for their particular analysis. Although 
many thresholds may exist, reporting probability thresholds used in subsequent analyses will help maintain 
reproducibility and synthesis across studies. Below, we detail column names and metadata for each of the core 
datasets contained within the LTS-US data product.

“ensemble_predictions.csv”

Hylak_id
�HydroLAKES unique identifier of lake. Preserved from HydroLAKES input data to enable future merging 
with HydroLAKES attributes.

year
Year, spans 1984 through 2020.
categorical_ts

�Categorical predicted lake trophic state (i.e., oligo, eu/mixo, dys). Categorical prediction is based on the 
highest probability among mean_prob_dys, mean_prob_eumixo, and mean_prob_oligo.

mean_prob_dys
�Probability that a lake-year combination is dystrophic. Probability is calculated by averaging probabilities 
from all three modeling methods.

mean_prob_eumixo
�Probability that a lake-year combination is eutrophic or mixotrophic. Probability is calculated by averaging 
probabilities from all three modeling methods.

mean_prob_oligo
�Probability that a lake-year combination is oligotrophic. Probability is calculated by averaging probabilities 
from all three modeling methods.

var_prob_dys
Variance in probabilities among all three modeling methods that a given lake-year is dystrophic.

var_prob_eumixo
Variance in probabilities among all three modeling methods that a given lake-year is eutrophic/mixotrophic.

var_prob_oligo
Variance in probabilities among all three modeling methods that a given lake-year is oligotrophic.

“individual_predictions.csv”

Hylak_id
�HydroLAKES unique identifier of lake. Preserved from HydroLAKES input data to enable future merge with 
HydroLAKES attributes.

year
Year, spans 1984 through 2020.

prob_dys_mlr
�Probability that a lake-year combination is dystrophic. Probability is calculated by multinomial, multiple 
logistic regression.

https://doi.org/10.1038/s41597-024-02921-0
https://doi.org/10.6073/pasta/212a3172ac36e8dc6e1862f9c2522fa4
https://doi.org/10.6073/pasta/212a3172ac36e8dc6e1862f9c2522fa4


8Scientific Data |           (2024) 11:77  | https://doi.org/10.1038/s41597-024-02921-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

prob_eumixo_mlr
�Probability that a lake-year combination is eutrophic or mixotrophic. Probability is calculated by multino-
mial, multiple logistic regression.

prob_oligo_mlr
�Probability that a lake-year combination is oligotrophic. Probability is calculated by multinomial, multiple 
logistic regression.

prob_dys_mlp
�Probability that a lake-year combination is dystrophic. Probability is calculated by multilayer perceptron.

prob_eumixo_mlp
�Probability that a lake-year combination is eutrophic or mixotrophic. Probability is calculated by multilayer 
perceptron.

prob_oligo_mlp
Probability that a lake-year combination is oligotrophic. Probability is calculated by multilayer perceptron.

prob_dys_xgb
�Probability that a lake-year combination is dystrophic. Probability is calculated by a gradient-boosted 
regression.

prob_eumixo_xgb
�Probability that a lake-year combination is eutrophic or mixotrophic. Probability is calculated by a 
gradient-boosted regression.

�prob_oligo_xgb
�Probability that a lake-year combination is oligotrophic. Probability is calculated by a gradient-boosted 
regression.

Technical Validation
Model performance diagnostics.  To assess how each model correctly classified training data, we com-
pared the model accuracies, balanced accuracies, and AUC of ROC curves. Overall and balanced model accura-
cies were similar, where all models had accuracies ranging from 72.4 to 72.9% and balanced accuracies ranging 
from 69.9 to 71.5%. AUCs of ROCs were likewise similar across all three model techniques, ranging from 0.88 to 

Fig. 3  Confusion matrices from each modeling approach. Confusion matrices were generated using the test 
partitions for each spatial-holdout cross-validation. Circle size is scaled by the number of lakes falling within 
each category. Trophic states for model predictions and reference data correspond to the acronyms “dys” for 
“dystrophic”, “eu/mixo” for “eutrophic/mixotrophic”, and “oligo” for “oligotrophic”. Model acronyms are located 
as the title for each confusion matrix, where “MLP” signifies “Multilayer Perceptron”, “XGB” signifies “Gradient 
Boosted Regression”, and “Logit” signifies “Multinomial Logistic Regression”.
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0.90 (Figure S4). These combined metrics suggest that all three modeling approaches performed similarly, when 
assessing model performance with global metrics.

Although models performed similarly at high levels, they varied more in their robustness to classify 
dystrophic lakes (Fig. 3). Machine learning-based methods, such as multilayer perceptron (60%) and gradient 
boosted regression (58%), had higher balanced accuracies, whereas distribution-based methods, such as logistic 
regression (55%), had lower balanced accuracies. These differences were largely driven by deviations in true pos-
itive rates (47.5–50.6%), whereas true negative rates were higher (91.8–92.7%). This difference in true negative 
and true positive rates is likely due to spectral similarities between oligotrophic and dystrophic lakes, where both 
are characterized by low primary production in comparison to eutrophic/mixotrophic lakes. Although these 
differences only span 5%, they may be important, given that dystrophic lakes tend to be uncommon relative to 
oligotrophic and eutrophic lakes23. Such differences imply variation in each model’s robustness to predict rarer 
trophic states, but our overall metrics of model performance highlight exceptional congruence across all three 
modeling techniques.

Spatial patterns in lake classification.  To evaluate spatio-temporal patterns in trophic state classification, 
we created spatial confusion matrices, where predictions and reference sites were plotted across the entire United 
States. We a priori hypothesized that when misclassifications result from lake-specific deviations, misclassifica-
tions should be distributed throughout the United States without any clear spatial patterns. In the event that spa-
tial clustering of misclassified lakes occurred, these patterns should be more pronounced where high densities of 
a given lake trophic state are located. In cases when lake clustering appears in an unexpected area, these patterns 
should be more attributed to place-based irregularities in spectral data.

Confusion between oligotrophic and eutrophic/mixotrophic lakes were spatially distributed throughout the 
entire continental United States, with no evidence of spatial clustering (Figures S5–S7). In contrast, dystrophic 
misclassifications were broadly isolated to the Upper Midwest and Upper Northeast regions. Consistent with 
our hypotheses, these regions are associated with increased densities of dystrophic lakes, suggesting that optical 
similarities between oligotrophic and dystrophic lakes in these regions may lead to increased misclassification. 
Notably, dystrophic lakes tended to be misclassified as oligotrophic, whereas oligotrophic lakes tended to not be 

Fig. 4  True and false classifications from testing data displayed on the NCP axes. Hexbins are colored by the 
number of lakes they contain. Labels reflect the percentage of lakes correctly or incorrectly predicted within a 
given modeling technique. Incorrect LTS predictions tend to be located at the nexus of trophic state groupings. 
Correct predictions tend to more accurately reflect the breadth of ranges that can be observed within each of the 
LTS groupings.
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misclassified as dystrophic, meaning that our predictions should be conservative with assigning an individual 
lake as dystrophic.

Assessing patterns in lake classification.  Given that lake trophic state classifications may be a product 
of a lake’s limnological, morphological, and geographic properties, we performed a series of analyses of variance 
(ANOVA) to test for significant differences (i.e., p-value < 0.05) in lake classification accuracy. For each ANOVA, 
a lake property was the response variable, and predictors were lake trophic state, model correctness (i.e., correct 
or incorrect classification), and model type. All response variables were log-transformed to approximate a nor-
mal distribution. Because each analysis had an unbalanced sample size, we calculated Type II Sum-of-Squares55. 
Residuals for each model were assessed for normality and homogeneity of variance.

The main goal of each ANOVA was to assess whether variation in a lake parameter could be associated with 
variation in model methodologies, model correctness, or trophic states themselves. Consequently, our ANOVAs 
do not include interaction terms, as most interactions would not be helpful for understanding patterns in how 
our classification models performed.

NCP patterns in lake classification.  To assess how a lake’s misclassification may be related to its position 
in the NCP, we assessed where correctly and incorrectly classified lakes were located in the NCP. Lakes that were 
incorrectly classified tended to be located near total phosphorus (30 ± 15 μg/L) and color (20 ± 9 PCU) thresh-
olds, with a large portion at the nexus of the total phosphorus and color thresholds (Fig. 4). Across all modeling 
techniques, correctly classified lakes spanned a wider range across both axes, especially total phosphorus. Median 
total phosphorus concentration for misclassified lakes was 24 μg/L (range: 1–4,772 μg/L), whereas median total 
phosphorus concentration for correctly classified lakes was 36 μg/L (range: 0.24–4,144 μg/L). Similarly, median 
PCU for correctly (14 PCU; range: 0–724 PCU) and incorrectly (16 PCU; range: 0–350 PCU) classified lakes 
were along the edge of the color threshold of 20 PCU. When assessing total phosphorus and color independently, 
ANOVA suggested that total phosphorus concentrations were significantly different for correctly and incorrectly 
classified lakes, whereas differences in color were not significantly different across correctly and incorrectly clas-
sified lakes (Table 1; Fig. 5).

Beyond total phosphorus and color patterns influencing lake classification, our analyses of lakes that transi-
tioned trophic states within a summer suggest that lakes along a NCP boundary (i.e., near total phosphorus or 
color threshold) are more prone to misclassification. Among lakes that transitioned within a summer, the most 
frequent change in lake trophic state was among lakes switching from oligotrophic to eutrophic (61.5% of NLA 
lakes that changed in a summer; 8.7% of all NLA lakes). Considering that both total phosphorus concentrations 
as well as summertime lake phenologies are associated with algal production and can cause a lake to transition 
categories within a summer, our results of NCP patterns are not surprising. Rather, confusion along the total 
phosphorus axis of the NCP, an axis that corresponds with autotrophic productivity, is concordant with the idea 
that a lake can experience moments of eutrophy - e.g., a pulse of nutrients or algal growth - while otherwise 
being oligotrophic for the majority of the summer. Therefore, classifications made for lakes at the boundary of 
trophic states can be challenging, and our validation analyses describe total phosphorus and color conditions 
where misclassifications may be more common.

Morphological and locational patterns in lake classification.  At the spatial resolution of Landsat’s 
sensors, there is a risk of “mixed pixels”, where a pixel includes water with fractions of adjacent bare land or veg-
etation. Given the difference in optical contrast between water and other features, even minor differences can 
lead to large errors in estimating surface reflectance. A major source of uncertainty in lake optical water quality 
estimation is the separation of water and atmospheric effects56. The latter increases in severity near land, and this 
adjacency effect can extend several kilometers, depending on the state of the atmosphere.

Before assessing how edge and lakebed effects may influence model classifications, we first ensured that 
spectral differences between each trophic state in our dataset were greater than differences within a trophic state 
when accounting for lake area, depth, and shape. To evaluate how edge and lakebed effects may be present within 
our training and test data, we used lake area, average depth, and shoreline development (a metric of how closely 
a lake’s shape resembles a circle) data from HydroLAKES33 as well as maximum depth from the GLOBathy 

Sum-of-Squares Degrees of Freedom F-value P-value

(A) Total Phosphorus

Model 0 2 0.003 0.997

Correct 5.62 1 43.64 <0.001

Trophic State 1,335.42 2 5,183.4 <0.001

(B) Color

Model 0 2 0 1

Correct 0 1 0.02 0.89

Trophic State 286.62 2 1521.80 <0.001

Table 1.  ANOVA table for total phosphorus and true color measurements in response to model type, model 
correctness, and trophic state. ANOVAs were assessed with Type II Sum-of-Squares to account for unbalanced 
sample sizes. To approximate a normal distribution, both total phosphorus and color were log-transformed. A 
p-value threshold of 0.05 was used to assess significance for each predictor.
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dataset57. While evaluating lake area, we noticed that smaller lakes tended to have higher near-infrared rel-
ative reflectance values, and relative near-infrared reflectance generally decreased with increasing lake area 
(Figures S8–S10). Because LimnoSat-US aggregates reflectance data at the lake’s Chebyshev center, the point in 
the lake farthest away from shore, smaller lakes would likely have Chebyshev centers that are closer to the shore-
line. As terrestrial near-infrared reflectances tend to be higher than aquatic near-infrared reflectances, smaller 
lakes with Chebyshev centers closer to the shoreline may be associated with increased near-infrared signatures. 
Similarly, relative blue reflectance increased with increasing lake surface area, which would likewise be expected, 
as larger lakes likely have a Chebyshev center that is farther from shore, and therefore, less influenced by shore-
line effects. With respect to lakebed effects, the shallowest lakes tended to have slightly elevated relative green 
reflectance, which would be consistent with increased primary production. Across all trophic states, lakes with 
average depths of 1–10 m were also associated with increased relative near-infrared reflectance, suggesting that 
these lakes may have the highest near-infrared reflectance due to reflectance signatures of lakebed substrate or 
increased benthic algal production.

To evaluate how models might misclassify lakes in response to morphological, geographic, and biological 
characteristics, we examined how lake depth, elevation, surface area, shoreline development, and mean chloro-
phyll concentration may correspond to correct and incorrect classifications. Average and maximum lake depth 
can be used to evaluate a lake’s potential for lakebed effects, where reflectance from benthic algae, emergent 

Fig. 5  Density plots for total phosphorus (a) and true color (b) values as well as absolute differences from 
NCP thresholds for total phosphorus (c) and true color (d) among correctly (i.e., True; orange) and incorrectly 
(i.e., False; purple) classified trophic states. Because misclassifications appeared to increase in frequency 
near threshold values for trophic state classification, we also assessed classification accuracies across absolute 
differences for each variable and threshold value. Across all models, we noticed that misclassifications tended to 
be highest near NCP thresholds for total phosphorus and color. Total phosphorus concentrations of 15–45 μg/L 
tended to be associated with false classifications. True color concentrations of 11–29 PCU tended to be 
associated with a false classification.
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vegetation, or sediment may confound signals for the actual surface of the lake. Assessing classification differ-
ences across elevation ranges can be important for understanding atmospheric effects on reflectance data, where 
higher elevations may have fewer aerosols, and therefore contain fewer misclassifications. Examining misclassi-
fications across lake sizes can reveal potential for adjacency effects, where surrounding geologies or vegetation 
may obscure surface reflectances observed over the lake. Shoreline development can likewise reveal adjacency 
effects, where lakes with more complex shapes but with large areas may be prone to misclassification. Lastly, 
chlorophyll a concentrations can inform that our models are capturing patterns expected through how we oper-
ationally defined LTS, where higher chlorophyll concentrations should be observed in eutrophic/mixotrophic 
lakes relative to dystrophic and oligotrophic lakes.

ANOVA results suggested that average depth, chlorophyll a, maximum depth, shoreline development, and 
elevation differed significantly across correct and incorrect misclassifications (Table 2), although differences 
based on average and maximum depth as well as chlorophyll a were more visually apparent than those observed 
for elevation and shoreline development (Fig. 6). In contrast, lake area did not differ significantly across correct 
and incorrect classifications (Table 2).

Together, these analyses suggest that lakebed reflectance may lead to lake trophic state misclassification, 
whereas edge effects are likely less consequential for inaccurate lake trophic state classifications. In particular, 
shallower oligotrophic lakes (i.e., average depth <5 m and maximum depth <15 m; Fig. 6) and deeper eutrophic 
lakes (i.e., average depth >5 m and maximum depth >15 m; Fig. 6) tended to be misclassified. We speculate 
that these differences may stem from shallower, oligotrophic lakes having pronounced benthic algal growth58 
or emergent macrophytes that can produce a strong green signal. Conversely, deeper eutrophic lakes may have 
less concentrated algal growth in the water column, thereby creating a stronger blue reflectance relative to green 
reflectance and increasing chances for misclassification (see Optical patterns in lake classification). These differ-
ences may also be related to chlorophyll a concentration, where oligotrophic lakes with higher concentrations 
tended to be classified as eutrophic/mixotrophic, and eutrophic/mixotrophic lakes with lower concentrations 
tended to be misclassified as oligotrophic (Fig. 6). Overall, these results correspond with our NCP validation 
analyses, where total phosphorus concentrations were associated with greater misclassifications of oligotrophic 
lakes as eutrophic. Given the potential for lakes to be misclassified because of issues with lakebed reflectance, 
considering whether depth could alter results and building analytical workflows to assess sensitivity to inter-
ference from lakebed reflectance (see SHAP Analysis for more detail) could improve model lake classifications.

Optical patterns in lake classification.  To evaluate how models might misclassify lakes based on reflec-
tance values, we assessed how z-scored relative red, green, blue, and near-infrared reflectance values differed 

Sum-of-Squares Degrees of Freedom F-value P-value

(A) Lake area

Model 0 2 <0.001 1

Correct 0.4 1 0.76 0.36

Trophic State 35.2 2 33.17 <0.001

(B) Average Depth

Model 0 2 0.001 1

Correct 1.61 1 14.94 <0.001

Trophic State 54.32 2 251.53 <0.001

(C) Maximum Depth

Model 0 2 0.001 1

Correct 1.2 1 16.86 <0.001

Trophic State 14.17 2 99.53 <0.001

(D) Elevation

Model 0 2 0.001 1

Correct 3.06 1 10.61 0.001

Trophic State 15.39 2 26.63 <0.001

(E) Shoreline Development

Model 0.0 2 0.002 1.00

Correct 0.726 1 22.33 <0.001

Trophic State 2.09 2 32.16 <0.001

(F) Mean Chlorophyll Concentration

Model 0.0 2 0.000 1.00

Correct 2.88 1 11.40 <0.001

Trophic State 1010.73 2 1998.29 <0.001

Table 2.  ANOVA table for lake morphological and locational properties in response to model type, model 
correctness, and trophic state. ANOVAs were assessed with Type II Sum-of-Squares to account for unbalanced 
sample sizes. To approximate a normal distribution, all response variables were log-transformed. A p-value 
threshold of 0.05 was used to assess significance for each predictor.
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between correctly and incorrectly predicted lake trophic state. Because we used relative reflectances that are 
inherently interdependent, and thus violate ANOVA assumptions, we elected to forgo significance tests for 
whether band ranges differed across modeling methods.

For dystrophic lakes, incorrectly classified lakes, compared to correctly classified lakes, tended to have lower 
z-scored near-infrared and blue band values as well as higher green and red values (Fig. 7). For eutrophic/mix-
otrophic lakes, misclassified lakes tended to have lower values for red and green bands as well as higher values 
for blue bands (Fig. 7). For oligotrophic lakes, incorrectly classified lakes tended to have higher red and lower 
blue band values (Fig. 7).

These inconsistencies in LTS classification correspond with variation that can be present in natural systems. 
Dystrophic lakes are generally characterized as having low primary productivity and high dissolved organic 
matter, which should result in low green band values as well as higher near-infrared values, yet misclassified 
dystrophic lakes tended to have low near-infrared as well as high red and green bands. Eutrophic and mix-
otrophic lakes are generally characterized as having high productivity, which should result in high green values, 
yet misclassified eutrophic and mixotrophic lakes tended to have low green and red as well as high blue bands. 
Oligotrophic lakes should be characterized as having high blue bands, yet misclassified lakes tended to have low 
blue and high red bands, which may be a product of bottom reflectance. Together, these misclassifications likely 
represent lakes that are not characteristic of LTS classifications. For example, a more productive oligotrophic 

Fig. 6  Density distributions for each lake’s average depth, mean summertime chlorophyll a concentration, 
elevation, area, maximum depth, and shoreline development values across true (orange) and false (purple) 
classifications. Values are log-transformed to show characteristic density distributions over a wide range in 
value magnitudes. In general, patterns across true and false classifications were consistent across all three types 
of models. Depth was a primary characteristic for misclassified oligotrophic and eutrophic/mixotrophic lakes, 
where shallower oligotrophic and deeper eutrophic/mixotrophic lakes tended to be misclassified.
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lake could produce a stronger red and green signature and, therefore, be classified as eutrophic. Likewise, less 
productive eutrophic lakes may be optically more similar to oligotrophic lakes and, therefore, be characterized 
by lower red and green bands.

SHAP Analysis.  To evaluate the influence of remote sensing reflectance inputs on final predictions, we 
assessed the distribution of SHAP values calculated for each predictor and for each trophic state. In general, 
SHAP values can be useful for decoding how machine learning and parametric methods may assign relative 
importance to a given predictor, thereby increasing interpretability of a model. In an instance where models are 
classifying lakes based on a priori hypothesized relationships, SHAP values across predictors should correspond 
to the a priori hypothesized relationships. For example, oligotrophic lakes are generally characterized as having 
high blue reflectance relative to red and green, and in a case where models reflect this understanding, SHAP 
values should attribute an oligotrophic classification to high values in the relative blue reflectance. Consistently 
high attributions for blue reflectances should subsequently result in high overall feature importance when  
discriminating oligotrophic lakes.

Fig. 7  Density distributions for each Landsat band’s z-scored, relative reflectance value across true (orange) and 
false (purple) classifications. In general, patterns across true and false classifications were consistent across all 
three types of models. Oligotrophic lakes tended to be misclassified when red bands were high and blue bands 
were low. Conversely, eutrophic/mixotrophic lakes tended to be misclassified when blue bands were high, and 
red bands were low. Dystrophic lakes tended to be misclassified when near infra-red bands were low and when 
green bands were high.
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When evaluating feature importance across trophic states, measured as the mean absolute SHAP value of a 
given feature, all models agreed on the most influential features for classification (Figure S11). Furthermore, the 
distribution of SHAP values reflected limnological understanding of each trophic state’s inherent properties. 
For dystrophic lakes, SHAP values indicate that models relied on low green and high near-infrared and red 
band values, corroborating the idea that dystrophic lakes should have lower primary production and increased 
cDOM22,59 (Figure S11). Predictions for eutrophic and mixotrophic lakes were attributed to high red and low 
blue band values, corresponding with the idea that eutrophic and mixotrophic lakes should have higher algal 
production24 (Figure S11). Conversely, SHAP values for oligotrophic lakes attributed predictions to low red 
and high blue band values, agreeing with the idea that oligotrophic lakes should have lower algal production24 
(Figure S11). Beyond each individual trophic state’s most important predictors, our SHAP analysis mirrored the 
logic of NCP analyses, where lakes with lower true color values (i.e., oligotrophic and eutrophic) were discrimi-
nated more effectively by bands associated with autotrophic capacity, whereas lakes with higher true color values 
(i.e., dystrophic) were discriminated more effectively by bands suggesting decreased autotrophic production and 
increased colored dissolved organic matter.

SHAP values can also provide insight on what drives models to misclassify certain lakes. Specifically, when 
examining smaller, shallower oligotrophic lakes that could potentially be influenced by bottom reflectance or 
adjacency effects, we observed that some misclassifications were attributable to models relying on low relative 
blue reflectance and high relative near-infrared reflectance (Figures S12–S23). These patterns indicate that in 
certain lakes, the models were unable to distinguish the spectral signatures that are potentially attributable to 
sediment or benthic algae as well as shoreline vegetation and soil. The spectral similarity between shallow oli-
gotrophic and deep eutrophic lakes is relevant to active research trajectories in limnology, particularly those 
examining the relatively high contributions of benthic algal communities to whole lake productivity in olig-
otrophic lakes58,60–64. Given the potential for lakebed effects to alter classifications, research questions could 
consider the influence of depth-related misclassifications.

Comparing predicted and NLA spatial patterns.  To independently validate the LTS-US dataset’s 
robustness in capturing macroscale and multi-year changes in lake trophic state, we replicated analyses 
similar to Leech et al.24 and compared statistics from the NLA with those from the LTS-US dataset. We first 
merged the lake trophic state classifications from the 2007, 2012, and 2017 NLA campaigns as well as the 
LTS-US dataset with the U.S. EPA Level I Ecoregions30. We then calculated the proportion of each trophic 
state occurring within each ecoregion in a given year. To compare the NLA and the LTS-US dataset, we cal-
culated the absolute difference between predicted and estimated proportions for each trophic state within 
each year and ecoregion.

Predicted and measured proportions were broadly consistent across all three years. Visually, all three years 
and trophic states followed consistent trends across all ecoregions (Fig. 8). For example, our models generally 
captured increasing dystrophic and decreasing oligotrophic lakes in northern forested regions, a pattern con-
sistent with Leech et al.24. Absolute differences between estimated and predicted proportions across ecoregions 
were likewise congruent across all three years. Eutrophic/mixotrophic lakes tended to have the smallest differ-
ences (mean = −5.3%, sd = 19%), indicating that our models may overestimate relative abundance of eutrophic 
and mixotrophic lakes (Figure S24). In contrast, dystrophic (mean = 7.0%, sd = 6.7%) and oligotrophic 
(mean = 7.6%, sd = 22.4%) relative abundance tended to be underestimated (Figure S24). Larger standard devi-
ation values were caused by some ecoregions having few lakes overall, thereby increasing proportions of a given 
trophic state within an ecoregion. When filtering for ecoregions that contained at least 10 lakes, we noticed 
similar patterns of eutrophic and mixotrophic lakes being slightly overestimated (mean = −7.9%, sd = 11.3%), 
as well as dystrophic (mean = 9.1%, sd = 6.7%) and oligotrophic (mean = 4.6%, sd = 13.8%) lakes being under-
estimated; yet the standard deviation in absolute differences decreased.

Together, these analyses demonstrate that though the LTS-US dataset does contain biases towards eutrophic/
mixotrophic classification, its overall congruence with the NLA highlights its robustness. These biases may stem 
from our models attempting to classify lake ecosystem properties based on optically visible (i.e., color) and 

Fig. 8  National-scale maps of U.S. Environmental Protection Agency Level I Ecoregions colored by proportion 
of lakes occurring in that ecoregion. For each trophic state, we compare estimated trophic state relative 
abundance from the NLA with predicted proportions from the ensemble LTS-US dataset.
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optically invisible (i.e., phosphorus) properties, where the exceptionally oligotrophic, dystrophic, and eutrophic/
mixotrophic lakes are more consistently discriminated. In contrast, the NLA may likewise contain biases due 
to site selection, whereas our methods select for all lakes of at least 10 ha in area. Regardless of the biases in the 
LTS-US and NLA datasets, the congruence between the two is even more notable considering that our modeling 
approaches and the NLA use independent methods for classifying lake trophic state. The NLA uses in situ total 
phosphorus and true color measurements, whereas our methods use lake red, green, blue, and near-infrared 
reflectance. Furthermore, despite not including temporal or spatial predictors, our models reproduce NLA spa-
tial and temporal trends in lake trophic state at larger spatial and temporal scales.

Given both the potential biases and robustness of the LTS-US data product, cross-referencing the 
LTS-US dataset with known trends in an area of interest, especially in areas where lakes may be less abun-
dant, could enhance regional and local analyses. In instances where the LTS-US dataset may be more 
biased, reproducing the LTS-US dataset using both our existing code and particular predictors of interest 
for a region, such as average depth, lake area, or watershed area could offer particular insights into why a 
given region may be more prone to misclassifications. Creating tailored versions of the core LTS-US dataset 
can promote further understanding of features that may be important for assessing lake trophic state with 
remotely sensed surface reflectance data.

Manual quality control.  To ensure integrity of lake classifications across all steps of our pipeline, we 
randomly subsampled 250 lakes from the final dataset and manually cross-referenced their predicted trophic 
state with independent sources. The random subsample only included lakes that had associated names in the 
HydroLAKES dataset and was stratified by lake surface area, where surface areas were binned by orders of mag-
nitude (i.e., <1 km2, (1, 10] km2, (10, 100] km2, (100, 1,000] km2, (1,000, 10,000] km2, >10,000 km2). We filtered 
specifically for lakes with names because we assumed that named lakes within the HydroLAKES database would 
likely have more publicly available information about their water quality and would likely be easier to find within 
managerial reports and scientific publications.

To minimize bias, persons engaged in manual checking only received lake latitude and longitude, name, and 
the U.S. state where the lake was located. All persons engaged in manual checking were not involved in model 
and prediction development and were, therefore, blind to individual lake predictions. When possible, persons 
identified trophic states for multiple years, although many sources only referenced a lake’s trophic state in an 
individual year or broadly across multiple years. In either case, LTS was reported for the lake and years that 
independent sources reported.

Of the 250 target lakes, we were able to find verified trophic state data on 93 lakes (38%). For the 93 lakes 
that had independent lake trophic state data, our models corroborated independent, in situ observations 74% 
of the time, which is consistent with our models’ overall accuracy against testing data from the U.S. EPA NLA. 
We did not observe any apparent spatial patterns with model misclassification, which complements our spatial 
confusion validation (Figure S25). Together, these results demonstrate that our manual checking procedure 
returned similar results as our evaluation procedures against our testing data, giving confidence that our mode-
ling pipeline and evaluation procedures are both robust and able to capture natural processes occurring in lakes.

Effects of processor heterogeneity.  When recreating lake trophic state predictions de novo, care should 
be taken to ensure that effects from heterogeneous processors are minimized. When creating the LTS-US dataset 
from the original LimnoSat-US dataset35, we specified seeds for each modeling framework, which enabled us 
to reproduce results between model runs. Final dataset production occurred on one machine using an Intel(R) 
Xeon(R) W-10885M processor with eight cores, however, slight differences may arise due to differences in a user’s 
hardware float precision.

If users recreate or update LimnoSat-US prior to recreation of the LTS-US predictions, care should be taken 
as Google Earth Engine65 uses a heterogeneous processor framework, where individual processors cannot cur-
rently be specified. Meyer et al.9 quantified the effect of Google Earth Engine’s processor heterogeneity on var-
ious lake surface area and basin-level climatological estimations, and effects of processor heterogeneity were 
likely inconsequential (e.g., differences of 10−12), although these differences may result in slightly different 
trophic state predictions. The extent to which these values would influence results or conclusions of other studies 
will depend on the level of precision required and scope of research question.

Usage Notes
The LTS-US dataset was constructed to be an accessible and interoperable product for a range of basic and 
applied research questions related to water quality and ecological integrity at national scales. Here, we detail 
several options for application of the LTS-US dataset and associated pipeline.

First, the LTS-US dataset can be joined with water quantity and quality datasets to assess how changes in LTS, 
and therefore ecosystem integrity, may be influenced by watershed processes, climate, and human population. 
At the local scale, the LTS-US dataset can be merged with in situ sampling data or modeled data from individ-
ual lakes to assess how hydrodynamic, climatic, physicochemical, and biological processes may be associated 
with interannual variation in LTS. As demonstrated here, local in situ observations are important for providing 
validation of the LTS data, and potentially, refinement of methods for deriving LTS predictions. Similarly, the 
LTS-US dataset can be merged with data from research coordination networks, such as the National Ecological 
Observatory Network (www.neonscience.org) or the Global Lake Ecological Observatory Network66, to enable 
upscaling highly localized processes to regional and national scales. Beyond watershed-specific processes, the 
LTS-US dataset can likewise be useful for synthetic questions focused on macroscale water quality trends. For 
example, in cases where users may wish to synthesize changes in lake ecosystem metabolism with trends in lake 
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water quantity, climate, and human population, the LTS-US dataset can be merged with the GLCP (Global Lake 
area, Climate, and Population)9 or LakeATLAS67, thereby enabling users to assess how changes in seasonal and 
permanent lake surface area may correlate with changes in lake trophic state. The LTS-US dataset offers a valu-
able resource for addressing a broad spectrum of basic and applied research questions from local and regional 
to continental scales.

Second, the LTS-US dataset provides a tool for using remote sensing products with the NCP, a framework 
increasingly used by limnologists, to understand lake water quality at macroscales. Although previous studies 
have remotely sensed lake trophic state index68, our data product is the first to incorporate NCP with remote 
sensing reflectance data. Where TSI focuses exclusively on eutrophication patterns (also known as greening) 
associated with nutrient-driven primary production, the LTS-US dataset enables investigations of the spatial 
extent and temporal trends of lake dystrophication (also known as lake browning). This difference between 
TSI and NCP is important for assessing long term and spatially extensive changes in lake browning, as well 
as “murkification” (i.e. simultaneous browning and greening), which has been associated with complex, often 
non-linear changes in temperature, pH, dissolved oxygen, and food web structure24,59. Further, national-scale 
sampling campaigns, such as the U.S. EPA NLA, have helped reveal that the proportion of dystrophic lakes has 
been increasing nationally since 200724. The U.S. EPA NLA is one of the most extensive, structured, and coor-
dinated lake sampling efforts at the national scale, and the LTS-US dataset can complement these in situ data by 
providing finer temporal information at comparable spatial scales. When data from successive NLA sampling 
campaigns become available, the LTS-US dataset can be updated and further benefit from additional training 
data. Together, the use of remote sensing imagery with extensive sampling campaigns, like the NLA, can be 
useful for identifying broadscale changes in water quality.

Third, although our reflectance data are spatially aggregated to represent each lake’s characteristic summer-
time reflectances, our data pipeline and modeling frameworks are amenable to numerous data aggregations, 
thereby enabling investigation of lakes’ intra- and inter-annual phenologies. For example, many oligotrophic 
lakes experience summertime greening, due to increased algal growth throughout the summer. Although algal 
succession tends to follow similar temporal and community compositional patterns69,70, users may be interested 
in understanding how greening events may shift temporally in response to climatic and anthropogenic distur-
bances. Similarly, end users may be interested in understanding intra-lake heterogeneities, where embayments 
or nearshore areas may differ in trophic state from the offshore. In both cases, users could adapt our data, mode-
ling, and validation pipeline, where temporal and spatial resolution are more finely resolved. Operationally, end 
users could modify the aggregation scripts (“1_aggregate.R” and “aggregate_utils.R”)54 and LimnoSat codes35 to 
accommodate input data that aggregate at monthly or fortnightly timesteps as well as on a per-pixel basis or with 
varying radii lengths from the Chebyshev center. Because our data pipeline allows for automated re-running of 
all harmonization, modeling, and quality control routines, users are able to build off the existing infrastructure 
to tailor the LTS-US dataset to their particular research questions without high computational overhead or the 
need to build new workflows de novo.

Beyond any specific research question, the LTS-US dataset is a streamlined resource for many end users 
looking to incorporate remote sensing and its derived products into their analyses. Because of the dataset’s 
interoperability and flexible structure, the LTS-US dataset serves as a powerful resource for evaluating and con-
textualizing aquatic ecosystem change at local-to-national spatial as well as annual-to-decadal temporal scales.

Code availability
All data harmonization, modeling, and validation procedures for the LTS-US dataset54 were scripted in the R 
Statistical Environment71, using the tidyverse72, lubridate73, data.table74, sf75, keras76, tensorflow77, caret78, CAST79, 
yaml80, reticulate81, xgboost82, nnet47, viridis83, trend84, multiROC85, ggpubr86, fastshap87, maps88, ggtext89, and 
ggforce90 packages.

To enhance reproducibility, all scripts are designed to work within a single pipeline that uses the targets pack-
age91. The targets pipeline is divided into four main components: “1_aggregate”, “2_train”, “3_predict”, and “4_qc”. 
Each component corresponds to one of the steps presented above and can be customized by users to fit their 
specific needs. The associated pipeline setup and user guide can be found on the Environmental Data Initiative54, 
where the “README_targets.pdf ” file details directory architecture and how to execute the pipeline. When 
downloading the “scripts.zip” folder to access the targets pipeline, future users should be aware that empty files 
within the directory are necessary for running the pipeline, as those folders will become populated each time the 
pipeline is run.

To ensure reproducibility across operating platforms, all scripts for the pipeline can be executed within 
a container. Running the pipeline within the container allows users to execute the entire pipeline without 
the need to make small, yet important, edits to the code, or to configure their own operating environment 
to conform to the pipeline’s requirements. For example, recent versions of the sf package default to using 
the s2 spherical geometry engine instead of the Graphic Environment Operating System (GEOS), which 
assumes planar coordinates. End users on a system with one version of the sf library might need to adjust 
the code to use the correct geometry engine, whereas users with another version might be able to run the 
pipeline without any adjustments. The container crystallizes a known-working set of libraries, both at the 
system level (e.g., GEOS, GDAL, PROJ) and at the R level (e.g., sf), so that anybody can run the code without 
reconfiguring their own environment. This also provides future proofing by ensuring that the inevitable 
changes to other libraries over time do not lead to errors. To help end users, who are less familiar with run-
ning containerized code, a tutorial for installing and executing the pipeline within the container is located 
in the Environmental Data Initiative repository as a compressed entity (see “README_container.pdf ”)54. 
The EDI repository also contains both a rendered (“lake_trophic_status_docker_image.tar.gz”; ~3.5 GB) 
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and unrendered (“lts_container.zip”; ~4.0 KB) docker image. While the document “README_container.
pdf ” details information for running both the rendered and unrendered images, future users can choose 
either format depending on their familiarity with rendering Docker images and their capacity to download 
larger Docker images.
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