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MUSE-RaSa captures human 
dimension in climate-energy-
economic models via global 
geoaI-ML agent datasets
Diego Moya  1,2,3 ✉, Dennis Copara3, Alexis Olivo3,4, Christian Castro5, Sara Giarola2,6,7  
& adam Hawkes  2

This article provides a combined geospatial artificial intelligence-machine learning, geoAI-ML, agent-
based, data-driven, technology-rich, bottom-up approach and datasets for capturing the human 
dimension in climate-energy-economy models. Seven stages were required to conduct this study 
and build thirteen datasets to characterise and parametrise geospatial agents in 28 regions, globally. 
Fundamentally, the methodology starts collecting and handling data, ending with the application 
of the ModUlar energy system Simulation Environment (MUSE), ResidentiAl Spatially-resolved and 
temporal-explicit Agents (RASA) model. MUSE-RASA uses AI-ML-based geospatial big data analytics 
to define eight scenarios to explore long-term transition pathways towards net-zero emission targets 
by mid-century. The framework and datasets are key for climate-energy-economy models considering 
consumer behaviour and bounded rationality in more realistic decision-making processes beyond 
traditional approaches. This approach defines energy economic agents as heterogeneous and diverse 
entities that evolve in space and time, making decisions under exogenous constraints. This framework 
is based on the Theory of Bounded Rationality, the Theory of Real Competition, the theoretical 
foundations of agent-based modelling and the progress on the combination of GIS-ABM.

Background & Summary
At the basic level of most climate-energy-economy models, a main assumption rules input treatment, calcula-
tions, and analysis of results. Millions of consumers are deliberately represented as a single agent that takes prices 
as given, making rational choices with perfect knowledge of the market under rational expectations to maximize 
welfare, subject to budget constraints1, also called a hyperrational representative agent2. To overcome the limi-
tations of representative homogenous hyper-rational agents in traditional climate-energy-economy models – so 
called the mainstream – the representation of the human dimension requires the use of empirical, historical, 
and analytical data. Geospatial big data analytics (combination of Geographical Information Systems, GIS, and 
Big Data Analytics) and agent-based modelling (ABM) tools present a potential opportunity to introduce the 
human dimension into the analysis in a more realistic manner. These tools can capture the complexities of heter-
ogeneous shaping structures and the diverse shaping attributes of agents that evolve in space and time, which are 
driven by bounded rational expectations and exogenous factors. These complexities do not always allow agents 
to maximise their decisions, however, complexities representation presents an opportunity of more realistic 
assessments. The alternative and novel approach presented here, to represent energy economic agents that are 
heterogeneous, diverse, evolve in space and time, and take decisions under exogenous constraints, is based on (i) 
the Theory of Bounded Rationality initially described by Simon3,4, discussed and expanded by Petracca5, (ii) the 
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Theory of Real Competition by Shaikh2, (iii) the theoretical foundations of agent-based modelling by Lavoie6, 
and (iv) the progress on the combination of GIS-ABM suggested by Crooks, et al.7.

The following sections provide an account of how the research was conducted, and how the datasets were 
calculated. Clear and detailed steps were provided for the community to repeat the research and reproduce the 
results. Details of the available data sources and other previously validated techniques used in this study are also 
presented here for reference. The datasets collected here are for 2010, because this is the base year used in most 
models. Figure 1 illustrates the steps of this research, along with some of the datasets required to conduct this 

MUSE-RASA
model application

Scenarios

Spatial
Cross-Validation

Geospatial
Agent-based

Modeling

5
4
3
2
1

Agent-based
Modeling

Geospatial
Big-data Analytics

1 Collecting
and Handling Data

2

3

4

5

6

7

5
4
3
2
1

5
4
3
2
1

4
3
2
1

1
2
3
4
5

  0.15
3.40
100

7400
120000

MWh/yr. km2

1
2
3
4
5

  0.02
0.70
20.2
1292

20750

MWh/yr. km2

1
2
3
4
5

  0.02
11.10

54.70
191.00
838.00

MMUS$2010/cap. 
yr. km2

1
2
3
4

  4
140

9632
50715

hab/yr. km2

(a)

(b)

(c)

(d)

Fig. 1 Steps and datasets required to obtain global geospatial agents and energy supply datasets8. (a) Space 
heating, SH, (b) Space cooling, SC, (c) Gross Domestic Product per capita, GDPpc, (d) Population count per 
km2. In total, ten global gridded datasets were used in this study. Energy demand datasets with respect to (i) 
space heating, (ii) water heating, (iii) space cooling, and (iv) total energy demand for heating and cooling, 
at 1-km2 hourly-seasonal resolution, were collected from Sachs, et al.9. Gridded datasets for (v) heating 
demand density and (vi) cooling demand density were collected from Sachs, et al.9. Global socioeconomic and 
development, and demographic gridded datasets used in this study with respect to (vii) gross domestic product, 
(viii) gross domestic product per capita, (ix) human development index, and (x) population count per square 
kilometre were collected from Kummu, et al.10 and CIESIN18.
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research. In step 5, the global geospatial agent dataset is obtained, and from step 7, the energy supply dataset 
is calculated after applying the MUSE-RASA model8. To summarise, this section provides an overview of the 
datasets required (Subsection 1) for the framework design presented here (Subsection 2).

Collecting and Handling Data
Spatially resolved and temporally explicit datasets were collected from a range of sources. Missed gridded data 
were completed where necessary. The five groups of datasets were identified as follows. (i) Gridded end-use 
energy data were collected for 95 countries and completed for 165 countries. The methodology to complete 
the missing data and an initial assessment of the gridded dataset was published in Sachs, et al.9. (ii) Gridded 
demographic and socioeconomic data were collected from Kummu, et al.10. (iii) Gridded data for the calibration 
and validation of energy-related datasets were collected from Department for Business EIS11 and ARCONEL12. 
(iv) SSP2 macroeconomic driver data were collected from Riahi, et al.13. (v) Techno-economic data inputs 
used in this research is from the MUSE project at Imperial College London’s Sustainable Gas Institute; similar 
techno-economic data has been used in a series of articles14–17. In the following sections, more details on the data 
used in this study are provided.

Gridded end-use energy data. Four gridded datasets of the end-use energy of the residential sector were 
collected from Sachs, et al.9: (a) space heating, SH; (b) water heating, WH; (c) space cooling, SC; and (d) total 
energy for heating and cooling, TE. These energy demand datasets had a spatial resolution of 1 km2 and hourly 
seasonal temporal resolution, as explained in Sachs, et al.9. Figure 1 summarizes the end-use energy datasets used 
in this study. At this point, there is no processing of the energy data and only the collection. In addition to the 
end-use energy datasets, data representing the energy demand density were collected from Sachs, et al.9. Heat 
density is defined as the ratio between the heating demanded by customers and the area of interest, which may 
be a district, neighbourhood, or city. Similarly, the cooling density is defined as the ratio between the cooling 
demand of the customers and the area of interest. At this point, there is no processing of the energy density data.

Gridded socioeconomic and demographic data. Socioeconomic datasets were collected from Kummu, 
et al.10 and refer to (a) gross domestic product (GDP) per square kilometre, (b) gross domestic product per capita, 
GDPpc, per square kilometre, and (c) Human Development Index, HDI, at the city level or most available level. 
Demographic datasets were collected from CIESIN18 and refer to (d) population count per square kilometre and 
population density per area of availability.

Gridded data calibration and validation. Because of the extent of this research in terms of the num-
ber of countries covered, the main limitation in terms of data calibration and validation is the requirement for 
large-scale datasets at high spatiotemporal resolution. To address this limitation, data for validation purposes 
were collected from two counties: the United Kingdom (UK) and Ecuador. The Department for Business EIS11 
from UK and ARCONEL12 from Ecuador provide publicly available data that were used to validate the gridded 
energy datasets. The validation process is presented in the validation section of Sachs, et al.9 for the UK and in 
Moya, et al.19 for Ecuador.

SSp2 macroeconomic drivers. The Shared Socioeconomic Pathways (SSPs) macroeconomic driver data-
sets are quantitative projections of GDP and Population as part of an Integrated Assessment framework13 devel-
oped at the International Institute for Applied System Analysis (IIASA, Austria), with a range of other research 
institutions globally. SSPs have been widely adopted by the climate change research community to analyse the 
consequences of future climate change. O’Neill, et al.20 and Van Vuuren, et al.21 report each of the five scenario 
narratives and the framework behind each scenario. The matrix used to build the framework combines climate 
forcing and socioeconomic conditions to describe the situation and evaluate climate impacts, vulnerabilities, 
adaptation, and mitigation. This research uses the SSP2 scenario datasets for GDP and Population, which is con-
sidered a “middle of the road” world, where medium challenges to mitigation and adaptation are assumed22. In 
the SSP2 scenario, trends in social, economic, and technological development broadly follow their historical 
patterns23. Although some countries would make relatively good progress (in the Global North), others would fall 
short of expectations (in the Global South). Thus, global inequality persists today in terms of development and 
income growth, and global population growth is moderate24. This scenario assumes that governments and civil 
society will work slowly to achieve sustainable development goals. Overall, a decline in the intensity of resource 
and energy use is expected; however, environmental systems would experience degradation25. SSP2 serves as a 
starting point to identify the evolution of population and GDP growth in the countries studied in this research.

technoeconomic data. The technoeconomic dataset refers to the data used for the economic feasibility 
analysis of technologies in each region of the world. The economic feasibility analysis is a key study for selecting 
the most appropriate technology from a set of options. These data were developed by Imperial College London’s 
Sustainable Gas Institute for the MUSE research project15–17. Table 1 provides an example of the technoeconomic 
data used in the MUSE-RASA model for the evaluation of heating technologies. It is also assumed that the interest 
rate is 10% and that the initial Capital Expenditure (CAPEX) values are in MUS$2010/PJ.

Technology Region Year CAPEX
Fixed 
costs

Technical 
Life

Utilization 
Factor efficiency Fuel

Unit — Year MUS$/PJ MUS/PJ Years % year —

Table 1. Example of the technoeconomic data required in this research. CAPEX = Initial Capital Expenditure.

https://doi.org/10.1038/s41597-023-02529-w


4Scientific Data |          (2023) 10:693  | https://doi.org/10.1038/s41597-023-02529-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

Figure 2 summarises the results of applying the MUSE-RASA framework to obtain the datasets presented 
herein. A global definition of agent characterisation is provided in terms of GDPpc, HDpc, and HD, as shown 
in Fig. 2a. Figure 2b presents the global energy demand in the residential sector for the 28 regions in the 
MUSE-RASA framework. In Fig. 2c,d, a shot of the geospatial agent distribution in Mexico and Shanghai cities 
is presented. Figure 2e shows the demand for residential heat in terms of the agents’ requirements. These results 
illustrate the importance of the dataset, along with the strictness and robustness of the systematic approach 
developed in this study.

Geospatial Big Data Analytics For Spatial Agent Definition
The geospatial agent-based modelling approach of this study follows five components: (i) agent heterogeneity, 
(ii) agent diversity, (iii) agent evolution in space and time, (iv) the agent decision-making process, and (v) the 
influence of exogenous constraints on agent decisions. Geospatial big data analytics, also called spatial data 
mining, was used to discover hidden knowledge from the large, gridded datasets collected in this research. 
An Unsupervised Machine Learning technique is applied to classify spatial data points into specific groups 
according to similar properties with the implementation of the geospatial K-means algorithm developed in 
this research and published in Sachs, et al.26. This method has been applied worldwide to the collected datasets.

This article aims to introduce a new Geospatial Agent-Based Modelling Framework called MUSE-RASA. 
The model has been used to create a large dataset of geospatial agents to assess the impact of the 
climate-energy-economy system on the residential sector globally, with a focus on reaching the mid-century net 
zero emission (NZE) target. The model uses geospatial big data analytics to capture the human dimension in the 
modelling approach, which is limited to traditional models. The MUSE-RASA model uses five components–het-
erogeneity, diversity, evolution, decision-making, and exogenous constraints–to represent the complexities of 
agents’ structures, diversity, and evolving attributes, as shown in Fig. 3. The model produces global metrics that 
can be used to analyse transition and design policy recommendations. The MUSE-RASA model is an integrated 
assessment model that combines GIS-based and ABM approaches and is more realistic in representing the com-
plexities of agent behaviour under different constraints.

Methods
This research defines an agent as a group of energy consumers with similar characteristics, in terms of heteroge-
neity, diversity, evolution in space and time, decision-making process and influenced by exogenous constraints. 
An agent is spatially defined within a specific zone, enclosed by borders under three heterogeneous characteris-
tics. In each of those zones, a range of parameters are calculated to define the agent diversity and evolution. To 
do this, machine learning, AI-ML-based geospatial big data analytics, a subfield of artificial intelligence (AI), 

Fig. 2 Summary of datasets used and produced in this study (a) Global geospatial definition of agent 
characterisation in terms of three characteristics: GDPpc, HDpc, and HD. (b) Global supply of energy in the 
residential sector by region. (c) Geospatial agent distribution in Mexico City. (d) Geospatial agent distribution 
in Shanghai. (e) Global supply of heat to the residential sector by agents with three characteristics.
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has been systematically applied to a range of datasets. In the following sections, each step of the framework to 
produce the datasets8 shared here is described.

Spatial agent definition using machine learning. The Spatial Agent Definition consists of three parts: 
(1) the spatial characterization of heterogeneity, (2) the spatial parametrisation of diversity, and (3) the spatio-
temporal parametrisation of evolution. Figure 4 provides a general description of each of the three parts of the 
spatial agent definition.

This research defines agent heterogeneity as the shaping structure that shapes agent behaviour, which can be 
historical, social, economic, and cultural structures, according to Schoon and Heckhausen27 and Shaikh2. Here, 
agent heterogeneity is captured by overlaying more than one gridded layer, where each layer represents one 
characteristic (see Fig. 4). The resulting emerging layer from the overlaid process represents the shape structure 
that defines the limits of contours and zones where agents shape their behaviour. Examples of layers with spatial 
characteristics that define the agent structure in the energy field include the agent income level, their minimum 
energy consumption level, and their propensity to consume energy.

Agent diversity is given by a range of parameters that can be calculated in each zone. Overall, the total value 
of the parameters of interest are extracted from each layer of available gridded data. Examples of attributes that 
can be used for agent diversity parametrisation in the energy field are the total heating energy demand, total 
cooling energy demand, and level of development according to HDI, among others. Finally, the spatiotemporal 
agent evolution is given by a range of parameters that evolve over time for each of the agent zones defined in the 
spatial characterisation.

• 165 countries
•  28 regions
•  20 agents
•  8 scenarios

Micro-environment
Heterogeneity: shaping structure(1)

Evolution:(2)

Diversity shaping structure:(3)
8 shaping atributes

• Choice/investment objectives
• Search rule (technoeconomics) 
• Decision strategy
• Limited foresight

Decision-making process:(4)
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Fig. 3 Abstraction from the real world to the MUSE-RASA model, outcomes, and implications. Five 
components of the geospatial agent-based modelling framework are identified in the micro- and macro-
environments of the MUSE-RASA model. The model outcomes and policy implications are also illustrated in 
the MUSE-RASA environment.
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The geospatial K-means Unsupervised Machine Learning approach was applied to build the spatial agent 
definition framework described above as the main contribution of this research. This section provides the gen-
eral spatial agent definition framework, which can be used to define agents worldwide using geospatial big data 
analytics. The Framework has six steps: (i) clustering of gridded data, (ii) reclassification of clustered data, (iii) 
zone definition, (iv) spatial characterisation of agent heterogeneity, (v) spatial parametrisation of agent diversity, 
and (vi) spatiotemporal parametrisation of agent evolution.

Clustering of gridded data. In the geospatial k-means clustering approach, the Elbow Method (EM) was 
applied to define the optimal number of clusters (ONC), which served to define the optimal number of spatial 
agents as each cluster turned into a group of people with the same spatial attribute: an agent. EM calculates the 
Within-Cluster-Sum of Squared Errors (WSS) for different number of clusters k and choose the k for which WSS 
becomes first starts to diminish. The elbow was visible in the plot of WSS versus k. Table 2 defines the steps of 
the Algorithm of the Elbow method, which is used to define the ONC. The within-cluster variance (or the total 
within-cluster sum of squares, wss), W(Ck), of a cluster Ck is defined by the Euclidean distance in Eq. 1.

� �∑= −
∈

W C x x( )
(1)

k
x C

n

i k
2

i k

Where:

•	 xi is a data point belonging to the cluster Ck
•	 xk is the mean value of the points assigned to the cluster Ck; also called the cluster centroid, and its values are 

the coordinate-wise average of the data points in Ck.
•	 {x1, …, xn } is the set of observations; they are vectors, with one (longitude, latitude) coordinate per dimension 

(e.g., gridded HD).

Once the ONC is defined, a global clustering is conducted by the application of the spatial K-means algo-
rithm to the attribute/parameter of interest (e.g., HD), as can be seen in Table 3. The main outcome of this stage 
is the calculation of elements belonging to a cluster Ck, which are defined by lower and upper bounds of each 
cluster. All the cluster elements are centred around their respective centroids. Then, the lower/upper bounds are 
defined halfway between each consecutive centroid value. This method defines the limits to which each spatial 
agent belongs. This was performed for each of the parameters of interest. With one parameter, a spatial agent 

Fig. 4 General description of spatial agent definition framework. The heterogeneity, diversity, and evolution of 
agents are defined using geospatial big-data analytics.

Table 2. Algorithm of the Elbow method to define the optimal number of clusters within the K-means 
approach.
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is defined as an agent with one attribute. In the geospatial agent-based modelling section, more attributes are 
considered to define the heterogeneous and diverse agents.

Reclassification of clustered data. The global reclassification is done by assigning a number, from 1 to k, to the 
reclassifying ranges (clustered layer) of values of the gridded dataset. This operation reclassifies groups of values 
into other values. For example, all values between 1 (lower bound) and 100 (upper bound) become 1 (first seg-
ment), and all values between 101 (lower bound) and 200 (upper bound) become 2 (second segment), and so on, 
until k segments. The lower and upper bounds used to define the reclassification boundaries were obtained in 
the previous step by using the geospatial k-means clustering algorithm. A reclassified gridded layer is obtained 
from this step, which is then used to define the zones (in the literature, also known as polygons or areas) where 
each agent is located. Table 4 presents the general concept of reclassification of gridded data. This also visually 
explained in Fig. 5a.

Where:

•	 xmin is the minimum value in the gridded dataset
•	 xmax is the maximum value in the gridded dataset
•	 xi, xii, xn, xn+1 are the elements of each cluster Ck
•	 ∣= ∈ ≤ ≤X X i i k{ , 1 }i i
•	 Xk is the ONC + 1

Zones definition. Once the reclassified layer is obtained, the spatial geometry containing the agents within each 
reclassified cluster is calculated. The spatial geometry is then defined as a zone containing the agents. A zone is 
defined as a range of finite polygons formed by the contours/boundaries of all contiguous reclassified clusters, 
as shown in Fig. 5. For example, Zone 1 is defined by two polygons as it is for Zones 3, 4, and k, whereas Zone 2 
is defined by a single polygon. Another Zone can be defined by the remaining six polygons, as shown in Fig. 5b.

The general notation used to define a Zone Z with one spatial characteristic chH is presented in Table 5 and 
illustrated in Fig. 5. This notation is key for the further definition of agents with multiple characteristics, as 

Table 3. The geospatial K-means (x, y, z) algorithm. .Where x and y represent the longitude and latitude, 
respectively, and z represents a gridded variable that defines the agents.

Cluster
Gridded dataset 
(clusters)

Cluster bounds

Reclasslower upper

1 xi xi xii

→

xmin xii

→

X1

2 xiii … xn … … X2

k xn+1 … xmax xn+1 xmax Xk

Table 4. Clustered layer reclassification. On the left, all elements of each cluster are identified according to each 
lower/upper bound. Subsequently, all values belonging to one cluster are assigned a single value. For example, 
all values from xmin to xii of cluster 1 become X1.
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developed in the following sections. For example, a spatial agent with 2 spatial characteristics would be defined 
with the use of two zones each with a different spatial characteristic ch1 and ch2: Zch n, m1

, and Zch n, m2
. In Fig. 6, the 

definition of zones for agents with one spatial characteristic ch1 is illustrated. In Table 5, the general notation is 
also provided for Zones Z with 1 to H spatial characteristics, 1 to n zones, and 1 to m polygons.

Zone 1 Zone 4
Zone 2 Zone k
Zone 3 Another zone

(a) (b)
Xk Xk Xk

Xk Xk Xk

X2

X2 X2X2

X2 X2X2X2 X2

X3 X3 X3

X3 X3 X3 X3

X3 X3 X3 X3

X3

X3

X3

X1

X1X1 X1

X1X1 X1

X1 X4X4 X4

X4X4 X4

X4X4 X4 X4

X4

X4

X4

X4

Xk Xk

Xk Xk

Xk

Xk

Xk

Xk

Xk

Xk

Fig. 5 (a) Reclassified clustered dataset; (b) Geometry of each polygon to define the zone containing the agents. 
Zone 1 is defined by 2 polygons; Zone 2 is defined by 1 polygon, Zone k is defined by 2 polygons, and Another 
Zone is defined by 6 remaining polygons.

Definition Notation General notation

Zones n with m polygons and H characteristics ch. ZchH nm,
→ → →

Zch H zones n polygon m(1 ) , (1 ) (1 )Zone 1 with 1 polygon and characteristics 1. Zch1,11

Table 5. Definition of zones with a single spatial characteristic. For example, Zch ,32 4
 represents Zone 3 with 4 

polygons and the single characteristic 2. The first characteristic can be HD and the second characteristic can be GDP.

Fig. 6 General definition of zones n with multiple polygons m for one spatial characteristic, Zch n, m1
. For 

example, the Zone Zch ,21 3
 represents the zone n = 2 with characteristic 1, ch1, with polygons m = 3.
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Where:

•	 Z represents a zone, grouping several polygons with similar characteristics to the spatial agent in place. Z is 
defined by a spatial characteristic ch, several zones n; the grouped polygons m with similar properties forms 
a zone Z.

•	 ch is a spatial characteristic and varies from 1 to H. These can be GDP, GDPpc, and SH, among others.
•	 n is the maximum possible number of zones Z in a region or country.
•	 m is the number of polygons that each zone Z may possess.

Spatial characterization of agent heterogeneity. Once the zones were defined, the spatial agent heterogeneity 
was defined by the spatial characterisation. First, a spatial agent is the join of all zones into a multi-polygon zone 
with a specific characteristic. Second, a spatial agent with one spatial characteristic defines the heterogeneity 
with a single characteristic. Table 6 provides the definition of a spatial agent SpA with one spatial characteristic 
M, chM, in any zone n of a region or country (Eq. 6). It is important to clarify that here, the zone n is already 
grouped into a single multipolygon. The attribute is a quantity based on annual values, consistent with the 
selection of agents and the available data. Examples of spatial characteristics that define the agent heterogeneity 
include energy demand per capita, energy density, and GDP per capita, among others.

The spatial characterisation of agent heterogeneity is given by multiple spatial characteristics. To obtain an 
agent with multiple spatial characteristics, the spatial characterisation approach for one spatial characteristic is 
applied to more than one reclassified gridded layers. Then, multiple layers are overlaid to calculate a new layer 
that intrinsically inherits the heterogeneous characteristics of the layers used for the intersection. For example, 
from the intersection of two layers (within a range of zones), a new layer that represents new heterogeneous 
zones emerges. These zones determine the limits or boundaries of agents with similar spatial characteristics and 
the same number of characteristics as the layers are intercepted. Figure 7 illustrates the process of the overlay-
ing calculation using two spatial agent characteristics separately (a, b) to end with a new emergent agent with 
two spatial characteristics (c). A multiple spatial characterisation overlays multiple layers to define the agent 
heterogeneity.

Equation 7 presents the general representation of a spatial agent SpA with multiple spatial characteristics 
Mch for a country or a region. The approach used to define spatial agents with multiple spatial characteristics is 
rooted in the intersection of layers that were previously reclassified using the K-means clustering technique. This 
definition can be applied to any set of parameters (e.g., GDP, SH, SC, and DH) in the energy field or in any other 
field where gridded data are available.

⋂ ∩ ∩= = …
=

SpA SpA SpA SpA
(7)

Mch
j

M

chj ch ch
1

H1

Where:

Definition Equations

Spatial agent SpA with characteristic H, chH, of all zones 1 ∪ ∪= = …
=
⋃SpA Z Z ZchH
i

m

chH i chH chH m,1
1

,1 ,11 ,1 (Eq. 4)

Spatial agent SpA with one characteristic ch1 in any zone n of a region 
or country

⋃ ∪ ∪= = …
=

SpA SpA SpA SpAch n
i

n

ch i ch m ch nm1,
1

1, 1,1 1, (Eq. 5)

Spatial agent SpA with characteristic H, chH, in any zone n of a region 
or country ∪ ∪= = …

=
⋃SpA SpA SpA SpAchH n
i

n

chH i chH m chH nm,
1

, ,1 , (Eq. 6)

Table 6. Definition of spatial agents with a single spatial characteristic. Spatial agent SpAch ,1H
 refers to the agent 

with the attribute H, chH defined within the multi-polygon n.

Fig. 7 Overlaying calculation for spatially characterised agents with more than one characteristic. Spatial agents 
with one characteristic and multiple polygons, (a,b), are used to generate a new layer (c) with a spatial agent 
with two spatial characteristics and multiple polygons.

https://doi.org/10.1038/s41597-023-02529-w


1 0Scientific Data |          (2023) 10:693  | https://doi.org/10.1038/s41597-023-02529-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

•	 SpA represents a spatial agent.
•	 Mch defines the multiple spatial characteristics of a spatial agent.
•	 ch1 is the first spatial characteristic of the spatial agent.
•	 chH is the spatial characteristic, H, of the spatial agent.

Spatial parametrisation of agent diversity. The spatial parametrisation of agent diversity consists of extracting 
the total value of a parameter or a range of parameters from the multi-polygon zone of each spatial agent. This 
means that, in each new emergent zone of Fig. 7c, for example, the total value of a parameter is calculated. 
Table 7 illustrates the equations used to conduct the agent parametrisation of this study with multiple spatial 
characteristics. The spatial parametrisation can be applied to spatial agents characterised by one or multiple 
characteristics. A spatial agent SpA defined from the intersection of multiple spatial characteristics Mch in zone 
n, zn, with parameter 1, p1 is defined by = ∑ =SpA p p( )Mch z i

k
i, 1 1 1,n
, as shown in Table 7.

Spatiotemporal parametrisation of agent evolution. The spatiotemporal parametrisation of agent evolution 
is given by Eq. 11 and consists of the evolution in time t of a parameter or a range of parameters from the 
multi-polygon zone of each spatial agent. This means that, in each new emergent zone of Fig. 7c, for example, a 
parameter profile is calculated for a period in time t. Equation 11 illustrates the equation used to parametrise the 
agent evolution with multiple spatial characteristics. The spatiotemporal parametrisation of agent evolution can 
be applied to spatial agents characterised by one or multiple characteristics.

… =



















→
SpA p p t

SpA p t SpA p t

SpA p t SpA p t
( , , , )

( , ) ( , )

( , ) ( , ) (11)

Mch z q

Mch z Mch z q

Mch z Mch z q

, 1

, 1 ,

, 1 ,

n

n n

1

1 1
�

� � �
�

Where:

•	 SpA represents a spatial agent.
•	 Mch defines the multiple spatial characteristics of a spatial agent.
•	 ch is the spatial characteristic of the spatial agent.
•	 z1→n is the zones of the spatial agent.
•	 p1→q is the multiple evolving parameters of the agent.
•	 t is the time of the multiple evolving parameters of the agent

agent-based modelling. Here, an agent is defined as an autonomous, heterogeneous, diverse, adaptive 
decision-making entity within a complex system that interacts with its environment and other agents through 
prescribed conflicting bounded behavioural rules, shaped by shaping structures and attributes, to produce emer-
gent and complex system-level patterns in space and time. To represent this agent definition, this research has 
proposed the general framework for the spatial agent definition developed here and has adopted the MUSE ABM 
framework proposed in Giarola, et al.15, García Kerdan, et al.16, Moya, et al.17, and Moya, et al.28.

MUSE ABM framework. Figure 8 shows the MUSE ABM framework adopted in this study. Exogenous data 
are required for the model inputs, which are a combination of gridded and national datasets. The MUSE ABM 
framework defines a decision-making process for each agent based on the 10 parameters listed in Table 8.

Equation 12 illustrates the agent definition in the MUSE ABM framework. Ten attributes are considered to 
define the agent decision-making process. The attributes are listed in Table 8.

=A Obj SR DS TP B MT TS TO PP HDR{ , , , , , , , , , } (12)

Definition Equations

Parameter q, pq, in zone n, zn, of spatial agent with multi-
attributes = ∑ =SpA p p( )Mch zn q i

k
q i, 1 ,

(Eq. 8)

Spatial agent with multi-attributes and multi-parameters, 
p1→pq, in zone n, zn. … = …SpA p p SpA p SpA p( , , ) { ( ) , , ( )}Mch zn q Mch z Mch zn q, 1 , 1 1 , (Eq. 9)

Spatial agent with multi-attributes and multi-parameters, 
p1→pq, for a country or region with n zones, z1→n. … =



















→

�

� � �
�

SpA p p

SpA p SpA p

SpA p SpA p
( , , )

( ) ( )

( ) ( )
Mch z n q

Mch z Mch z q

Mch zn Mch zn q

, 1 1

, 1 1 , 1

, 1 ,

(Eq. 10)

Table 7. Definition of spatial agents with multiple parameters. The parametrisation of a spatial agent SpA 
defined from the intersection of multiple spatial attributes Mch in Zone 1, z1, with one parameter p1, is given by 

= ∑ =SpA p p( )Mch z i
k

i, 1 1 1,1
.
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Survey-based decision-making parametrisation. This research has also developed three questionaries to 
collect primary data directly from main sources through in situ, person-to-person, and online surveys. The 
first questionnaire was developed by a team of researchers and industry experts to assess the Indian industry 
sector; details can be found in Moya, et al.17. Table 9 expands the use of survey outputs to the MUSE agent 
decision-making framework. Each parameter of the agent’s definition of Eq. 12 is parametrised by a set of 
answers from the Questionnaire (see Table 9). For example, in Question 19, the agent is asked about the main 
investment decision metric to consider when energy technology investment is required. The answer guides 
the researcher towards the definition of the first parameter of the agent definition, the objective investment. A 

Exogenus inputs

Investment decision process within MUSE-RASA

• Capacity [PJ/y]
• Capacity addition [PJ/y]
• Service Demand [PJ/y]
• Supply by technology [PJ/y]
• Consumption of fuels [PJ/y]
• Consumption of electricity [kWh/h]
• Levelized cost of electricity [$USD/MWh]
• Net Present Value [$USD]
• CAPEX [$USD]
• Fixed costs [$USD]
• Emission costs [$USD/MtCO2]
• Fuel Costs [$USD/PJ]
• Emissions (CO2, N2O, PM10, PM2.5,
NOx, SO2, NH3, VOC) [Mt/y] [t/y]
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• Single objective
• Multiple objectives

Investment decision making e.g., “rank investment metrics from the most 
important (most used) to the least important (least used) for decision-makers”: 
NPV, CAPEX, OPEX, Payback period, emission cost, fuel cost, variable costs; 
and the mix of them.
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Fig. 8 Data flow and MUSE agent-based, bottom-up Integrated Assessment Model that considers the end-use 
sectors with different levels of detail.
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similar approach was used for the remaining parameters of the agent definition. This questionnaire and sur-
vey experience served to further develop a questionnaire for the residential sector in China and Ecuador. The 
Spanish version of the survey used for the Ecuadorian case study can be found in [https://forms.office.com/r/
B93BxJgxX2] and published in Moya, et al.29 and the Chinese version of the survey can be found in the following 
link [https://www.wjx.cn/vj/w8Xp3UL.aspx].

Geospatial agent-based modelling framework. The components of the geospatial Agent-Based 
Modelling Framework of this research are characterised and parametrised with five groups of attributes: (1) 
heterogeneity, (2) diversity, (3) evolution, (4) decision-making, and (5) exogenous constraints. The framework 
presented in Fig. 9 provides spatially resolved and temporally explicit model agent-based scenarios to assess the 
long-term sustainable transition of the residential sector globally. This framework captures the human dimension 
and introduces realism into climate-energy economy models.

Spatial characterization of heterogeneity. The spatial characterization of agent heterogeneity follows Step (iv) 
of the general framework for the spatial agent definition presented previously. The attributes used to define 

Agent parameters In Eq. 12 Definition

Objectives Obj. A combination of economic, environmental, and technology aspects along with personal 
motivations.

Search Rule SR
A collection of information about available technologies and processing abilities of the decision 
makers. SR leads to the search space (SS) of each agent which includes all defined possible 
technologies in the energy sector.

Decision strategy DS
There are two DSs: single- and multi-objective. The single-objective DS uses a merit-order approach 
where technologies are ranked according to the main agent’s objective. Three possible multi-objective 
DS approaches are implemented within MUSE37.

Type, new or retrofit TP
Two types of agents: new or retrofit. There is a distinction between retrofit and new equipment.

It requires a linkage of each new agent to one retrofit agent in order to transfer its stock to a retrofit 
agent for the later renewal of the assets.

Budget B Refers to the maximum budget (expend limit) that each agent can allocate for technology investment.

Maturity Threshold MT Indicates the market share that a technology needs to have before it appears in the SS of an agent. This 
value varies according to agent’s openness towards new technologies.

Technology Stock TS A set of technologies available for each agent, obtained via calibration to energy balance and surveyed 
data.

Technology Ownership TO The percentage of each technology that an agent owns in the base year as a result of the calibration.

Agent Population 
Percentage PP Proportion to the total demand based on the percentage of the population represented by agent 

(obtained from statistics or surveys)

Heat density restriction HDR
Refers to the technology restriction depending on the actual heat density of the zone that an agent 
belongs to. This is a particular feature developed and applied for this research into the MUSE 
framework.

Table 8. Attribute definition of the agent decision-making process in MUSE17,37.

Agent attribute In Eq. 12 Agent’s parametrisation based on survey

Survey questions formulation

Questionnaire in provided links

Objectives Obj.

Capital expenditure

Question 19Operational Cost

Net Present Value

Search Rule SR
Investors are found to be sophisticated, open to 
innovations and risk under certain circumstances, and 
able to gather information on all available natural-gas-
based technologies.

Question 10

Question 13

Question 15

Decision strategy DS
Multi-objective. The Weighted Sum is applied which 
transforms the set of objectives into a single-objective by 
multiplying each objective with a pre-defined weight.

Question 19

Type, new or retrofit TP Both new and retrofit agents are found from the survey. Question 10

Budget B Each enterprise provides their available budget to invest 
in fuel-switching technologies.

Question 21

Question 22

Question 24

Technology Stock TS The current technologies in place in addition to natural-
gas-based technologies are considered. Question 13

Agent Population 
Percentage PP The PP is known from the total of surveyed enterprises. From the total of surveyed enterprises

Table 9. Agent parametrisation of the decision-making process in MUSE based on survey findings.
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Fig. 9 Geospatial Agent-Based Modelling Framework to capture realism in terms of five components: (1) 
heterogeneity, (2) diversity, (3) evolution, (4) decision-making, and (5) exogenous constraints of multiple agents 
within climate-energy-economy models. Components (C1, C2, C3, C4, C5); Spatial Agent with GDPpc attribute 
(SpAGDPPC

); Spatial Agent with Heat Demand per capita, HDpc, attribute (SpAHDPC
); Spatial Agent with Heat 

Density attribute (SpAHD). Aggregated end-use energy demand (TE); aggregated space heating demand (SH); 
aggregated water heating demand (WH); aggregated space cooling demand (SC); aggregated population (POP); 
Total population (TPOP); Median Human Development Index (HDI). Timse (t). Investment objective (Obj); 
Search rule (SR); Decision strategy (DS); Type, new or retrofit (TP); Budget (B); Maturity threshold (MT); 
Technology stock (TS); Technology ownership (TO); Population percentage (PP). Carbon Price Scheme (CP). 
Heat density restriction (HDR).

Fig. 10 Overlaying calculation to spatially characterised agent heterogeneity with three attributes. Reclassified 
gridded layers of GDPpc, DH and HDpc are used to produce an emergent layer that captures the shaping 
structures of agent heterogeneity. From the overlaying emerges a new layer used to estimate the datasets 
presented in this study8.

Gridded GDP per 
capita (GDPpc)

Gross domestic product per capita (GDPpc) is a metric that breaks down a country’s economic output per person 
and is calculated by dividing the GDP of a country38 by its population39 in each km2.

Gridded heating 
demand density (HD)

Demand density of heating (HD) in the residential sector globally in each km2 is calculated using gridded data from 
Sachs, et al.9.

Gridded heat demand 
per capita (HDpc)

Demand of heating per capita (HDpc) in the residential sector globally at km2 spatial resolution is calculated using 
the framework and heating demand data from Sachs, et al.9 and population from CIESIN39.

Table 10. Description of the group of attributes (see Fig. 10) for the spatial characterization of agent 
heterogeneity presented in Fig. 9.
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the spatially resolved and time-explicit characteristics are presented in Eq. 13 and are explained in Table 10. 
Figure 10 illustrates the process of capturing agent heterogeneity by overlaying three shaping structures.

Emergin Layer SpA SpA SpA[( ) ] (13)GDP HD HDPC PC
∩ ∩=

Spatial parametrisation of diversity. The spatial parametrisation of agent diversity follows the step (v) of the 
general framework for the spatial agent definition presented here. The attributes used to define the spatially 
resolved and time-explicit parameters of diversity are presented in Eq. 14, and are explained in Table 11.
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Spatiotemporal parametrisation of evolution. The spatiotemporal parametrisation of agent evolution follows 
the step (vi) of the general framework for the spatial agent definition presented here. The evolving attributes 
used to define the spatially resolved and time-explicit parameters of agent evolution are presented in Eq. 15.

=C GDP t POP t3 [ ( ) , ( )] (15)

Where:

•	 POP(t) is the Population evolution in time
•	 GDP(t) in the GDP evolution in time

Parametrisation of decision-making process. This study adopted the decision-making process approach of the 
MUSE ABM framework described in Eq. 12 and are explained in Table 9.

Exogenous environmental policy constraint. The external limitations imposed by environmental policies are 
referred to as exogenous constraints, which can prompt individuals to alter their actions while evaluating heat-
ing or cooling technology. To investigate this, the study utilized carbon price profiles from 2005 to 2100 sug-
gested in the MUSE model30, with each individual having access to various technologies that could result in 
varying levels of CO2 emissions. The total cost of carbon is calculated when an individual selects a technology 
that satisfies its service requirements. This external influence affects the decision-making process of each indi-
vidual before making the ultimate investment decision.

Scenario definition. In this study, eight scenarios have been developed (see Table 12) to assess each of the five 
components of the geospatial Agent-Based Modelling Framework presented previously. Heterogeneity (i), diver-
sity (ii), and evolution (iii) follow the definitions previously discussed. For the decision-making component (iv), 
this research has adopted the Levelised Cost of Energy (LCOE) as the main investment objective in agents when 
choosing a technology. The calculation of the annual LCOE for each technology includes the required invest-
ment expenditures (including financing), the operations and maintenance expenditures, the fuel expenditures, 

∑ = GDPi 1
k

i Aggregate GDP Total aggregate gross domestic product in each 3-attribute characterised agent zone represents the total 
agent economic output per zone. 1-km2 resolution gridded data from Kummu, et al.38 is used.

∑ = TEi 1
k

i Aggregate TE Total aggregate end-use energy demand in each 3-attribute characterised agent zone represents the total 
agent energy service demand per zone. 1-km2 resolution gridded data from Sachs, et al.9 is used.

∑ = SHi 1
k

i Aggregate SH Total aggregate space heating demand in each 3-attribute characterised agent zone represents the total 
agent space heating demand per zone. 1-km2 resolution gridded data from Sachs, et al.9 is used.

∑ = WHi 1
k

i Aggregate WH Total aggregate water heating demand in each 3-attribute characterised agent zone represents the total 
agent water heating demand per zone. 1-km2 resolution gridded data from Sachs, et al.9 is used.

∑ = SCi 1
k

i Aggregate SC Total aggregate space cooling demand in each 3-attribute characterised agent zone represents the total 
agent space cooling demand per zone. 1-km2 resolution gridded data from Sachs, et al.9 is used.

∑ = POPi 1
k

i Aggregate POP Total aggregate population in each 3-attribute characterised agent zone represents the total population 
belonging to the agent zone. 1-km2 resolution gridded data from CIESIN39 is used.

∑ =i 1
k POPi
TPOP

POP share In a given region or country, the POP share is calculated dividing the total aggregated population of a 
3-attribute characterised agent zone by the total population of the region or country.

HDIi Median HDI
Median Human Development Index in each 3-attribute characterised agent zone represents the total 
agent degree of development in terms of level of education, access to health services and income level. 
1-km2 resolution gridded data from Kummu, et al.38 is used.

Table 11. Description of the group of attributes of component 2 (C2, see Fig. 9) for the spatial parametrisation 
of agent presented in Eq. 14. Each attribute is calculated by extracting the total aggregate value in each 
3-attribute characterised agent zone. k refers to the numbers of elements or data points that belong to each agent 
zone.
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the electricity generation, the discount rate, and the technical life of the system. It is assumed that the agents 
would consider the final LCOE value to make the final decision. For the same decision-making component (iv), 
scenarios are defined assuming that agents have unlimited budgets (scenarios 01, 02, 05, and 06) and that agents 
have budget restrictions (scenarios 03, 04, 07, 08) according to their GDPpc shaping structure, which is part of 
the heterogeneity characterisation. The latter is called the multiple-budget system. The heat density restriction 
(HDR) is added to the decision-making process. HDR defines the technical and economic feasibility of technol-
ogies in agent zones according to the heat density of the zone where the agents are located. For the component 
of the exogenous environmental policy constraint (v), it is assumed that scenarios 01, 03, 05, and 07 consider 
carbon price (CP) schemes from Budinis, et al.30. The remaining scenarios do not consider CP schemes in the 
model.

the MUSE-RaSa model. The MUSE-RASA model is a combination of the general framework for the spa-
tial agent definition and the MUSE ABM Framework used for the geospatial Agent-Based Modelling Framework 
explained in previous section. Figure 11 presents the link between spatially resolved and time-explicit agents 
with the MUSE ABM algorithm that has been applied in the MUSE-RASA model. The five components that 
capture realism in the geospatial Agent-Based Modelling Framework explained previously are also illustrated: (1) 
heterogeneity, (2) diversity, (3) evolution, (4) decision-making, and (5) exogenous constraints of multiple agents 
within the MUSE-RASA model. The model calculates six outputs of the eight agent-based scenarios to explore the 
long-term climate-energy-economy transition pathways towards the NZE targets by mid-century, with a focus on 
the residential sector globally.

Table 13 describes the formulas that have been implemented in the MUSE-RASA model to calculate the 
outputs of the model. The service demand for space heating (and other residential end-uses) is firstly calculated. 
This serves to calculate the installed capacity required to meet the demand for heating supply technologies. Once 
the technologies are identified, electricity and fuel consumption can be estimated. The total capital expenditure 
(CAPEX), along with the LCOE and the total emissions are finally calculated.

Data Records
The MUSE-RASA geospatial agent-based modelling framework presents 13 geospatial datasets8: three for the 
characterization, two for heterogeneity definition, one for diversity parameterization, one for evolution param-
eterization, two for decision-making parameterization, one for the estimation of global energy demand in the 
residential sector, two for spatial cross-validation, and one for the MUSE regions used in this research. Details 
are presented in Table 14. This research defines characterisation as the process of assigning geospatial bounda-
ries to agents under similar geospatial characteristics and parametrisation as the process of estimating numeric 
parameters to those agents within those boundaries. This study includes a survey-based decision-making par-
ametrisation for China and Ecuador in Dataset 8. To validate the approach, this study employed the spatial 
cross-validation technique explained in the methodology section. Overall, this study contributes to a better 
understanding of complex agent systems and provides insights into how to use data in a spatial context for 
human representation in models.

Global clustered GDppc [GDppc_km2_shapes.shp]. This dataset provides a globally clustered GDPpc 
with respect to the six classes, as shown in Fig. 12 and Table 15. The shape file presents a range of zones with 
clustered values, regardless of the geographical administrative areas. For example, agents living in zones within 
GDPpc limit 1 (GDPpc1 = [min, 500], USD/cap*yr) can be in more than one region.

Global clustered HD [HD_km2_shapes.shp]. This dataset provides a globally clustered heat density 
with respect to the four classes, as shown in Table 16. The shape file presents a range of zones with clustered val-
ues, regardless of the geographical administrative areas. For example, agents living in zones within HD limit 2 
(HD2 = [1790, 12080], MWh/km2*yr) can be in more than one region.

Scenario Heterogeneity Diversity Evolution

Decision-making process
Exogenous env. policy 
constraints

Obj. Budget HDR CP

01 3 att. 8 att. 2 att. LCOE Unlimited Without With

02 3 att. 8 att. 2 att. LCOE Unlimited Without Without

03 3 att. 8 att. 2 att. LCOE Multiple Without With

04 3 att. 8 att. 2 att. LCOE Multiple Without Without

05 3 att. 8 att. 2 att. LCOE Unlimited With With

06 3 att. 8 att. 2 att. LCOE Unlimited With Without

07 3 att. 8 att. 2 att. LCOE Multiple With With

08 3 att. 8 att. 2 att. LCOE Multiple With Without

Table 12. Scenario definition based on the five components of the geospatial Agent-Based Modelling 
Framework. Unlimited budget refers to an agent with infinite budget. Multiple refers to a multi-budget system 
that is simulated according to agent GDPpc attribute (att.). HDR refers to the heat density restriction of each 
agent and is associated with the HD attribute of the agent.
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Global clustered HDpc [HDpc_km2_shapes.shp]. This dataset provides global clustered heat demand 
per capita with respect to the four classes, as shown in Fig. 13 and Table 17. The shape file presents a range of 
zones with clustered values, regardless of the geographical administrative areas. For example, agents living in 
zones within HDpc limit 3 (HD3 = [3.2, 5.3], MWh/cap*yr) can be in more than one region.

Global agents with two characteristics [Agents_GDppc_HDpc.shp]. This dataset provides global 
agent characterisation based on two geospatial characteristics, as shown in Fig. 14 and Table 18. The shape file 
presents a range of zones that represent the borders or areas where agents with two characteristics interact regard-
less of geographical administrative areas. For example, agents living in zone A’ 1 belong to areas with GDPpc1 and 
HDpc1 and are in more than one region globally.

Global agents with three characteristics [Agents_GDppc_HDpc_HD.shp]. This dataset provides 
global agent characterisation based on three geospatial characteristics, as shown in Fig. 2 and Table 19. The shape 
file presents a range of zones that represent the borders or areas where agents with the three characteristics inter-
act, regardless of geographical administrative areas. For example, agents living in zone A2 belong to areas with 
GDPpc1, HDpc2 and HD1, and are in more than one region globally.

Dataset to define agent diversity [6_global_agents_diversity.csv]. This dataset provides 12 param-
eters to define agent diversity worldwide aggregated in 28 regions. All the values were provided in 2010. Table 20 
defines each variable provided in this dataset. Figure 15 provides the global distribution of three out of twelve 
parameters that define the agent diversity for each of the 28 regions considered in this research.

Dataset to define agent evolution in space and time [7_global_agents_evolution.csv]. This 
dataset provides the values of GDPpc and Population for each agent zone in each region from 2010 to 2100.

Dataset to define the decision-making process in China [8_China_dm_agents_survey.
csv]. This dataset provides a range of variables to define the current status of the residential sector in China in 
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terms of energy consumption and willingness to invest in new energy technologies or retrofitting. Variables are 
self-explanatory.

Dataset to define the decision-making process in Ecuador [9_Ecuador_dm_agents_survey.csv]. This 
dataset provides a range of variables to define the current status of the residential sector in Ecuador, in terms 
of energy consumption and willingness to invest in new energy technologies or retrofitting. Variables are 
self-explanatory.

Dataset of global energy demand by agents and regions [10_global_agents_demand.csv]. This 
dataset provides the energy demand in the residential sector worldwide, disaggregated by agents and regions. 
The demand is further dissagregated in six service demands, as follows: space heating (hspace), water heating 

MUSE-RASA calculations Formula implementation
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Table 13. Formula implementation and variable description of the MUSE-RASA calculations of metrics that 
serve to evaluate the long-term transition of the climate-energy-economy system of this research, with a focus 
on the residential sector. SAg: Spatial agent, na: number of agents per region. w: weights; t: foresight time (5 
years is assumed); a: 1e6*constant*population; n: 4; b: constant; GDP: Gross Domestic Product; c: constant; 
Instcap: Installed capacity; UF: Utilisation factor; Eout: Energy out of the technology supply; Ein: Energy into the 
technology supply; TC: Technology cost; reg: region; Refcap: Reference capacity in base year; tce: technology 
scaling capacity exponent; It: Investment expenditures in year t (including financing); Mt: Operations and 
maintenance expenditures in year t; Ft: Fuel expenditures in year t; Et: Energy generation in year t; r: Discount 
rate; n: Life of the system; FC: fuel consumption; ef: emission factor.

Geospatial dataset Name in repository Format

To define agent characterisation:

 1. Global clustered GDPpc GDPpc_km2_shapes Shape [.shp]

 2. Global clustered HD HD_km2_shapes Shape [.shp]

 3. Global clustered HDpc HDpc_km2_shapes Shape [.shp]

To define agent heterogeneity:

 4. Global agents with two characteristics Agents_GDPpc_HDpc Shape [.shp]

 5. Global agents with three characteristics Agents_GDPpc_HDpc_HD Shape [.shp]

 6. Dataset to define agent diversity Global_agents_diversity Text [.csv]

 7. Dataset to define agent evolution in space and time Global_agents_evolution Text [.csv]

 8. Dataset to define decision-making process in China China_dm_agents_survey Text [.csv]

 9. Dataset to define decision-making process in Ecuador Ecuador_dm_agents_survey Text [.csv]

 10. Dataset of global energy demand by agents and regions Global_agents_demand Text [.csv]

 11. Dataset of global geospatial cross validation Spatial_cross_validation Text [.csv]

 12. Dataset of global geospatial cross validation errors Spatial_cross_validation_errors Text [.csv]

 13. Dataset of global MUSE region shapes Regions_shapes Shape [.shp]

Table 14. Geospatial datasets provided in this article and their names in the repository8. Viewing or using 
shape files [.shp] requires GIS software, such as the open-source QGIS application or R geospatial packages.
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(hwater), space cooling (cspace), cooking (cook), lighting (light) and appliances (appl). These demands were used 
in eight previously defined scenarios. Figure 2 illustrates this dataset.

Dataset of global geospatial cross-validation [11_spatial_cross_validation.csv]. This dataset 
provides details of the results of the subclustering approach used in this study. The subclustering reduced the 
number of heating demand agents from 96 to 20 globally. 96 agents were initially estimated for three geospatial 
characteristics. However, similarities were observed and a subclustering process was applied to reduce the num-
ber of agents. The Elbow Method is used to determine the Optimal Number of Clusters along with the actual final 
number of clusters per region. The dataset shows the results of measuring agent compactness after applying the 
subclustering K-means discussed previously. The percentage of well-grouped data [percentage_of_well_grouped_
data in dataset] shows the usual decomposition of deviance in deviance between clusters (BSS) and deviance 
within clusters (TSS). Ideally, the subclustering seeks clusters that have the properties of internal cohesion and 
external separation. Therefore, the ratio of BSS/TSS approaching 1 represents the compactness of the subcluster-
ing of agents31. Despite having 96 agents initially, a high percentage of well-grouped data means that the final 20 
agents have similar members within each new cluster after the application of the Elbow Method. In summary, 

Fig. 12 Global geospatial distribution of optimal number of GDPpc-based agent classes. The extreme classes 
(GDPpc1 and GDPpc6) are defined based on the literature and the remining four classes are the result of a 
K-means clustering approach, published in Sachs, et al.9 and Moya, et al.28. Gridded global datasets for Gross 
Domestic Product and Human Development Index is used from Kummu, et al.10. Upper and lower classes for 
the GDPpc are taken from Stierli40. Gridded population counts are taken from CIESIN18.

GDPpc [USD/cap*yr]

Lower bound Upper bound

GDPpc1 min 500

GDPpc2 500 3785

GDPpc3 3785 18125

GDPpc4 18125 41667

GDPpc5 41667 75901

GDPpc6 75901 max

Table 15. GDPpc-based agent classes. The extreme classes (GDPpc1 and GDPpc6) are defined based on the 
literature, and the four remaining classes are the result of a K-means clustering approach, published in Sachs, et 
al.9 and Moya, et al.28. Gridded global datasets for Gross Domestic Product were used from Kummu, et al.10. The 
upper and lower classes for the GDPpc were obtained from Stierli40.

Heat density [MWh/km2*yr]

Lower bound Upper bound

HD1 min 1790

HD2 1790 12080

HD3 12080 36930

HD4 36930 max

Table 16. Estimated heat density classes based on previously clustered heat density data are explained and 
published in Sachs, et al.9.
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if all 96 agents were selected without using the Elbow Method, the BSS/TSS ratio would be 1, thereby achieving 
100% compactness. Overall, the separate subclustering conducted for each MUSE-RASA region produced a BSS/
TSS ratio greater than 0.975, which means that more than 97% of the initial 96 agents were well grouped into 20 
agents. Additionally, the Silhouette coefficient [ave_sil_width in dataset] has been used to evaluate the goodness 
of the subclustering. Overall, a Si greater than zero indicates that the agents are well grouped. The closest Si is to 1, 
the best it is clustered. A Si < 0 indicates that agents were placed in the wrong group. In addition, Si = 0 indicates 
that the agents are between two clusters. These two variables are of especial importance for the cross-validation of 
agent characterisation and further parametrisation.

Dataset of global geospatial cross-validation errors [12_spatial_cross_validation_errors.
csv]. This dataset provides the results of the third validation process in addition to the validation previously 
discussed. The error between the agent parametrisation values and the aggregated parameter at the regional level 

Fig. 13 Global geospatial distribution of heat demand per capita. Heat demand gridded data has been collected 
from Sachs, et al.9 and Moya, et al.28. Gridded population counts are taken from CIESIN18.

Fig. 14 Geospatial representation and distribution of agents with two reclassified attributes: GDPpc and HDpc. 
For these agents there is no need to conduct a subclustering approach as the maximum number of agents 
emerge from the combination of 6-GDPpc classes and 4-HDpc classes.

Heating demand per capita [MWh/cap*yr]

Lower bound Upper bound

HDpc1 min 0.9

HDpc2 0.9 3.2

HDpc3 3.2 5.3

HDpc4 5.3 max

Table 17. Estimated annual HDpc classes based on literature41. The annual threshold of HDpc is defined 
globally.
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is provided in this dataset. Errors have been estimated for GDP, GDPpp, TE, SH, WH, Pop and HDI. Overall, the 
agent parametrisation approach suggests a global measure of error that is satisfactory, as the error is minimum in 
most agents and regions.

Global agents

Classes

Global agents

Classes

[spatially-resolved and time-explicit] [spatially-resolved and time-explicit]

GDPpc HDpc GDPpc HDpc

A’1 1 1 A’13 1 3

A’2 2 1 A’14 2 3

A’3 3 1 A’15 3 3

A’4 4 1 A’16 4 3

A’5 5 1 A’17 5 3

A’6 6 1 A’18 6 3

A’7 1 2 A’19 1 4

A’8 2 2 A’20 2 4

A’9 3 2 A’21 3 4

A’10 4 2 A’22 4 4

A’11 5 2 A’23 5 4

A’12 6 2 A’24 6 4

Table 18. Global disaggregation for agents defined with two spatial characteristics. GDPpc: Gross Domestic 
Product per capita; HDpc: Heat Demand per capita; A’: agent with 2 spatial characteristics. Refer to the previous 
tables for the class values. e.g., Agent’ 1 (A’1) belongs to zones, anywhere in the world, with a gridded GDPpc up 
to 500 US$/y (GDPpc = 1), and a gridded HDpc up to 3.2 MWh/y*cap (HDpc = 2).

Global agents

Classes

Global agents

Classes

[spatially-resolved and time-explicit] [spatially-resolved and time-explicit]

GDPpc HDpc HD GDPpc HDpc HD

A1 1 2 1 A11 4 4 1

A2 1 3 2 A12 4 3 2

A3 2 3 1 A13 4 4 3

A4 2 3 2 A14 4 2 4

A5 2 3 3 A15 5 2 1

A6 2 3 4 A16 5 3 2

A7 3 4 1 A17 5 3 3

A8 3 4 2 A18 5 2 4

A9 3 4 3 A19 6 3 1

A10 3 4 4 A20 6 3 2

Table 19. Global disaggregation for agents defined with three spatial characteristics. GDPpc: Gross Domestic 
Product per capita; HD: Heat Density; HDpc: Heat Demand per capita; A: agent. Refer to the previous tables 
for the class values. e.g., Agent 1 (A1) belongs to zones, anywhere in the world, with a gridded GDPpc up to 500 
US$/y (GDPpc = 1), a gridded HD up to 1790 MWh/km2 (HD = 1), and a gridded HDpc up to 3.2 MWh/y*cap 
(HDpc = 2).

Variable Definition Variable Definition

area_km2 Inhabited area covered by each 
agent POP_sum Total population in each agent zone per region

GDP_sum.USMM Total GDP per agent in US$ 
million Pop_perc Shared population in each agent zone per region

ET_sum_PJ Total energy demand in the 
residential sector by agent HDI_med Median human development index in each agent 

zone per region

SH_sum Total space heating demand 
in the residential sector by agent GDPppZones_2clustering GDPpc geospatial agent characteristic after 

subclustering

WH_sum Total water heating demand 
in the residential sector by agent HDpcZones_2clustering HDpc geospatial agent characteristic after 

subclustering

SC_sum Total space cooling demand 
in the residential sector by agent HDZones_2clustering HD geospatial agent characteristic after 

subclustering

Table 20. Definition of variables presented in dataset 6. Twelve parameters are provided to define agent 
diversity for 28 regions worldwide.
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Dataset of global region shapes [13_Regions_shapes.shp]. This dataset provides the MUSE-RASA 
regions used in this research in a geospatial format [. shp]. The 28 regions of the MUSE model are provided, which 
have been extensively documented in the literature14 and32.

Technical Validation: Spatial Cross-Validation
Four validation processes have been conducted in this research to validate the Geospatial Agent-Based 
Modelling (G-ABM) Framework, including the characterisation of heterogeneity (clustering and subcluster-
ing), and the parametrisation of diversity. First, the G-ABM approach was validated by comparing the official 
values of the two selected countries with those estimated in this study, as published in Sachs, et al.9. Second, the 
quality of clustering performed using the spatial K-means algorithm on GDPpc, HD, and HDpc was assessed 
worldwide. Details of this validation of the spatial characterisation are provided in Moya, et al.28. Third, the sub-
clustering goodness of the final spatial agents was measured using the Silhouette coefficient (Silhouette width), 
as can be seen in dataset No. 11. Finally, the error of the diversity parametrisation of each agent attribute was 
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Fig. 15 Region-based disaggregation of Total Residential Energy Demand, Human Development Index and 
population share for the geospatial parametrisation of agent diversity.
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also calculated and provided in dataset No. 12. This was performed by comparing the aggregated agent results 
with the total regional values.

The global number of heating demand agents was reduced from 96 to 20 through the process of subcluster-
ing. Figure  16 illustrates the results of measuring the compactness of the agents after applying the subclustering 
K-Means discussed in the Methodology, in the third validation process conducted in this research. The y-axis in 
Fig. 16 represents the percentage of well-grouped data, which indicates the division of deviance between clusters 
(BSS) and within clusters (TSS). Ideally, the subclustering aims to create clusters that exhibit internal cohesion 
and external separation. Thus, a BSS/TSS ratio approaching 1 explains the compactness of the subclustering of 
agents31. Despite initially having 96 agents, a high percentage of well-grouped data indicates that the final 20 
agents share similar members within each new cluster after applying the Elbow Method. In other words, if all 96 
agents were chosen without using the Elbow Method, the BSS/TSS ratio would be 1, achieving 100% compact-
ness. In summary, the separate subclustering performed for each MUSE-RASA region resulted in a BSS/TSS 
ratio greater than 0.975, indicating that over 97% of the initial 96 agents were effectively grouped into 20 agents. 
This outcome is particularly significant for the subsequent stages of the research, as agent definition involves 
specific zones of GDPpc, HD, and HDpc (characterization) with a range of parameters (parametrization).

Figure 17 depicts the validation process for agent parametrization, which is the fourth validation procedure 
conducted in this research alongside with the previous spatial-cross validation processes. The figure presents 
the disparity and comparison between the agent parametrization values from this research and the aggregated 
parameter at the regional level from data sources. It can be observed that in certain regions (CHN, DNK, EU7, 
ISL, ISR, JPN, KOR, and ZAF), the error is less than 1%. However, in the case of GDP in CAN, the error can 
reach 10%, and for HDI in ATE, error can go up to 12%. Overall, the agent parametrization approach demon-
strates an acceptable level of global error, as the majority of agents and regions exhibit minimal error.

Usage Notes
The datasets provided in this study8 are of real importance for researchers exploring the combination of GIS 
with ABM where socioeconomics and energy demands are needed. The datasets are spatially resolved and tem-
porarily explicit, which serve to capture the spatiotemporal dimensions in global model simulations. A range of 
agents are systematically defined. It is suggested that these datasets be used as inputs in future research on the 
decarbonisation of the energy system when considering the human dimension.

Stakeholders of the sustainable transition of the climate-energy-economy system can benefit of this research 
datasets in several manners. Decision-makers, policy-makers, firms, civil society, and researchers can identify 
four potential applications of these datasets in the context of assessing climate-energy-economy transition paths:

 1. Agent budget limitations: the datasets presented here8 embed intra-regional differences among energy 
consumers of the residential sector. This has important implications in climate-energy-economy model-
ling for designing policies, capturing heterogeneities, diversities, evolution, decision-making and external 
drivers of energy and economic agents in the assessment.

 2. Agents that drive the transition: this research has identified the main agents that will drive the cli-
mate-energy-economy transition globally. These agents are characterised and define with a range of param-
eters, openly share in this research8. Specific agents meet certain and customised characteristics defined 
by stakeholders to reach defined and designed goals such as changing energy use behaviour or adopting 
clean-highly efficient technologies.
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Fig. 16 Third validation process of this study. Quality of clustering done using the spatial K-Means algorithm. 
Quality is assessed by the application of K-Means BSS/TSS ratio. SS = sum of squares. BSS = low similarity 
between clusters. TSS = total deviance within groups sums of squares. Deviance concept is used instead of 
Variance concept because BSS/TSS ratio seeks to measure the model fit.

https://doi.org/10.1038/s41597-023-02529-w


23Scientific Data |          (2023) 10:693  | https://doi.org/10.1038/s41597-023-02529-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

 3. Carbon tax schemes implementation: Carbon tax schemes are hard to implement because of the regres-
sive impact on poorer households. This research can contribute towards minimising or eliminating the 
impact of carbon tax schemes implementation. To accelerate the sustainable transition towards the NZE 
target by mid-century, this research helps policy-makers and implementers of carbon tax schemes by tar-
geting and focusing on agents that can afford it or developing financial assistance programs for those that 
are unable to meet such taxes.

 4. Research and development prioritisation based on heat density: institutions in charge of researching, 
innovation and development of new solutions for a sustainable transition of the global climate-ener-
gy-economy system can also be beneficiaries of the results of this research8. Additional applications would 
apply for consumers living in zones where district heating technologies are technically feasible because of 
the high energy density observed there.

Limitations and challenges are also identified in this research. The main limitation of this study is the val-
idation of the decision-making process part. Although four systematic spatial cross validation processes have 
been conducted for the general framework for the spatial agent definition, there is lack of data about agent 
decision-making processes to validate any agent investment objective use in future assessments. The only way to 
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Fig. 17 Fourth validation process of this study. Error estimation of the agent parametrisation approach. 
Estimated values for each agent in each region are aggregated and then compared against aggregated regional 
values.
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inform specifically the decision-making process would require targeted surveys in the location, city, country, or 
region under study. Examples of surveys carried out for China and Ecuador, to collect primary data to charac-
terise the decision-making process, are presented in this research8. However, conducting a representative survey 
for all worldwide regions of this research would be a time- and resources- consuming task. National surveys 
would enrich the agent disaggregation analysis that this study has proposed. This could apply not only for the 
residential sector, but also for other sectors such as industry, transport, and agriculture. In this way, the research 
and datasets here can be applied to other sectors accordingly.

Code availability
The algorithms and formulas used in this study have been previously provided. This research used three 
programmatic free and open-source platforms: (1) R Statistical Software and Programming Language; (2) 
Quantum GIS (QGIS) software; and (3) Python software. A range of R Packages for geospatial big data analytics 
used in this research are presented in Bivand33. QGIS is used for data exploration purposes because of its features 
of viewing, editing, and analysing geospatial data34. Python is the development programmatic environment for 
the MUSE model35. The MUSE-RASA model has been built from the integration of the R-based geospatial RASA 
model with a Python-based MUSE model to end with the MUSE-RASA model. The R code used to create the 
shape files in the RASA model is available upon request with proper justification from the corresponding author. 
The MUSE model is an open source code available in Giarola, et al.36. Due to sponsorship agreements, the authors 
are not allowed to make the RASA code publicly available.
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