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An EEG database for the cognitive 
assessment of motor imagery 
during walking with a lower-limb 
exoskeleton
Mario Ortiz   1,2 ✉, Luis de la Ossa1, Javier Juan   1,6, Eduardo Iáñez   1,2, Diego Torricelli   3, 
Jesús Tornero   4 & José M. Azorín1,2,5

One important point in the development of a brain-machine Interface (BMI) commanding an exoskeleton 
is the assessment of the cognitive engagement of the subject during the motor imagery tasks conducted. 
However, there are not many databases that provide electroencephalography (EEG) data during the 
use of a lower-limb exoskeleton. The current paper presents a database designed with an experimental 
protocol aiming to assess not only motor imagery during the control of the device, but also the attention 
to gait on flat and inclined surfaces. The research was conducted as an EUROBENCH subproject in the 
facilities sited in Hospital Los Madroños, Brunete (Madrid). The data validation reaches accuracies over 
70% in the assessment of motor imagery and attention to gait, which marks the present database as a 
valuable resource for researches interested on developing and testing new EEG-based BMIs.

Background & Summary
The EUROBENCH project emerges with the idea of creating the first unified benchmarking ecosystem for 
robotic systems in Europe (https://eurobench2020.eu/). The project is mostly focused on wearable robots and 
humanoids and aims to integrate the state of the art technologies for the assessment of these robotic systems 
into one unified methodological and experimental framework. The methodological components include a set 
of standard experimental protocols, a tool for the automatic performance score assessment of the robotics,  
a register’s database of experiments carried out in the facilities and an online platform to use the data pro-
cessing algorithms. All of them have been included in a software suite to be used worldwide by researchers, 
developers and end-users1. The experimental framework is composed of two testing facilities, one for exo-
skeleton and prostheses located in Madrid (Spain) and a second humanoid-oriented located in Genoa (Italy).  
These benchmarking tools have been offered to beta testers during a validation campaign, in which different 
subprojects were offered the opportunity to use the software and the facilities.

The DECODED subproject, as one of the subprojects funded by EUROBENCH, participated in the vali-
dation of the benchmarking framework through two different scenarios. The experimental settings employ a 
lower-limb exoskeleton on two surface conditions: flat and inclined terrain. The subproject expands the original 
scenarios adding a Brain-Machine Interface (BMI) to the setup and the electroencephalography (EEG) record-
ings. One of the objectives was to test our previous developed BMIs2–5 and improved them through the new 
recordings carried out in the EUROBENCH’s facility.

The use of lower-limb robotic exoskeletons could help individuals with motor limitations. They can provide 
assistance and improve bottom-up rehabilitation thanks to the assisted motion executed by the device. The usa-
bility and clinical relevance of these robotics systems could be further enhanced by BMIs due to the top-down 
approach as they can improve neuroplasticity mechanisms6–8 through the cognitive engagement of the patient. 
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A BMI makes context-based decisions based on the decoding of brain activity through non-invasive electroen-
cephalographic (EEG) recordings. Different approaches have been explored in the last decade to interact with 
robotics exoskeletons by using BMIs based on EEG9,10. One of the most suitable paradigms to control an exo-
skeleton is motor imagery (MI). Although gait is a passive mental action that does not usually require the actual 
cognitive engagement, a BMI based on MI allows a direct and voluntary operation of the devices beyond the 
diminished physical capabilities of the subject. The focus of the subject on the mental task of motion provides 
a more intuitive control of the device in comparison to external interfaces such as joystick and buttons9, the 
monitoring of the torque11 or other EEG techniques based on Steady State Visual evoked Potentials (SSVEP)12. 
In addition, the involvement of the patient during rehabilitation techniques has the potential to enhance the 
brain restoration7. Literature demonstrates that the mental task of imaging a movement produces similar brain 
patterns than the executed motion13,14. Summing up, a BMI based on MI would be more intuitive and help the 
patient to be focused on the therapy.

However, the accuracy of the decodification of the brain signals must be improved not only in clinic environ-
ments, but also at home or outdoors. One of the main problems is that the subject is susceptible to distractions. 
Therefore, cognitive engagement plays a key role for the successful decodification of MI. Databases that include 
subjects’ EEG signals while they are controlling exoskeletons are not common, so advances in the development of 
BMIs for controlling exoskeletons have been progressing slowly in the last years compared to other research fields.

This makes the EEG database associated with this article a valuable contribution to research. Indeed, one of 
the objectives of the DECODED subproject was to provide the EUROBENCH database with EEG recordings 
valid for the cognitive assessment of MI during the use of a lower-limb exoskeleton. This is reflected on the 
current research as two different performance indicators (PI) which will be presented in the technical validation 
section: motor imagery (MI) and attention to gait (Att). However, the contribution of the database is wider as it 
could help researchers not only to compare their own MI and Att algorithms, but also to develop and test artifact 
mitigation techniques based on electrooculography channels, such as15, or motion16,17. Database could also be 
used to study the transitory of walk marked by an external cue as an event related potential (ERP)18 or the influ-
ence of surface inclination in the brain patterns.

EUROBENCH looks for creating an unified database with an standard format in the scope of bipedal robotics. 
However, it does not consider a specific format for EEG signals, so an adaptation of the format from our former 
architecture developed in © MATLAB to the .csv format was needed as this paper will explain. Due to the specific 
protocols designed, more robust BMIs could be developed in the future. The paper shows a pioneer database that 
will help researchers worldwide to develop, test and compare their decoding algorithms based on the actual cog-
nitive engagement of the subject. This will be done not only when the subject is wearing the a lower-limb exoskel-
eton (H3 Technaid, Spain) on a flat surface, but also during different angles on ascending and descending slopes.  
The designed protocols are similar to the one presented in a previous research which used the Rex (Rex Bionics, 
USA)5, but adapted to the H3 exoskeleton (Technaid S.L., Spain) and with an specific protocol for non-flat surfaces.

Methods
This section will describe the equipment used for recording the data and the protocols used for both scenarios. An 
explanation of the data preprocessing techniques and the software designed for the registering will also be included.

Equipment.  As indicated before, two different protocols were developed to assess the cognitive engagement 
during the use of a lower-limb exoskeleton depending on the walking surface: flat terrain (Experience), inclined 
terrain (Slopes). Both protocols used the following systems:

•	 For the recording of the electroencephalographic signals (EEG), a bundle of 32 wet slim electrodes was used 
(Brain Products GmbH, Germany). Twenty seven of the electrodes were positioned with the help of suited 
sized caps (actiCAP, Brain Products GmbH, Germany) using the 10-10 system (F3, FZ, FC1, FCZ, C1, CZ, 
CP1, CPZ, FC5, FC3, C5, C3, CP5, CP3, P3, PZ, F4, FC2, FC4, FC6, C2, C4, CP2, CP4, C6, CP6, P4). Four of 
the electrodes (VU, VD, HR and HL) were placed in bipolar setup for electrooculography (EOG) acquisition, 
vertical electrodes around left eye. Ground and reference electrodes were located in the right (A2) and left 
(A1) ear lobes respectively. See Fig. 1 for further detail. The data were sampled at a 200 Hz pace. To avoid any 
possible interference that could affect the registered data, signals were sent wired to an actiCHamp amplifier 
(Brain Products GmbH, Germany). It was placed on a cart or inside a bag carried out by a member of the staff 
placed behind the subject depending on the scenario.

•	 The exoskeleton used was a H3 (Technaid, Madrid, Spain). It was configured for 100% assisted walking. For 
additional stability, all the subjects were helped by crutches. Any risk of fall caused by unbalance loss was 
prevented by a member of the technical staff positioned behind. Commands for the established protocol were 
send via bluetooth by the self-made software developed in © MATLAB.

During the Experience experiments, additional physiological parameters were registered by the help of: 
Zephyr BioHarness 3.0 (Medtronic plc, USA), to register heart rate (HR), heart rate variability (HRV) and res-
piration rate (RR); and Shimmer 3 GSR (Shimmer Research Ltd, Ireland), to register the galvanic skin response 
(GSR) of the subject. All the signals were synchronized by the timestamp of the computer. These data are not 
included in the present paper as they are not used for EEG decoding of MI and attention, but will be incorpo-
rated into the EUROBENCH’s own database once operative (check https://eurobench2020.eu/ for updates in 
this regard) for assessing other performance indicators such as fatigue or focus attention.

In addition, the Slopes protocol used a custom platform that allows to change the slope’s angle by one degree 
steps. This scenario also employs seven Tech-IMUs CV4 (Technaid S.L., Spain) and 16 Trigno Avanti EMG 
recording sensors (Delsys Inc., USA), distributed throughout the legs. As in the Experience experiments, these 
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recordings are not provided in the database of this article as they are not related to EEG decoding, but they will 
also be public on the EUROBENCH platform when finished.

Figure 2 shows the equipment used during both kind of experiments.

Protocols.  The protocols were designed to record the EEG signals of subjects during the use of an overground 
exoskeleton over two different scenarios regarding the surface conditions, flat ground or a ramp. In order to assess 
the mental engagement during the use of the exoskeleton three different mental tasks were collected: relax, MI 
and regressive count. During relax, the subject was instructed to leave their mind blanked out, while during MI 
periods, the subject was focused on the kinesthetic imagery of the lower-limbs. In order to evaluate the attention 

Fig. 1  Distribution of the EEG electrodes based on International 10-10 system. 27 electrodes were used for EEG 
recording and 4 for EOG acquisition. Ground (A2) and reference (A1) electrodes were positioned on the ear 
lobes.

Fig. 2  Equipment setup. (a) Experience scenario. The amplifier and battery of the EEG acquisition system was 
placed on a cart pushed by a member of the staff. Another member provided also additional support to prevent 
any risk of balance loss (not present in the image for better visualization of the setup). The subject used crutches 
as they are required by the H3 exoskeleton. (b) Slopes scenario. The setup is similar to Experience, except that 
the cart was parallel to the platform. The amplifier and battery of the EEG acquisition system was carried out 
in a bag by the member of the staff that provided balance stability. Other sensors were used in the experiments 
such as galvanic skin response and respiratory and heart beat rate monitoring. As these sensors were acquired 
by a third party software and are not relevant for the EEG study they were not provided in the database.
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to gait, the protocols were designed to collect the mental activity during gait while the subject was performing 
a high demanding mental task that assures them to be abstracted from the conscious walking in comparison to 
their mental activity during the MI focused gait. Previous investigations have tried other distracting activities 
such as video watching19 or varied mathematical operations20. However, in this research we opted for the regres-
sive count indicated in our previous research5 as it does not require a screen which would be difficult to employ 
with the exoskeleton setup. Moving parts were recorded with the H3 exoskeleton at 100% assistance and the same 
speed level. However, due to the way the H3 exoskeleton manages speed, it can have minor variations due to the 
height of the subject. It is important to remark that the protocols were not designed to assess traditional MI, as 
the mental task of imaging motor action without any real movement would require full static registers, which is 
something we have already explored in previous investigations3. Therefore, MI class in this investigation should 
be considered as a high focused gait mental task during the use of the exoskeleton instead of the traditional defi-
nition of it.

Experience protocol (Exoskeleton-assisted overground walking).  Recordings were divided in three groups of 
trials:

•	 Four minutes trial while the subject is sat without wearing the exoskeleton.
•	 Four minutes trial while the subject remains standing up and wears the exoskeleton.
•	 Sixteen trials while the subject wears the exoskeleton and performs different mental tasks. The trials have 

static and movement periods. Original protocol consisted of 16 minutes of continuous walking on a treadmill, 
but as this original protocol did not allowed the required static periods and mental tasks, it was changed.

The first two groups are provided as baseline trials (trials of four minutes), but are not used in the PIs calcu-
lation of our architecture. The third group, which consists of the remaining sixteen trials, was used for the PIs 
assessment and structured as follow, see also Fig. 3 for further information:

•	 15 seconds of relax task, with the exoskeleton static and the user trying to stay as relaxed as possible, leaving 
their mind blank out. Five initial seconds were considered to allow the converging of posterior processing 
techniques. This meant that the effective time for analysis was 10 seconds.

•	 24 seconds of MI task, with the exoskeleton moving and the subject focused on the kinesthetic imagination of 
the limbs movement. First two seconds covered the initial walking transition and two additional seconds were 
considered for neglecting any instructional evoked potential. This provided 20 seconds of effective signal for 
analysis. Instructions were given by voice command “Imagine”.

•	 22 seconds of a regressive mental count task, with the exoskeleton moving. The user had to perform a cumu-
lative subtraction of a big number (e.g. 900) minus a smaller number (typically between 5 and 10, but it was 
adjusted for every subject). Instructions were also given by voice command. The first two seconds considered 
the instructional evoked potential, leaving 20 seconds of time for analysis.

•	 14 seconds of another relax task, with the exoskeleton stopped. First 4 seconds included the evoked potential 
and the time for the exoskeleton to stop, which left another 10 seconds of effective time of analysis.

a)

b)

Trial 1 Trial 2 Trial 16

c)

4 minutes sat without exoskeleton

4 minutes standing up with the exoskeleton

…

Mental task
Time 5s 10s 4s 20s 2s 20s 4s 10s

Exo moving
Neglected �me
Analysis �me

Relax Motor imagery Mathema�cal count Relax

Trial n

Fig. 3  Experience protocol. It included three different kinds of trials. (a) Four minutes sat without exoskeleton; 
(b) Four minutes standing up with the exoskeleton; (c) 16 trials of different mental and physical activities.
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Slopes protocol (Exoskeleton-assisted slope walking).  Due to the limited length of the ramp (5 m) some modi-
fications were needed. First, as the ramp up/down periods of time can vary and are dependent on the speed of 
the exoskeleton, which is influenced by the subject’s height, the motion mental task (MI or regressive mental 
count) was carried out for each couple of ramp up/down trials. The slope began at 1 degree and it was increased 
one by one till 4 degrees after four consecutive trials (a couple of ramp up/down trials). This means that 16 trials 
were conducted in total (8 up/8 down). As the time to cover the ramps depends on the height and weight of the 
subject, event’s times for the active class (MI or regressive count) can be slightly different for each subject. The 
change to the active class was marked by visual inspection of the technical staff, after the exoskeleton stepped on 
the ramp/down and before finishing it. Figure 4 shows an scheme of the protocol.

Subjects.  Fourteen able-bodied subjects participated in the study (mean ± age, 28.7 ± 4.8). They did not 
report any known disease and had no movement impairment. All participants were right-footed, with 5 of them 
being female and 9 male. They were informed about the experiments and signed an informed consent form 
in accordance with the Declaration of Helsinki. All procedures were approved by the Ethics and Integrity in 
Research Committee of Miguel Hernández University of Elche (Spain) (Reference DIS.JAP.05.20) and the Ethics 
Committee of CSIC (Madrid, Spain) (Internal reference 091/2021). Consent for video and image recording was 
also given.

The experiments were carried out during different weeks and not all the subjects participated in both sce-
narios and fulfilled both sessions. Table 1 shows the information of the participants and the sessions they were 
engaged.

Data pre-processing.  Provided data were pre-processed only by the hardware filters assigned in the 
pycorder software working with the EEG acquisition equipment. The assigned filters were a 0.1 Hz high-pass filter 
to avoid the DC component and a 50 Hz notch filter to mitigate the network component contribution. Data were 
sent to the custom EEG acquisition architecture in © MATLAB by an API that was slightly modified from the 
original one provided by Brain Products. No further pre-processing was applied to the data to keep them as much 
raw as possible and allow the users of the database to apply their own artifact removals techniques. Electrodes 
and wires movement were limited thanks to the use of a medical mesh as it is shown in Fig. 1. This was proved as 
useful in our previous investigations4,5.

Nevertheless, some actions were considered in order to allow the use of artifact removal techniques such as 
the two trials of four minutes baseline for the use of Artifact Subspace Reconstruction (ASR)16 or Independent 
Component Analysis (ICA)21. Besides, four EOG channels were registered to allow eye artifact removal 

Upwards trial n degrees

Mental task
Time 5s 10s ?s ~3 meters �me 4s 10s

Exo moving
Neglected �me
Analysis �me

Downwards trial
n degrees

Mental task
Time 5s 10s ?s ~3 meters �me 4s 10s

Exo moving
Neglected �me
Analysis �me

Relax Ac�ve task Relax

Relax Ac�ve task Relax

Fig. 4  Slopes protocol. The image shows a couple of ramp up/down trials. Each couple, as the one showed, was 
repeated for each active mental task (MI or regressive count) and four angles from 1° to 4°. This way, the total 
number of trials were 16. To assure that the active analysis time was when the subject was on the ramp, task 
labelling cue was assigned based on visual inspection by a member of the technical staff. The arrows indicate 
the cue after starting the ramp and before finishing it. Time of active tasks were variable, because of that and the 
exoskeleton speed dependency on the weight and height of the subjects.
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techniques such as the one presented by Kilicarslan et al.15. In addition to the time needed to connect and syn-
chronize equipment (label 0 in the .mat files), trials start with an initial five seconds length period to allow the 
convergence of state variable filters, such as the band-pass filters used in our processing, or other preprocessing 
techniques that require converge time, such as EOG artifact mitigation15.

Data Records
Data are provided as two different datasets in figshare platform22. Original data include the .mat files that were 
registered using the custom software developed to work with © MATLAB. They include multiple variables not 
relevant for the dataset, as the software acquisition architecture was designed to work with other devices and 
algorithms. Nevertheless, in order to facilitate the use of the files by third party researchers, they were simpli-
fied and exported to .csv format limiting the information to only the relevant variables and making them not 
dependant on © MATLAB software.

Repository.  Datasets are available on figshare22.

Data format.  Each of the experimental trials was originally recorded as an individual .mat file and converted 
to .csv format.

The folder structure is organized in different levels. This can be seen in Fig. 5. First level indicates the sce-
nario used for the experimental sessions: Experience or Slopes. Next folder represents the code of the subject 
used (subject 01 to subject 14). Then, files are organized by format in CSV and ORIGINAL folders. Inside of 
these folders the files can be directly found if only one session was carried out per scenario. In case, a subject 
performed more than one session, see Table 1, a folder named as the date of the experiment (year,month,day) 
contains the files.

Original data.  Each of the original registered trials were saved as a © MATLAB struct variable named session in 
a .mat file22. The register name follows the format XXX_YYYYMMDD_openloop_NT_sync.mat being: XXX: 
Subject code for .mat files, see Table 1; YYYYMMDD: date in Year-month-day format; openloop: Exoskeleton 
mode of control; NT: number of the trial registered and sync: a flag for the synchronization of other data acquisi-
tion items, so it appears only if other external devices were read such as Galvanic Skin Response, Inertial Motion 
Units or heart beat rate. As they are not provided in the database, this last mark is not relevant for the provided files.

Talking about the session struct, some of the fields are not used in this research. However, as they can be 
used in other investigations of the group, they are still present in the file structure. Depending on the file, not all 
of them are always present, e.g. if no exo was used “ EXO” subfields are not present. The most important struct 
fields are:

•	 data_EEG includes the data of the 27 EEG channels.
•	 trigger_EEG includes any possible trigger captured by the EEG amplifier in case it is used.
•	 data_EXO contains the reading of the exo status as it is readed from H3 exoskeleton in a code number.
•	 trigger_EXO contains any trigger sent by the H3 exoskeleton.

Subject CSV code Mat Code

Experience

Mat Code

Slopes

sep-21

mar-22 dec-21 apr-22oct-21

W1 W2 W1 W2

S1 Subject_01 M05 yes yes

S2 Subject_02 M06 yes

S3 Subject_03 M07 yes

S4 Subject_04 M08 yes yes M17 yes

S5 Subject_05 M09 yes M13 yes

S6 Subject_06 M10 yes M15 yes

S7 Subject_07 M11 yes yes

S8 Subject_08

S9 Subject_09 M14 yes yes

S10 Subject_10 M16 yes yes

S11 Subject_11 M18 yes

S12 Subject_12 M19 yes

S13 Subject_13 M20 yes

S14 Subject_14 M21 yes

Table 1.  Distribution of the sessions carried out by each of the subjects for both scenarios. The experimental 
sessions were carried out in two different weeks per protocol in the Eurobench complex (W1 and W2). Please 
check the *.mat files name to see the actual date of each recording. Although S8 signed the informed consent 
and started the experiments for a W2 slope test, technical problems with the acquisition equipment did not 
allow to finish the experiment. Therefore, data were not uploaded to the database for S8 subject.
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•	 task_EEG indicates the label names of the different events in the file by a code number.
•	 task_index_EEG marks the sample where a task event starts (positive) and ends (negative) based on the task 

order.
•	 task_order_EEG contains the samples were a task event happens by order.
•	 event_EEG contains any manual events marked by the technician in control of the acquisition tool.
•	 data_preprocessed_EEG contains the data EEG data as the first 31 rows and the data after any possible soft-

ware preprocessing steps carried out in blocks of 31 rows. As in this research, no further preprocessing was 
applied, the variable contains exactly the same data than data EEG variable.

•	 data_preprocessed_EXO modifies the data EXO data in case any change is done to the status. As it was not 
the case, only zeros are saved.

•	 results contains result metrics when the architecture is used for data analysis. As only acquisition was per-
formed, the variable is an empty matrix.

Fig. 5  Distribution of files in folders.
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•	 conf consists of a struct that provides lots of information depending the way the software is used. As it was 
just used for acquisition, most of the subfields are empty or do not have any significance from the database 
point of view. Relevant information can be found mostly inside the acquisition subfield, which is also a struct. 
The more remarkable fields inside this substructure are:
•	 acquisition.user_code: see Table 1.
•	 acquisition.device.device_EEG: which provides important information in different fields about the hard-

ware used for EEG and EOG acquisition, channel distribution and sampling frequency.
•	 acquisition.task: it is another struct that includes among others the sequence of the tasks (coded by a 

number), the time in seconds and the task name in a list. For instance, task number 404 which lasts  
20 s can be found in acquisition.task.task list as MotorImagery in Experience recordings.

CSV data.  To simplify the use of the database by third party researchers, the original .mat files were converted 
to .csv format. The .csv files are named by the subject number as subject XX followed by the condition and run 
order, i.e. the number of the trial. Notice that in the files, trials are named as runs. Inside each scenario there is a 
CONDITIONS.txt file that clarifies these. In the case of Experience scenario they are:

•	 cond_01_run_01: 4 minutes of EEG register with the subject sitting without the exoskeleton. See a) in Fig. 3.
•	 cond_02_run_01: 4 minutes of EEG register with the subject standing wearing the exoskeleton. See b) in 

Fig. 3.
•	 cond_03_run_01:16: 16 trials of EEG register with the subject standing and walking wearing the exoskeleton, 

performing mental tasks. See c) in Fig. 3.

In the case of the Slopes scenario the condition number is associated with the inclination angle and the men-
tal task and the run with the ramp up/down action. Although the information is indicated in CONDITIONS.txt 
file, it can be easily consulted in Table 2.

Each of the individual trials is defined by two files, the proper .csv and a .json. The .csv file contains a matrix 
where each row is a sample. The columns are in order: the time in seconds, the 27 EEG electrodes in μV, the 4 
EOG electrodes in μV and the label of the task. The .json includes the relevant information of each file, summing 
up the needed fields that are in the session.conf of the original recordings.

The .json structure is the same for both scenarios. The fields are self-explanatory, including: the file name, the 
EEG acquisition system, the sampling frequency, the number of channels used for EEG and EOG acquisition, 
the units of the voltage acquired and the placing of the reference and ground. It also defines the labels associated 
with the different tasks carried out during the experiment and the pre-processing filters applied. An example of 
the .json structure can be seen in Fig. 6.

Technical Validation
Two different paradigms are used to validate the database: MI and Attention to gait. For both paradigms two 
Performance Indicators (PIs) are calculated: MI index and Attention index. Both indices are tested for each 
of the individual files using the rest of them for training. Results are provided as the averaged accuracy of the 
leave-one-out cross validation for each subject. In addition, individual metrics and graphic representations per 
trial can be obtained through the use of the provided software for the calculation of the PIs. All the signals were 
processed as epochs of 1.5 seconds and shifted at a 0.5 seconds ratio. Notice that, as the methodology employed 

Inclination cond Mental Task run Action

1°

01 MI
01 Ascending

02 Descending

02 Regressive Count
01 Ascending

02 Descending

2°

03 MI
01 Ascending

02 Descending

04 Regressive Count
01 Ascending

02 Descending

3°

05 MI
01 Ascending

02 Descending

06 Regressive Count
01 Ascending

02 Descending

4°

07 MI
01 Ascending

02 Descending

08 Regressive Count
01 Ascending

02 Descending

Table 2.  Explanation of the CONDITIONS.txt for the Slopes scenario. Inclination degree depends on the 
condition number. Being odd conditions for MI and even for regressive count. The up/down walking was 
marked by the run number, i.e trial number.
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for technical validation of the data does not use low frequency bands, no ASR or EOG artifact removal tech-
niques were applied.

MI index.  The aim of the algorithm is to create an index defining the MI level during the different mental 
tasks. The MI algorithm confronts two of the mental tasks conducted by the subjects during the experimental 
data collection: Relax and MI. The periods of time valid for the analysis are marked in Fig. 3 neglecting any tran-
sition events between tasks and their possible evoked potentials. Data are evaluated just for the 16 trials (trials c).  
The two starting trials of 4 minutes sat and standing up are provided just as a baseline useful for other data analy-
sis, but they do not provide relevant information for the presented MI algorithm.

The implemented algorithm is based on the previous research presented in3. A detailed flow diagram can 
be seen on the top right part of Fig. 7. Signals were band-pass filtered on four bands to define alpha and beta 
rhythms. For each band a common spatial filter (CSP)23 was computed, taking as extracted features, once stand-
ardized, the variance of the first and last four components.

After the feature extraction, a linear discriminant analysis (LDA) classifier24 was trained with the features of 
the two classes using the 15 data files, leaving one of the files for testing. In the case of the Slopes scenario, seven 
files were used for training the model leaving one for testing as eight were the files with MI conducted task, see 
Table 2. Each of the epochs of the testing vector was classified by a 0 (Relax) or a 1 (MI). This binary classification 
was averaged for the 5 previous and posterior shifted epochs in order to create the MI index. As it is computed 
epoch by epoch, it can be represented as a continuous vector with a resolution of one epoch. However, as it con-
tains information of the 5 previous and posterior epochs, i.e. it contains information between [−3, +3] seconds, 
there is a natural delay in the MI index in the transition tasks, which are not used in the metric computation.

One of the main changes done to the original algorithm presented in3 are in the way the epochs are averaged. 
In addition, there is not a state-machine dual control classifier, as no real-time control decisions are needed in 
the current research, being the processing carried out in pseudo-online mode.

An example of MI index output can be seen in Fig. 8a). Notice that regressive count is not represented in 
the figure as the MI index uses a dual class classifier and regressive count task output is relevant only for the 
Attention PI. Slopes trials have only one active mental task per trial so the MI index output would be similar to 
the one shown for the 8 MI trials.

Attention to gait index.  The attention to gait (Att) has been studied in previous investigations5,19,20, 
demonstrating that differences on brain activity can be detected on gamma band during motion depending on 
the attention focus that the subject shows to the gait (high attention) or a distracting activity (low attention). 
Attention index has shown its usefulness as a correcting tool to limit the number of false positives in a BMI5 and 

{
"EEGfile": "subject_02_cond_01_run_01.csv",
"EEGSystem": "Actichamp32e",
"SamplingFrequency": 200,
"EEGChannelCount": 27,
"EOGChannelCount": 4,
"EEGUnits": "microV",
"EEGReference": "placed on right ear lobe",
"EEGGND": "placed on left ear lobe",
"PowerLineFrequency": 50,
"Notes": [],
"TaskDefinition": [
"400: Hinfinity convergence",
"401: Prepare relax task",
"402: Relax, the user is standing trying to relax with the exo stopped / 

stopping",
"403: Prepare motor imagery task, exo starts moving",
"404: Inferior train motor imagery task while the exo is moving",
"405: Prepare regressive substraction mental task, the exo is still 

moving",
"406: Regressive substraction mental task"

],
"SoftwareFilters": [
"high-pass filter 0.1Hz",
"Notch filter 50Hz"

]
}

Fig. 6  Example of the information provided in the.json files for a trial of Experience scenario.
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its viability to work in a closed-loop control with a state machine control3. The algorithm used to assess the Att 
has been modified from previous investigations and uses CSP23 in a similar way to the MI index to extract the 
standardized variance of the first and last four columns of six sub-bands of gamma band, see Fig. 7. Besides the 
use of gamma band, the other difference with the MI algorithm is the use of a cascade classifier. This means that 
the CSP features are used to create or test two different classifiers depending on the MI paradigm output: two 

LDA Classifier
(2 Classes)

FEATURE EXTRACTION

State variable
Band-pass filters

For every band CSP 
filter is computed

and applied

4 Bands:
• 5-10Hz
• 10-15Hz
• 15-20Hz
• 20-25Hz

6 Bands:
• 30-35Hz
• 35-45Hz
• 55-60Hz
• 60-70Hz
• 70-80Hz
• 80-90Hz

Per band:
Standardized

variance of the 4 
first and 4 last

columns

Feature vector

Output:
• 0 (Relax)
• 1 (MI)

Average:
5 previous 

and 
5 posterior epochs

MI Index

Classifier employed depends on MI 
classification

If MI class = 0

If MI class = 1

LDA Classifier
(3 Classes)

LDA Classifier
(2 Classes)

Average:
5 previous

and
5 posterior epochs

A�en�on 
Index

Output:
• 0 (Relax)
• 1 (MI)
• 0 (count)

Output:
• 1 (MI)
• 0 (count)

M
OTOR IM

AGERY
ATTENTION TO GAIT

Fig. 7  Details of the algorithms employed for the technical validation of the data and the calculation of MI and 
Att PIs.

Relax Task

Relax Task

MI level
during
MI Task

Attention level
during
MI Task

Attention level
during

Count Task

MI level
during

relax Task

Attention level
during

relax Task

MI Task

MI Task

Count Task

Fig. 8  Example of the PI computed with the files. The images show two PI indices for a Experience trial. a) MI 
index for S1 and trial 6 (magenta). Notice that the signal in magenta is not represented for the regressive count 
period as it is not relevant for this PI; b) Attention index for S1 and trial 10 (cyan). As the PI is relevant not 
only for regressive count task, but also for MI and relax periods, the representation is shown for the whole trial. 
Although both PIs are shown for transition events of neglected time (see Figs. 3, 4), only the effective analysis 
time periods are considered for metric evaluation. X axis represents the epoch number which is shifted at a 
0.5 seconds pace.
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classes and two outputs (Count (0) vs. MI (1)), and three classes and two outputs (Relax + Count (0) vs. MI (1)), 
see Fig. 7 down. This conditional classification is first introduced in the current investigation along with the CSP 
gamma features improving the original results of the attention index.

Similar to the MI index, Att index is computed averaging the previous and posterior 5 epochs. An example of 
the Attention index output can be seen in Fig. 8b). Ideally, Attention to gait index should be low during the relax 
and regressive count periods and high during the MI ones. Equally to the MI index output, there is a inherent 
delay in the index due to the averaging of the previous epochs and it is influenced by transition tasks as it is com-
puted as a continuous time vector during each trial.

Metrics computation.  As both PIs are calculated as a continuous vector for each trial, a proper metric for 
the assessment of the results must be defined. Both PIs should be as high as possible during MI periods and low 
during the rest of tasks. Accuracy metrics are defined as the ratio of effective areas below or upon the PI during 
the valid periods of analysis, i.e. neglecting transition times:

∑= ⋅
=

PI
t
t

A%
(1)i

N
i

T
i

1

being N the number of periods, ti the time of each period, tT the total time analyzed and Ai the correct area 
ratio. Figure 9 shows an example of both PI metrics computation. The effective areas appear for each task color 
coded, leaving as striped areas wrong zones. Notice that as the PI indices have a certain delay, it is not possible to 
achieve 100% accuracies even for a perfect classification of all the epochs.

Results.  The metrics are computed for each tested file and given as the average and standard deviation of the 
leave-one-out cross validation of the trials for both scenarios in Table 3. For each tested file, the model is created 
with the information of the classes of the n-1 resting files. The data used for training the model corresponds to 
the windowed effective areas in Fig. 9. They are color coded for each of the mental tasks and associated with the 
data by their task name which are present in the *.json and *.csv files: green (relax task 402 in files), red (MI tasks 
404/752/758 in files for experience, slopes up and slopes down respectively) and blue (tasks 406/756/758 in files 
for experience, slopes up and slopes down respectively). The indices are calculated as a continuous vector data, 
but assessed for the windowed effective areas as indicated in the metrics computation section. If individual accu-
racies want to be consulted, please check the results .mat file created by the technical validation software and the 
figures by trial that are generated.

As it can be seen, both paradigms show systematically accuracies over the 70%, which provides an indi-
cator of the data validation. As an example to see the indices obtained per each individual trial Fig. 10 can be 
consulted.

The performance on flat surfaces (Experience) shows better results for the MI paradigm, showing a lower 
accuracy for all the subjects by almost a 5% in average for the Att index. In the case of the inclined surface 
(Slopes), both paradigms perform similarly without a significant difference. Comparing both scenarios, the 
Slopes scenario shows slightly lower results. However, this could be related to the high subject dependency that 
is present in the results and reported on previous investigations2,5. Indeed, the results are mixed when the com-
parison is done for subjects that participated in both scenarios. In the case of S4 the MI performance of slopes 
is similar for W1 Experience and higher than W2 Experience, while Attention paradigm performs better than 
the two Experience weeks. However, the behaviour of S5 is contrary to S6. While the MI performance of Slopes 
is better for S6, it is lower for S5, being the opposite for the Attention paradigm. All of this indicates that the 
minor differences in performance are just due to the normal EEG variations in performance expected when a 
BMI is analyzed.

There are not many investigations in the literature that assess the cognitive engagement or maintained MI 
during the use of an exoskeleton. Thus, the focus will be on previous iterations of the algorithms presented. 
The former research5 follows a very similar protocol to the one in this paper, but using a Rex exoskeleton (Rex 
Bionics, New Zealand) and Stockwell transform25 for MI paradigm and power spectral density by maximum 
entropy method? for the attention paradigm. Results should be compared to the ones in the pseudo-online 
analysis for the MI + att pseudo-online analysis in Table 15, as it is the one similar to the one conducted in 
this research. The average value for the indices are shown in Table 2 of the paper5 with a %MI of 71,2 ± 13,3% 
and %Att of 71,1 ± 10,3% (see Table 2) for the five sessions of the four subjects. These value are around 10 
points lower and with a lower dispersion than the ones registered in the current research that achieves a %MI 
of 80,4 ± 4,9% (for week 1 sessions), 78,9 ± 4,3% (for week 2 sessions) and an %Att of 75,5 ± 4,9% (for week 1 
sessions) and 73,2 ± 1,9% (for week 2 sessions). Slopes protocol shows also higher indices in average with lower 
dispersion, with a %MI of 78,4 ± 5,2% (for week 1 sessions), 77,1 ± 5,0% (for week 2 sessions) and an %Att of 
79,6 ± 2,8% (for week 1 sessions) and 77,5 ± 4,1% (for week 2 sessions).

The research by Ferrero et al.3 introduces CSP for the computing of the MI index, keeping the maximum 
entropy method for attention assessment. It also uses the same H3 exoskeleton of this research. However, there 
is a significant difference in the used protocol, as it is designed to create a state machine for the closed-loop 
control of the exoskeleton in real time. This means that the control is designed to use the combination of two 
models depending on the exo status: static and motion. The most similar comparison to the research of the 
current paper will be with the results of the leave-one-out cross validation of the individual models during the 
training trials. As we are focusing on the cognitive engagement of the gait, the comparison will be done with the 
average of the sessions of the gait model in Tables 1, 2 of the paper3. They achieve a value for the average of the 
sessions performed of %MI 67,41 ± 12,00% and %Att 67,55 ± 2,44% for the first subject and %MI 56,17 ± 4,91% 
and %Att 64,5 ± 3,98% for the second subject. The results are lower than the ones of the current research, but it 
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could be related to the subject dependency (just two subjects) and the protocol differences, as it is much harder 
to perform the blanked out mind relax event during gait than in a static situation.

The database could help worldwide researches to develop new EEG-based algorithms to assess the cognitive 
engagement in motor tasks when wearing a lower-limb exoskeleton not only on flat surfaces, but also on slopes, 
providing an EEG collection of recordings under a defined protocol that covers a gap in the research community.

Usage Notes
Mat2CSV converter.  Create a /Registers/CSV folder in the directory the file is run. Use lines 13:14 
for Experience files and lines 17:18 for Slopes ones. File tested on © Matlab R2022a version for the uploaded 
software26.

DECODED PIs calculator.  Please follow the instructions annexed to the technical validation software. The 
software is run for each subject and week. Create a /readfiles folder to place the csv files and a /results folder to 
allow the software to write the results. © MATLAB is required for the PI computation (tested on R2022a version).

Results include: the PIs per epoch in .csv and .mat files, figures with the continuous PIs indices and differ-
ent area metrics computations under results.m file. The defined PI metrics exposed for the MI and Attention 
paradigms can be obtained per trial in the results.m for lines 9 and 12 respectively. For obtaining the results 
presented in Table 3, just type:

MI = mean(results(9,:))
Att = mean(results(12,:))

M
I m

etric (%
)

ATTENTION m
etric (%

)

60%

53%

100%
89%

100%
78%

84%

% , %

10s 20s 10s

10s 10s20s 20s

% , %

Fig. 9  Example of the calculation of the PI metrics. The metric is assessed for the considered valid analysis time. 
These times are fixed for Experience trials and variable for the Slopes ones.
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Please remember that the Experience files used in the technical validation are related to the condition 3 (16 
trials), so just select cond03 files with the technical validation software. In the case of the Slopes scenario, all the 
16 files of each session must be chosen.

Code availability
The file converter from original .mat files to formatted .csv files is available on figshare26. The code for the 
computation of the PIs is available on https://github.com/bmislab/DECODED.
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Subject CSV code
Mat 
Code

Experience

Mat 
Code

Slopes

sep-21, oct-21 mar-22 dec-21 apr-22

W1 W2 W1 W2

MI Att MI Att MI Att MI Att

S1 Subject_01 M05 79,2 ± 6,1% 76,9 ± 7,4%

S2 Subject_02 M06 71,6 ± 5,6% 68,8% ± 5,7 78,3 ± 5,9% 73,8 ± 12,6%

S3 Subject_03 M07 87,3 ± 4,9% 82,8 ± 4,6%

S4 Subject_04 M08 80,0 ± 5,7% 73,1 ± 7,3% 76,5 ± 7,6% 76,2 ± 6,5% M17 80,5 ± 7,3% 80,0 ± 11,0%

S5 Subject_05 M09 84,4 ± 4,5% 76,6 ± 5,3% M13 81,4 ± 5,5% 83,3 ± 8,4%

S6 Subject_06 M10 80,3 ± 5,4% 79,4 ± 10,6% M15 84,2 ± 6,3% 79,1 ± 9,9%

S7 Subject_07 M11 80,2 ± 6,2% 71,0 ± 6,1% 76,4 ± 5,0% 71,7 ± 6,2%

S8 Subject_08

S9 Subject_09 M14 80,1 ± 6,2% 80,6 ± 5,6% 82,2 ± 6,0% 82,0 ± 9,8%

S10 Subject_10 M16 75,0 ± 8,8% 79,6 ± 6,5% 72,1 ± 6,7% 73,9 ± 6,4%

S11 Subject_11 M18 71,3 ± 6,9% 75,6 ± 7,7%

S12 Subject_12 M19 73,6 ± 8,7% 74,1 ± 10,0%

S13 Subject_13 M20 86,4 ± 4,8% 71,8 ± 6,4%

S14 Subject_14 M21 76,8 ± 8,6% 72,7 ± 9,2%

Avg. 80,4 ± 4,9% 75,5 ± 4,9% 78,9 ± 4,3% 73,2 ± 1,9% 78,4 ± 5,2% 79,6 ± 2,8% 77,1 ± 5,0% 77,5 ± 4,1%

Table 3.  Accuracy results for the two experimental scenarios tested and both paradigms. The results for the 
leave-one-out cross validation are calculated by subject and week of experiments.

Fig. 10  Computation of the indices of Experience protocol for subject S3 during the first week session. (a) MI 
index (magenta) for the sixteen trials registered, (b) Att index (cyan) for the sixteen trials registered. Indices 
range from 0 to 1. Time periods are color coded depending on the mental task executed and placed on 0 or 
1 depending or the ideal value to obtain. Indices are computed for the whole trial including transition times 
(yellow). Model is trained with the information of the classes of the rest of the trials without using the transition 
periods 7.
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