
1Scientific Data |          (2023) 10:271  | https://doi.org/10.1038/s41597-023-02182-3

www.nature.com/scientificdata

An annotated human blastocyst 
dataset to benchmark deep 
learning architectures for in vitro 
fertilization
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Medical Assisted Reproduction proved its efficacy to treat the vast majority forms of infertility. One 
of the key procedures in this treatment is the selection and transfer of the embryo with the highest 
developmental potential. To assess this potential, clinical embryologists routinely work with static 
images (morphological assessment) or short video sequences (time-lapse annotation). Recently, 
Artificial Intelligence models were utilized to support the embryo selection procedure. Even though 
they have proven their great potential in different in vitro fertilization settings, there is still considerable 
room for improvement. To support the advancement of algorithms in this research field, we built a 
dataset consisting of static blastocyst images and additional annotations. As such, Gardner criteria 
annotations, depicting a morphological blastocyst rating scheme, and collected clinical parameters 
are provided. The presented dataset is intended to be used to train deep learning models on static 
morphological images to predict Gardner’s criteria and clinical outcomes such as live birth. A benchmark 
of human expert’s performance in annotating Gardner criteria is provided.

Background & Summary
Medically Assisted Reproduction (MAR) started more than four decades ago and was primarily developed as a 
therapeutic treatment for couples suffering from tubal female factor infertility. Technologies as intracytoplas-
mic sperm injection (ICSI) were introduced and soon MAR was applicable to a variety of different infertility 
indications. So far, it is estimated that MAR techniques have resulted in the birth of over eight million children1. 
The tremendous impact of MAR in the field of medicine is illustrated by the fact that roughly 15 percent of the 
global population and therefore 48.5 million couples are affected by infertility2,3. Though huge efforts have been 
undertaken by research groups and in vitro fertilization (IVF) laboratories around the world, a live birth rate 
of less than 40 percent1 bears a huge potential for improvement4. In addition to the disappointment for couples 
in case of treatment failure, multiple cycles of extensive therapy, high expenses and physiological as well as 
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psychological burden can cause stress and depression5. A regular treatment cycle in MAR is composed of several 
sequential steps, such as ovarian stimulation and puncture to collect cumulus-oocyte-complexes (COC), con-
ventional IVF or ICSI for fertilization, short-time embryo culture in vitro up to 6 days to select the embryo of 
best prognosis for intrauterine transfer. Surplus embryos are vitrified for subsequent embryo transfers.

In the IVF laboratory the most crucial step is the selection of the embryo, preferably at blastocyst stage, with 
the highest implantation potential. Standardized schemes relying on both morphological and morphokinetic 
parameters of embryo development are commonly used to rate and rank the quality of the embryos and thus, 
the potential of the associated blastocysts to result in a successful pregnancy. This assessment is based either on 
observation of single static morphology images or time-lapse video sequences. The scoring of the developed 
blastocysts itself is performed by applying a standardized scheme such as the Gardner score, which rates the 
blastocyst expansion (EXP), as well as the quality of the inner cell mass (ICM) and trophectoderm (TE). This 
scheme6 outranged previous blastocyst scoring systems in a prospective study7 and its use was not only applied 
in multiple studies in order to increase IVF success rates, it is also recommended by an international expert 
group8. However, rating is prone to inter- and intra-observer variation. In addition, standard operating pro-
cedures (SOP) defined to implement the morphological assessment can vary between IVF centers and thus, 
introduce a bias.

Artificial Intelligence (AI) has gained attraction in IVF in order to generate a more standardized, unbiased 
approach to rate and select embryos for transfer9–15. Recent studies not only focused on selecting blastocysts for 
transfer, but also introduced trained models approaching an unbiased prediction of clinical parameters such as 
biochemical pregnancy, clinical pregnancy or life birth11,12,16. However, the comparison of results across studies 
imposes challenges as different scores for evaluation were used and study designs diverge17. To the best of our 
knowledge, no dataset is publicly available to be used for training and benchmarking AI-models with respect to 
Gardner scores or clinical parameters. In fact, there are only two publicly accessible datasets available: a dataset 
composed of bovine blastocysts18 and a dataset providing time-lapse movies of developing embryos including 
annotations of 16 different morphokinetic events19. Since bovine blastocysts differ from human blastocysts in 
morphological appearance, size and developmental speed20, this dataset18 is of little value for embryologists and 
researchers in the field of human MAR. The dataset containing videos of developing blastocysts is a valuable 
contribution towards deep learning-based assessment of blastocyst development phases, but cannot be used to 
predict scores according to the Gardner scheme or to infer a direct correlation to clinical parameters.

In this work, we want to bridge this gap by introducing a dataset consisting of images of human blastocysts 
including clinical annotations and expert-annotated Gardner criteria. Thereby, we are aiming to overcome the 
aforementioned pitfalls by providing i. a train- and test set split of all images including expert annotations of the 
Gardner criteria and the expert agreement (mean value and standard deviation), serving as reference to bench-
mark AI methods in comparison to human experts and ii. clinical parameters that can be used to support the 
development of AI architectures towards a prediction of these parameters from static blastocyst images. Thus, 
the dataset will support research groups to advance AI models towards an improvement of IVF success rates and 
towards a standardization of blastocyst selection for transfer to overcome intra- and inter-observer variability.

Methods
Participants and ethics.  A total number of 2,344 blastocysts from 837 patients were included in this data-
set. Blinding was employed during data collection. Informed consent was given and an ethical approval was 
obtained from the Ethics Committee of the Faculty of Medicine at the Johannes Kepler University in Linz, Austria 
(Nr. 1238/2021). All authors confirm that we have complied with all relevant ethical regulations.

Embryo development.  All oocytes collected during the study period were treated the same way. In detail, 
mature oocytes at metaphase II (MII) were either inseminated with conventional IVF or ICSI. Fertilization 
was controlled on the following day 1. In vitro culture of embryos through day 5 (blastocyst stage) was planned 
for all patients. For this purpose, a sequential culture medium was used (OS Cleav, OS Blast, Cooper Surgical, 
Denmark). The decision of which blastocyst to transfer was based on morphological appearance only. Transfer 
was done either on day 4 (if blastocysts were already available) or on day 5. Surplus morulae and blastocysts of 
good quality were vitrified (VitriStore, Gynemed, Germany). In approximately 8% of the cases a freeze-all strategy 
was sought due to a threatening ovarian hyperstimulation syndrome or suboptimal hormonal or uterine condi-
tions and consequently these patients had exclusively vitrified-warmed blastocyst transfers.

Blastocyst imaging.  Over the 4-year study period photos of all blastocysts that were selected either for 
transfer or cryopreservation were taken. This was done using an Olympus IX50 (Vienna, Austria) microscope 
at a 400 times magnification while an imaging and archival software (Octax EyeWare, Vitrolife, Sweden) was 
used for documentation. Images were carefully taken to capture all three qualitative criteria of blastocyst stage  
(EXP, ICM and TE).

Clinical annotations.  Out of the 2,344 blastocysts used in this study, 752 (32.1%) were selected for fresh 
transfer (no vitrified-warmed cycles included). Clinical parameters associated with this subset are specified in 
the related data (number of COCs and MII oocytes, day of blastulation/embryo transfer, biochemical and clinical 
pregnancy as well as live birth).

Gardner score consortium annotation.  The Gardner scoring scheme is commonly used to rate blastocyst 
quality and potential as basis for the selection which blastocyst to select for transfer. To enable research groups to 
train AI models for predicting the Gardner criteria, an international consortium was formed and asked to anno-
tate a subset of images, allowing to subsequently calculate a consensus agreement and to provide the Gardner 
scores for each image if defined.

https://doi.org/10.1038/s41597-023-02182-3
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Gardner criteria.  The morphological grading system according to Gardner assigns a numerical score of 1–6 
to blastocysts, further referred to as class of the score, based on their degree of expansion. Early blastocysts are 
blastocysts with beginning blastocoel formation (grade1) and blastocysts with a blastocele cavity ≤half of the 
size of the embryo (grade 2). It should be noted that at the early blastocyst stage (grades 1 and 2) ICM and TE 
are not yet clearly identifiable and thus, not defined. Full blastocysts (grade 3) are characterized by a blastocoel 
completely filling the embryo. Once the blastocyst starts to increase in size - a phase that is characterized by the 
thinning of the zona pellucida - grade 4 is reached (expanded blastocyst stage). Finally, the beginning of the 
hatching process or its completion is referred to as grades 5 and 6, respectively. Of note, no grade 6 blastocysts 
were seen in this study. From grade 3 onwards both cell lineages are prominent and can be distinguished and 
scored. Scoring of ICM and TE quality (grades A to C) is based on cell number and the degree of cohesion/
compaction.

Consortium annotation.  All 2,344 images were annotated with respect to the three Gardner criteria (EXP, 
ICM, TE) by a senior clinical embryologist with long-time experience, giving lectures and trainings on how 
to apply these criteria, who is further called Gardner-expert. In order to create a gold-standard test set, we 
selected a subset of 300 images, forming the test set. All images not assigned to the test set build the train-
ing set. Combined with the Gardner-expert annotations, this set is further called silver-standard training set. 
For test set assignment, images were randomly selected, but the selection algorithm was constrained such that  
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Annotator 
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image dataset
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Fig. 1  Workflow of creating the silver-standard training set and the gold-standard test set involving the 
Gardner-expert and an international consortium consisting of experienced clinical embryologists.
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images of all possible classes were included in a sufficient amount (n ≥ 7), for each of the three Gardner criteria. 
This constraint was necessary as the amount of images annotated with ICM and TE of class C were low in com-
parison to the overall dataset size (nICM-C = 23 and nTE-C = 72, respectively). To create the gold-standard annota-
tions without introducing an operator- or center-caused bias, an international consortium of 11 embryologists 
with at least six years of experience21 and working in 11 different clinics was formed and asked to annotate the 
test set images in addition to the Gardner expert. All consortium members have good knowledge of the Gardner 
scoring system but do not necessarily apply this scheme in their daily routine. To ensure a feasible workload for 
each of the embryologists, we created random splits of the 300 test set images such that i. each image was seen 
by at least five embryologists, and ii. each embryologist was assigned a total number of 150 images. For image 
annotation, the tool MakeSense (https://www.makesense.ai/) was used. MakeSense allows to view each image 
and to assign the respective class for each of the three Gardner criteria, using the predefined classes. In order to 
divide the task of image annotation into multiple sub-tasks that could be accomplished efficiently, each embry-
ologist received five batches of the assigned 150 images (each batch consisted of 30 images) along with a manual 
on how to use the tool, and a list containing a definition of possible classes for each of the three criteria (EXP: 
Class 1 to 5; ICM and TE: Class A, B, C, Not defined). The embryologists were then asked to score each image 
in a batch, for all batches, using the class “Not defined” for ICM and TE criteria in case of EXP 1 or 2. If a class 
value could not be determined (e.g. because one image detail was not clearly visible), the experts were asked to 
not assign a class (empty value). Upon annotation, MakeSense allows to export a comma separated values (CSV) 
file including the class labels assigned to the images, for each batch. We collected all CSV files and merged them 
to obtain the annotations for all embryologists.

Criteria Description Possible values annotation-file(s)

Image Name of assigned image text all files

EXP silver Expansion (silver-standard) 0 = 1, 1 = 2, 2 = 3, 3 = 4, 
4 = 5

GTS, CAICM silver Inner cell mass (silver-standard) 0 = A, 1 = B, 2 = C, 
3 = not defined

TE silver Trophectoderm quality (silver-standard) 0 = A, 1 = B, 2 = C, 
3 = not defined

EXP gold Expansion (gold-standard)
0 = 1, 1 = 2, 2 = 3, 3 = 4, 
4 = 5,

GTG

NA = not assessable

ICM gold Inner cell mass (gold-standard)
0 = A, 1 = B, 2 = C, 
ND = not defined,

NA = not assessable

TE gold Trophectoderm quality (gold-standard)
0 = A, 1 = B, 2 = C, 
ND = not defined

NA = not assessable

EXP agreement Grade of routine-expert agreement (EXP) 0..1, revised_cons

ICM agreement Grade of routine-expert agreement (ICM) 0..1, revised_cons

TE agreement Grade of routine-expert agreement (TE) 0..1, revised_cons

EXP agreement 
desc Ratio of routine-expert agreement (EXP)

#agreeing experts/#all 
experts,

revised_cons

ICM agreement 
desc Ratio of routine-expert agreement (ICM)

#agreeing experts/#all 
experts,

revised_cons

TE agreement 
desc Ratio of routine-expert agreement (TE)

#agreeing experts/#all 
experts,

revised_cons

d Day 4, 5

CA

AMH Anti-Mullerian Hormone (ng/ml) 0.08–19.40

Age Female age (years) 20–45

Endo Height of endometrium at ovulation induction (mm) 4–20

COC Number od cumulus-oocyte-complexes 2–26

MII Number of mature metaphase II oocytes 1–22

SS Biochemical pregnancy (positive hCG) 0..1

HA Ongoing pregnancies with clinical heart activity 0..1

LB Live birth 0..1

Table 1.  Parameters provided in the annotations files. EXP = Expansion, ICM = Inner cell mass, 
TE = Trophectoderm, revised_cons = Revised consensus vote. GTS = Gardner train silver.csv, GTG = Gardner 
test gold.xlsx, CA = Clinical annotations.csv.
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Refined consortium agreement.  As previously stated, the consortium consisted of experienced clinical embryol-
ogists, although not all of them use and apply the Gardner criteria in their daily routine because they rather rely 
on modified Gardner scoring or in-house grading systems. To refine the consortium, we compared the accuracy 
of each embryologist’s annotations to the Gardner-expert annotations, for each of the three criteria. If an image 
was not rated for one of the criteria, this image was not considered while calculating the accuracy scores. We 
then excluded all embryologists whose accuracy for at least one of the three Gardner criteria was below 0.5 when 
compared to the Gardner-expert annotations (n = 5). From the remaining group including the Gardner-expert 
(n = 7), further called routine-experts, we formed the majority vote for each image and for each of the three 
criteria. In case no majority vote could be formed for one or more of the Gardner criteria, the image and the 
criteria were noted to be re-annotated. In total, 89 images had to be re-annotated. To do so, a subgroup of 6 of the 
embryologists remaining after consensus filtering voted for the respective Gardner criteria in two separate ses-
sion (the tool Ahaslides was used to interactively collect polls for the class values for the missing criteria, https://
ahaslides.com/), for each of these images. In case no majority was achieved, the class values were discussed until 
all embryologists could agree to a consensus. The final workflow applied to create the silver-standard training set 
and the gold-standard test set is illustrated in Fig. 1.

Data Records
The dataset assigned with this paper is hosted at the Figshare repository22. The dataset contains 2,344 blasto-
cyst images, provided in Portable Network Graphics (PNG) format. In addition, three CSV-files are provided, 
containing i. the assignment of images to the Gardner criteria training set including silver-standard annota-
tions of all three criteria (EXP, ICM, TE), ii. the assignment of images to the Gardner criteria test set including 
gold-standard annotations of all three criteria and iii. the assignment of images to the clinical dataset and thus, 
the images of blastocysts that had been transferred including their clinical annotations. Class coding of all anno-
tations are described in Table 1.

Deep learning model training.  To provide a deep learning baseline for future methods to compare with, 
we trained three recent deep learning architectures for the task of blastocyst image grading: an XCeption archi-
tecture23 as this architecture is commonly used in related publications on automated blastocyst grading11,24, and 
two vision transformer architectures (Deit transformer25, Swin transformer26), as vision transformers have been 
proven to achieve results comparable to conventional convolutional neural network architectures in image clas-
sification tasks while requiring substantially fewer resources27,28. We implemented stochastic weight averaging 
gaussian (SWA-G), a method used to reflect and calibrate uncertainty representation in Bayesian deep learning29. 
It is based on modelling a Gaussian distribution for each networks’ weight and applying it as a posterior over 
all neural network weights to perform Bayesian model averaging. All architectures were then trained on the 
silver-standard dataset using equal hyper-parameters: input size 224x224x3, SWA-G starting after 30 epochs, 
learning rate for SWA 2.5e-04, number of epochs 60, batch size 64, adam optimizer, cosine learning rate scheduler, 
warmup learning rate 1e-06, learning rate 5e-04, warmup epochs 5, imagenet standard color normalization, data 
augmentation: random crop and scale, horizontal flip, vertical flip, rotation. All hyper-parameters were obtained 
experimentally on a reduced dataset and fixed for all training runs. For each of the architectures, we trained sep-
arate models for each of the three Gardner criteria (expansion, inner cell mass quality, trophectoderm quality).
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Fig. 2  Class assignment distribution of the Gardner criteria within the silver-standard training set and the gold-
standard test set. Not assessable class values not reported.
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Technical Validation
The selection of blastocyst images was performed by a team including the Gardner-expert. Only images fulfill-
ing the quality criteria sharpness and homogeneous illumination were chosen. The subset of images forming 
the Gardner criteria test set were carefully selected such that images of each possible class were included, for all 
the three criteria. The minimum number of images per class included in the test set after annotator consensus 
filtering is seven. The assignment of images to all classes in the training- and the test set are depicted in Fig. 2. 
Upon annotation by an international consortium consisting of experienced clinical embryologists, we refined 
the consortium and calculated the majority vote as described in Section Refined consortium agreement.

Agreement:

EXP Annotator_1 Annotator_2 Annotator_3 Annotator_4 Annotator_5 Annotator_6 Annotator_7 Consensus
Annotator_1 1,00 0,64 0,51 0,44 0,88 0,41 0,53 0,78
Annotator_2 0,64 1,00 0,64 0,34 0,52 0,30 0,61 0,81
Annotator_3 0,51 0,64 1,00 0,23 0,52 0,30 0,63 0,75
Annotator_4 0,44 0,34 0,23 1,00 0,50 0,25 0,29 0,45
Annotator_5 0,88 0,52 0,52 0,50 1,00 0,31 0,59 0,75
Annotator_6 0,41 0,30 0,30 0,25 0,31 1,00 0,33 0,46
Annotator_7 0,53 0,61 0,63 0,29 0,59 0,33 1,00 0,75

Consensus 0,78 0,81 0,75 0,45 0,75 0,46 0,75 1,00

ICM Annotator_1 Annotator_2 Annotator_3 Annotator_4 Annotator_5 Annotator_6 Annotator_7 Consensus
Annotator_1 1,00 0,39 -0,28 0,31 -0,05 0,17 0,36 0,50
Annotator_2 0,39 1,00 0,10 0,07 1,00 0,13 0,49 0,64
Annotator_3 -0,28 0,10 1,00 0,32 0,29 0,28 0,14 0,46
Annotator_4 0,31 0,07 0,32 1,00 0,26 0,27 0,36 0,51
Annotator_5 -0,05 1,00 0,29 0,26 1,00 0,44 0,21 0,64
Annotator_6 0,17 0,13 0,28 0,27 0,44 1,00 0,14 0,48
Annotator_7 0,36 0,49 0,14 0,36 0,21 0,14 1,00 0,52

Consensus 0,50 0,64 0,46 0,51 0,64 0,48 0,52 1,00

TE Annotator_1 Annotator_2 Annotator_3 Annotator_4 Annotator_5 Annotator_6 Annotator_7 Consensus
Annotator_1 1,00 0,43 0,15 0,23 0,08 0,28 0,34 0,43
Annotator_2 0,43 1,00 0,60 0,31 0,30 0,34 0,50 0,70
Annotator_3 0,15 0,60 1,00 0,27 0,21 0,44 0,54 0,77
Annotator_4 0,23 0,31 0,27 1,00 0,26 0,45 0,24 0,31
Annotator_5 0,08 0,30 0,21 0,26 1,00 0,60 0,12 0,42
Annotator_6 0,28 0,34 0,44 0,45 0,60 1,00 0,31 0,56
Annotator_7 0,34 0,50 0,54 0,24 0,12 0,31 1,00 0,65

Consensus 0,43 0,70 0,77 0,31 0,42 0,56 0,65 1,00

EXP Xcep�on Deit Swin Consensus
Xcep�on 1,00 0,76 0,77 0,65

Deit 0,76 1,00 0,82 0,71
Swin 0,77 0,82 1,00 0,76

Consensus 0,65 0,71 0,76 1,00

ICM Xcep�on Deit Swin Consensus
Xcep�on 1,00 0,19 0,35 0,32

Deit 0,19 1,00 0,40 0,08
Swin 0,35 0,40 1,00 0,13

Consensus 0,32 0,08 0,13 1,00

poor slight fair
κ<0 0<κ<0,20 0,21<κ<0,40

moderate substan�al perfect
0,41<κ<0,60 0,61<κ<0,80 0,81<κ<1,00

a)

b)

c)

d)

e)

f) TE Xcep�on Deit Swin Consensus
Xcep�on 1,00 0,47 0,60 0,31

Deit 0,47 1,00 0,66 0,23
Swin 0,60 0,66 1,00 0,31

Consensus 0,31 0,23 0,31 1,00

Fig. 3  Inter-Annotator agreement (a–c) and deep learning baseline agreement (d–f) with the consensus 
calculated using Cohen’s Kappa-score.
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Inter-annotator agreement.  We then calculated the inter-annotator agreement using Cohen’s Kappa 
score30, see Fig. 3. The Kappa score reflects the inter-annotator reliability in contrast to agreement occuring by 
chance. The resulting scores are set in a range between −1 and 1, where 1 is a perfect agreement between anno-
tations and values below 0 are considered as poor agreement. According to Landis and Koch31 we use the fol-
lowing classification to rate the resulting Kappa scores κ: κ < 0: poor agreement, 0 < κ < 0.20: slight agreement, 
0.21 < κ < 0.40: fair agreement, 0.41 < κ < 0.60: moderate agreement, 0.61 < κ < 0.80: substantial agreement and 
0.81 < κ < 1: perfect agreement. As can be observed in Fig. 3, the agreement between expert embryologists w.r.t. 
expansion is fair to perfect. For trophectoderm quality, the agreement is slight to substantial, whereas for inner 
cell mass quality, the agreement is slight to substantial, with an exception between Annotator 1 compared to 
Annotators 3 and 5 with a poor agreement. When observing the agreement of annotators to the consensus vote, 
the agreement is fair to perfect, for each of the three criteria.

Benchmark for deep learning models.  We next calculated metrics from expert embryologist annotations 
to serve for benchmarking deep learning models. To provide a model baseline, we trained three state-of-the-art 
deep learning architectures on the silver-standard training set as described in section Deep learning model train-
ing. We report the accuracy and the mean and standard deviation of the class-weighted average of precision, recall 
and F1-score, including the scores achieved by the trained deep learning models, see Table 2. Recall, precision 
and the resulting F1 score are consistently between 0.70 and 0.83 for the expert embryologists. The deep learning 
baseline (XCeption, Deit- and Swin transformer) surpass these scores for the criteria expansion (0.77 to 0.85), but 
achieve lower scores for the inner cell mass and the trophectoderm (0.51 to 0.69). These results further serve as 
benchmark for AI models in predicting the Gardner criteria by comparison to the baseline results and the expert 
embryologists.

Code availability
All scripts used to create the data splits and the final results are provided in a GitHub repository (https://github.
com/software-competence-center-hagenberg/Blastocyst-Dataset).
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