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A peptide-centric quantitative 
proteomics dataset for the 
phenotypic assessment of 
Alzheimer’s disease
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Eric B. Larson4, Randall Bateman   5, Richard J. Perrin6, Jasmeer P. Chhatwal7, 
Martin R. Farlow8, Catriona A. McLean9, Bernardino Ghetti10, Kathy L. Newell10, 
Matthew P. Frosch11, Thomas J. Montine12 ✉ & Michael J. MacCoss   1 ✉

Alzheimer’s disease (AD) is a looming public health disaster with limited interventions. Alzheimer’s is 
a complex disease that can present with or without causative mutations and can be accompanied by 
a range of age-related comorbidities. This diverse presentation makes it difficult to study molecular 
changes specific to AD. To better understand the molecular signatures of disease we constructed a 
unique human brain sample cohort inclusive of autosomal dominant AD dementia (ADD), sporadic 
ADD, and those without dementia but with high AD histopathologic burden, and cognitively normal 
individuals with no/minimal AD histopathologic burden. All samples are clinically well characterized, 
and brain tissue was preserved postmortem by rapid autopsy. Samples from four brain regions 
were processed and analyzed by data-independent acquisition LC-MS/MS. Here we present a high-
quality quantitative dataset at the peptide and protein level for each brain region. Multiple internal 
and external control strategies were included in this experiment to ensure data quality. All data are 
deposited in the ProteomeXchange repositories and available from each step of our processing.

Background & Summary
Alzheimer’s disease (AD) is a major global public health problem. In the US, AD is the seventh most common 
cause of death for all ages and sexes. In contrast to ischemic heart disease, stroke and several forms of cancer, 
AD is increasing as a cause of death, of years lived with disability, and of disability-adjusted life years1. Success 
in limiting acute illnesses in the developing world is shifting the burden to non-communicable diseases, with 
an expected dramatic rise in AD globally by 20252. Existence of forms of AD with known genetic causes or 
risk, and forms without known genetic underpinnings, highlight the potential for multiple molecular drivers 
and perhaps multiple pathogenic pathways involved in disease onset and progression. Moreover, longitudinal 
population-based cohort studies have repeatedly observed that AD is commonly comorbid with pathologic 
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changes of vascular brain injury (VBI), Lewy body disease (LBD), limbic-associated TDP-43 encephalopathy 
(LATE), and/or hippocampal sclerosis3,4. AD is a chronic illness whose ultimate clinical expression as dementia 
follows years, if not decades, of injury, response to injury, consumption of reserve, and exhaustion of compensa-
tion. Determining the molecular profile of its various forms independent of comorbidities will be fundamental 
to efforts to develop tailored therapies that specifically target the molecular mechanism(s) of AD.

Thus, a primary focus of this data resource was the selection of tissue specimens based on current guidelines 
for AD neuropathologic change (ADNC)3,4 and specific exclusion for the presence of alternative potential causes 
of dementia, resulting in the carefully annotated examples of AD and controls free of medically significant 
comorbidities. Additionally, the specimens selected spanned the range of disease severity from the categories 
designated as high cognitive function (HCF) with no or low ADNC, HCF with intermediate or high ADNC, 
sporadic AD dementia (ADD, with intermediate or high ADNC), and autosomal dominant ADD (with causal 
mutations in PSEN1, PSEN2, or APP, and high ADNC). All research participants whose brains were used for this 
study underwent detailed, research quality, longitudinal cognitive assessments. For individuals without demen-
tia, all had their last evaluation within 2 years of death and had neuropsychological test results in the upper 
quartile of the cohort to minimize interval conversion. All samples were obtained using a rapid autopsy protocol 
with postmortem interval less than 8 hours (except autosomal dominant AD due to practical limitations), flash 
frozen in liquid nitrogen, and kept frozen at −80 °C prior to analysis. All samples were matched for age and sex 
except for those from individuals with autosomal dominant AD who experienced earlier onset.

Due to this careful specimen selection, we now have a unique sample set that can be used to study the molec-
ular underpinnings of autosomal dominant ADD, sporadic ADD, and high burden ADNC with HCF without 
the confounding comorbidities faced in similar molecular profiling experiments. While previous studies have 
investigated the molecular profile of AD without excluding comorbidities, the high prevalence of these diseases, 
each of which can cause dementia on its own when present at high level, likely underlines the specificity of these 
profiles for AD. Likewise, because autosomal dominant AD is rare, typical molecular profiling studies have 
focused only on individuals with sporadic ADD, thereby limiting perspective on this heterogeneous disease. 
These points emphasize the uniqueness of this proteomics dataset for a more comprehensive assessment of the 
different forms of AD.

To make the most of this unique sample cohort, we used mass spectrometry proteomics methods that give 
reproducible and highly quantitative data. Most of the large-scale proteomics experiments studying the human 
brain have been performed using a mass spectrometry approach known as data-dependent acquisition (DDA). 
This approach is extremely powerful for building lists of proteins present in brain tissue and has been useful 
when combined with tandem mass tags for modest numbers of samples that can be performed within a “plex”. 
However, irregular sampling by DDA makes it challenging to provide robust and quantitative measurements 
across more samples than can fit in a plex. When using DDA, the number of peptides sampled is limited by the 
MS/MS sampling speed despite the dynamic range and peak capacity of the mass analyzer. A single MS spec-
trum can contain over one hundred different molecular species, of which only a handful are analyzed by MS/MS  
prior to the next full scan5. This general approach has become extremely powerful for cataloging proteins and 
modifications, but its irregular sampling results in missing data, requires extensive fractionation to sample low 
abundance peptides, and results in variable peptide sampling between runs of the same sample. Although the 
missing values in multiplexing tandem mass tags can be reduced at a protein level, it remains a problem on the 
peptide level due to the variable peptide sampling between runs6. In AD it is known that a subset of residues 
or peptides may be altered in disease, such as the amyloid-β region of amyloid precursor protein APP, or the 
proline-rich domain of Tau (MAPT)2. Consistent sampling and quantification on the peptide level is therefore 
necessary to accommodate such cases7.

An alternative to DDA is an acquisition approach known as data independent acquisition (DIA) that 
acquires comprehensive MS/MS information in a single LC-MS/MS run using a repeated cycle of wide-window  
MS/MS scans. The computational analysis of DIA spectra can be performed in the same “targeted” manner as 
fully targeted data; i.e., fragment ion chromatograms for each peptide can be extracted and used for quantifi-
cation. However, unlike fully targeted data acquisition, DIA analysis can be done for any peptide in the sam-
pled range (e.g., between 400 and 1000 m/z), rather than just for a subset of pre-specified peptides. Thus, the 
reproducible targeting and confident MS/MS-based quantification of parallel reaction monitoring (PRM) can 
be combined with DDA’s ability to detect and measure thousands of proteins. Like PRM methods, DIA requires 
reproducible chromatographic separation of peptides for reproducible quantification. This systematic sampling 
is important when scaling to data sets with samples prepared and run over many batches.

Typically, tens to hundreds of biological samples are processed and analyzed using LC-MS/MS in quanti-
tative proteomics experiments. The regularity of DIA enables researchers to make peptide detections in one 
sample and use that information to inform the detection of the same peptides in other samples. DIA offers 
four key improvements over DDA. (1) Because peptides are sampled systematically, more peptides are detected 
in a DIA analysis than a DDA analysis in an equivalent length analysis8,9. (2) The same precursor m/z range 
is sampled, at the same RT, in all runs – eliminating the issues associated with stochastically sampled DDA 
data. (3) DIA analysis can make use of previously measured information to improve peptide measurement  
(e.g. known retention time, known fragmentation patterns, and which peptides provide stable and precise quan-
titative measurements)10–14. (4) Peptide detection can be assessed directly from DIA data, simplifying down-
stream analysis. These data provide an archive of all detectable molecular species within the measured mass 
range of the instrument. This methodology benefits from the reproducible and comprehensive sampling of the 
latest DIA methodology with an innovative approach used to improve peptide precursor selectivity5. The com-
bination of the unique specimens with systematically collected mass spectrometry data creates a resource for the 
scientific community to test new hypotheses about the molecular features of different forms of AD dementia.
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Methods
Human brain samples.  Brain tissue samples were stratified into 4 groups based on clinical, pathological 
and genetic data and four brain regions (superior and middle temporal gyri or SMTG, hippocampus at the level 
of the lateral geniculate nucleus, inferior parietal lobule or IPL and caudate nucleus at the level of the anterior 
commissure). Cognitive status was determined as dementia or not dementia by DSM-IVR criteria. Individuals 
diagnosed as not dementia were from the Adult Changes in Thought (ACT) study and were included only if the 
last research evaluation was within 2 years of death and the last cognitive testing score using the cognitive abil-
ities screening instrument (CASI) was in the upper quartile for the ACT cohort (>90); our definition of HCF. 
Brains from individuals with HCF who had no or low ADNC were designated “HCF/low ADNC” and those with 
intermediate or high ADNC were designated “HCF/high ADNC”. All individuals diagnosed with ADD had inter-
mediate or high level ADNC and were further subclassified as sporadic (“Sporadic ADD”) or ADD caused by a 
mutation in PSEN1, PSEN2, or APP (“Autosomal Dominant ADD”). Sporadic AD cases were from the ACT study 
and the University of Washington (UW) AD Research Center (ADRC), and Autosomal Dominant ADD cases 
were from the UW ADRC and the Dominantly Inherited Alzheimer Network (DIAN). Excluded was any case 
with LBD or LATE-NC other than involving amygdala, territorial infarcts, more than 2 cerebral microinfarcts, 
or hippocampal sclerosis. Time from death to cryopreservation of tissue, postmortem interval (PMI), was <8 hr 
in all cases except for those in the Autosomal Dominant ADD group. Details of sample stratification for the four 
brain regions (SMTG, Hippocampus, IPL and Caudate) are provided in Tables 1–4.

Ethics oversight.  All study cohort participants were collected and provided informed consent under 
protocols approved by the Institutional Review Board (IRB) at University of Washington, Kaiser Permanente 
Washington, and Stanford University. The UW and Stanford Human Subjects Division deems the use of 
pre-existing de-identified samples exempt from full IRB review and, thus, treated this project as non-human 
subjects research.

Sample metadata, batch design and references.  Each human brain region was divided into batches of 
14 individual samples and 2 pooled references for a total of 16. The first batch of each region was also used to cre-
ate a region-specific reference pool to be used as a “common reference” and/or single point calibrant, which was 
homogenized, aliquoted, frozen, and used to compare between batches within a brain region. Human cerebellum 
and occipital lobe tissue was homogenized, pooled, aliquoted and frozen to be used as a “batch reference” for 
comparison between batches and other brain regions. Batch design was randomly balanced based on group ratios. 
For example, batches from the SMTG brain region contained 5 “Sporadic ADD”, 4 “Autosomal Dominant ADD”,  
2 “HCF/low ADNC”, and 3 “HCF/high ADNC” samples. Metadata for the samples from the SMTG, 
Hippocampus, IPL and Caudate brain regions is provided in Supplementary Tables 1–4 available on Panorama 
Public in the “Supplementary Data” subfolder15,16. For each region the metadata includes; sample batch, age, sex, 
post-mortem interval, APOE genotype, cognitive status, study of origin, and consensus Braak stage and CERAD 
score.

Sample homogenization and protein digestion.  Two 25 μm frozen sections of brain tissue were 
resuspended in 120 μl of lysis buffer of 5% SDS, 50 mM triethylammonium bicarbonate (TEAB), 2 mM MgCl2,  

HCF/low ADNC HCF/high ADNC Sporadic ADD Autosomal Dominant ADD

N 9 11 18 24

Age (mean ± sd) 88 +/− 5 90 +/− 5 82 +/−13 51 +/− 11

Sex (M:F) 4:5 5:6 11:7 15:9

Post mortem interval hr (mean ± sd) 3.9 +/− 0.9 4.9 +/− 1.5 4.5 +/− 1.2 15.7 +/− 9.3

APOE ε4 alleles (n (%)) 2 (11.1%) 6 (27.3%) 7 (19.4%) 6 (17.6%)*

 ε3:ε4 (n) 2 4 5 4

 ε4:ε4 (n) 0 1 1 1

 missing 0 0 0 7

Mutations (n × gene) NA NA NA 17 × PSEN1, 6 × PSEN2, 1 × APP

Braak Score

 B1 (n) 4 0 0 0

 B2 (n) 5 5 0 0

 B3 (n) 0 6 18 24

CERAD Score

 C0 (n) 9 0 0 0

 C2 (n) 0 5 3 1

 C3 (n) 0 6 15 23

Table 1.  Brain donor characteristics for the superior and middle temporal gyri (SMTG). *For these; if there were 
missing genotypes the percentage is of the reported genotypes.

https://doi.org/10.1038/s41597-023-02057-7
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1X HALT phosphatase and protease inhibitors, vortexed and briefly sonicated at setting 3 for 10 s with a Fisher 
sonic dismembrator model 100. A microtube was loaded with 30 μl of lysate and capped with a micropestle for 
homogenization with a Barocycler 2320EXT (Pressure Biosciences Inc.) for a total of 20 minutes at 35 °C with 
30 cycles of 20 seconds at 45,000 psi followed by 10 seconds at atmospheric pressure. Protein concentration was 
measured with a BCA assay. Homogenate of 50 μg was added to a process control of 800 ng of yeast enolase 
protein (Sigma) which was then reduced with 20 mM DTT and alkylated with 40 mM IAA. Lysates were then 
prepared for S-trap column (Protifi) binding by the addition of 1.2% phosphoric acid and 350 μl of binding buffer 
(90% methanol, 100 mM TEAB). The acidified lysate was bound to column incrementally, followed by 3 wash 
steps with binding buffer to remove SDS and 3 wash steps with 50:50 methanol:chloroform to remove lipids and 
a final wash step with binding buffer. Trypsin (1:10) in 50 mM TEAB was then added to the S-trap column for 
digestion at 47 °C for one hour. Hydrophilic peptides were then eluted with 50 mM TEAB and hydrophobic pep-
tides were eluted with a solution of 50% acetonitrile in 0.2% formic acid. Elutions were pooled, speed vacuumed 
and resuspended in 0.1% formic acid.

Injection of samples are one ug of total protein (16 ng of enolase process control) and 150 fmol of a heavy 
labeled Peptide Retention Time Calibrant (PRTC) mixture (Pierce). The PRTC is used as a peptide process 

HCF/low ADNC HCF/high ADNC Sporadic ADD Autosomal Dominant ADD

N 10 11 20 3

Age (mean ± sd) 87 +/− 6 90 +/− 5 81 +/−12 53 +/− 7

Sex (M:F) 5:5 5:6 12:8 2:1

Post mortem interval hr (mean ± sd) 3.9 +/− 0.9 5.1 +/− 1.3 4.2 +/− 1.4 8.5 +/− 5.4

APOE ε4 alleles (n (%)) 2 (10.1%) 6 (27.3%) 10 (25.0%) 2 (33.3%)

 ε3:ε4 (n) 2 4 6 0

 ε4:ε4 (n) 0 1 2 1

 missing 0 0 0 0

Mutations (n × gene) NA NA NA 2 × PSEN2, 1 × APP

Braak Score

 B1 (n) 5 0 0 0

 B2 (n) 5 5 0 0

 B3 (n) 0 6 20 3

CERAD Score

 C0 (n) 10 0 0 0

 C2 (n) 0 5 4 0

 C3 (n) 0 6 16 3

Table 2.  Brain donor characteristics for the hippocampus.

HCF/low ADNC HCF/high ADNC Sporadic ADD Autosomal Dominant ADD

N 8 12 18 23

Age (mean ± sd) 89 +/− 4 89 +/− 6 80 +/−13 50 +/− 10

Sex (M:F) 4:4 6:6 11:7 15:8

Post mortem interval hr (mean ± sd) 3.9 +/− 0.9 4.9 +/− 1.5 4.5 +/− 1.2 15.7 +/− 9.3

APOE ε4 alleles (n (%)) 2 (12.5%) 6 (20.8%) 10 (27.8%) 6 (18.8%)*

 ε3:ε4 (n) 2 4 6 4

 ε4:ε4 (n) 0 1 2 1

 missing 0 0 0 7

Mutations (n × gene) NA NA NA 17 × PSEN1, 5 × PSEN2, 1 × APP

Braak Score

 B1 (n) 3 0 0 0

 B2 (n) 5 6 0 0

 B3 (n) 0 6 18 23

CERAD Score

 C0 (n) 8 0 0 0

 C2 (n) 0 6 4 1

 C3 (n) 0 6 14 22

Table 3.  Brain donor characteristics for the inferior parietal lobule (IPL). *For these; if there were missing 
genotypes the percentage is of the reported genotypes.
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control. Library pools are an equivalent amount of every sample (including references) in the batch. For exam-
ple, a batch library pool consists of the 14 samples from the batch and two references. System suitability (QC) 
injections are 150 fmol of PRTC and BSA.

Liquid chromatography and mass spectrometry.  One µg of each sample with 150 femtomole of PRTC 
was loaded onto a 30 cm fused silica picofrit (New Objective) 75 µm column and 3.5 cm 150 µm fused silica Kasil1 
(PQ Corporation) frit trap loaded with 3 µm Reprosil-Pur C18 (Dr. Maisch) reverse-phase resin analyzed with a 
Thermo Easy-nLC 1200. The PRTC mixture is used to assess system suitability before and during analysis. Four 
of these system suitability runs are analyzed prior to any sample analysis and then after every six sample runs 
another system suitability run is analyzed. Buffer A was 0.1% formic acid in water and buffer B was 0.1% formic 
acid in 80% acetonitrile. The 40-minute system suitability gradient consists of a 0 to 16% B in 5 minutes, 16 to 
35% B in 20 minutes, 35 to 75% B in 1 minute, 75 to 100% B in 5 minutes, followed by a wash of 9 minutes and 
a 30-minute column equilibration. The 110-minute sample LC gradient consists of a 2 to 7% for 1 minutes, 7 to 
14% B in 35 minutes, 14 to 40% B in 55 minutes, 40 to 60% B in 5 minutes, 60 to 98% B in 5 minutes, followed 
by a 9 minute wash and a 30-minute column equilibration. Peptides were eluted from the column with a 50 °C 
heated source (CorSolutions) and electrosprayed into a Thermo Orbitrap Fusion Lumos Mass Spectrometer with 
the application of a distal 3 kV spray voltage. For the system suitability analysis, a cycle of one 120,000 resolution 
full-scan mass spectrum (350–2000 m/z) followed by a data-independent MS/MS spectra on the loop count of 
76 data-independent MS/MS spectra using an inclusion list at 15,000 resolution, AGC target of 4e5, 20 milli-
second (ms) maximum injection time, 33% normalized collision energy with a 8 m/z isolation window. For the 
sample digest, first a chromatogram library of 6 independent injections is analyzed from a pool of all samples 
within a batch. For each injection a cycle of one 120,000 resolution full-scan mass spectrum with a mass range 
of 100 m/z (400–500 m/z, 500–600 m/z, 600–700 m/z, 700–800 m/z, 800–900 m/z, 900–1000 m/z) followed by a 
data-independent MS/MS spectra on the loop count of 26 at 30,000 resolution, AGC target of 4e5, 60 ms max-
imum injection time, 33% normalized collision energy with a 4 m/z overlapping isolation window. The chro-
matogram library data is used to quantify proteins from individual sample runs. These individual runs consist 
of a cycle of one 120,000 resolution full-scan mass spectrum with a mass range of 350–2000 m/z, AGC target of 
4e5, 100 ms maximum injection time followed by a data-independent MS/MS spectra on the loop count of 76 at 
15,000 resolution, AGC target of 4e5, 20 ms maximum injection time, 33% normalized collision energy with an 
overlapping 8 m/z isolation window. Application of the mass spectrometer and LC solvent gradients are controlled 
by the ThermoFisher Xcalibur (version 3.1.2412.24) data system. Mass spectrometry run order for all samples is 
provided in Supplementary Tables 5–8 available on Panorama Public.

Peptide detection and quantitative signal processing.  Thermo RAW files were converted to mzML 
format using Proteowizard (version 3.0.20064) using vendor peak picking and demultiplexing with the settings 
of “overlap_only” and Mass Error = 10.0 ppm5. On column chromatogram libraries were created using the data 
from the six gas phase fractionated “narrow window” DIA runs of the pooled reference as described previously17.  
These narrow windows were analyzed using EncyclopeDIA (version 1.4.10) with the default settings  
(10 ppm tolerances, trypsin digestion, HCD b- and y-ions) of a Prosit predicted spectra library based the Uniprot 
human canonical FASTA (January 2021). The results from this analysis from each brain region were saved as a 
“Chromatogram Library” in EncyclopeDIA’s eLib format where the predicted intensities and iRT of the Prosit library 

HCF/low ADNC HCF/high ADNC Sporadic ADD Autosomal Dominant ADD

N 10 10 18 20

Age (mean ± sd) 85 +/− 6 90 +/− 5 81 +/−11 51 +/− 11

Sex (M:F) 6:4 5:5 10:8 13:7

Post mortem interval hr (mean ± sd) 3.9 +/− 0.8 5.2 +/− 1.4 4.4 +/− 1.3 15.2 +/− 9.8

APOE ε4 alleles (n (%)) 2 (10.0%) 5 (25.0%) 9 (25.0%) 5 (17.9%)*

 ε3:ε4 (n) 2 3 5 3

 ε4:ε4 (n) 0 1 2 1

 missing 0 0 0 6

Mutations (n × gene) NA NA NA 17 × PSEN1, 6 × PSEN2, 1 × APP

Braak Score

 B1 (n) 6 0 0 0

 B2 (n) 4 5 0 0

 B3 (n) 0 5 18 20

CERAD Score

 C0 (n) 10 0 0 0

 C2 (n) 0 5 4 1

 C3 (n) 0 5 14 19

Table 4.  Brain donor characteristics for the caudate nucleus. *For these; if there were missing genotypes the 
percentage is of the reported genotypes.
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were replaced with the empirically measured intensities and RT from the gas phase fractionated LC-MS/MS data.  
The “wide window” DIA runs were analyzed using EncyclopeDIA (version 1.4.10) requiring a minimum of 3 
quantitative ions and filtering peptides with q-value ≤ 0.01 using Percolator 3.01. After analyzing each file indi-
vidually, EncyclopeDIA was used to generate a “Quant Report” which stores all the detected peptides, integration 
boundaries, quantitative transitions, and statistical metrics from all runs in an eLib format. The Quant Report 
eLib library is imported into Skyline (daily version 22.2.1.278) with the human uniprot FASTA as the background 
proteome to map peptides to proteins, perform peak integration, manual evaluation, and report generation. A 
csv file of peptide level total area fragments (TAFs) for each replicate was exported from Skyline using the custom 
reporting capabilities of the document grid18.

Quantitative data post-processing, normalization, and batch correction.  Despite precautions 
taken to ensure equivalent sample preparation, handling and acquisition, additional post-processing was per-
formed to normalize, and batch adjust the quantitative data to remove residual technical noise. Modeling the 
proportional changes of peptide/protein group intensities, log2 transformation is applied followed by a Median 
Deviation (MD) normalization to the peptide total area fragment values (level 2 data) across instrument runs 
within a brain region (Eq. 1) under the assumption that median total area fragment values should be equal sans 
batch effect from known and unknown sources of variability.

MD Normalization, by calculating the deviation from the median of the sample total area fragment, should 
neither remove scale information nor de-weigh outlier signals that may be of biological relevance19. Here, the 
MD normalized peptide F of each sample is given by the following. The peak areas (Ai) for each peptide i are 
first log2 transformed and then normalized by equalizing the median peak areas across all samples using the 
equation:

~ ~= − −F log A log A log A( ) [ ( ) ( )]i i m j2 2 2

Where:
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The effectiveness and validity of the normalization approach is then assessed by evaluating the comparabil-
ity of the peptide abundance distribution across samples (Fig. 2b), and by the reproducibility of those peptide 
abundances across replicate samples (Fig. 3a). Peptide abundances are then adjusted for batch effect by fitting 
a linear model and “regressing” out the factors with known unwanted sources of variation to return a matrix 
of residuals. The detection of the presence of batch effect pre- and post-adjustment is assessed by exploring the 
data variance structure through Principal Variance Component Analysis (PVCA) (https://bioconductor.org/
packages/release/bioc/html/pvca.html) (Supplementary Figure 4 available on Panorama Public) and Principal 
component Analysis (PCA) using projections onto the first three principal components. The normalization and 
batch adjusted peptide abundances are available as the level 3 A data file. Using DIA, all observable peptides in 
one sample will be sampled in all of the other biological replicates12,13,20. Due to the comprehensive sampling 
nature of DIA we can extract information for the same transitions across all samples in an experiment. The 
resulting zeros in our peptide abundance data therefore represent signals below our limit of detection and are 
not treated as missing data. After protein group inference, protein abundances are batch corrected using the 
same method as the peptide data.

Protein grouping and inference.  The processing and ‘roll-up’ of DIA data borrows from the established 
strategies adopted in the DDA field in which the quantification of peptides and their corresponding protein 
groups is inferred through the modification of IDPicker algorithm21. In summary, to quantify the peptide/pro-
tein groups, a bipartite graph of peptide-protein interactions is constructed to generate groupings through the 
parsimony reduction of the graph as it is implemented in MSDaPl. Then, the peptide abundances at the nodes are 
summed to estimate the abundance of the peptide groups and proteins that match the same set of peptide groups 
are merged into a single node in the graph, forming an indistinguishable protein group22.

Data Records
The Skyline documents, raw files for quality control and DIA data are available at Panorama Public. 
ProteomeXchange ID: PXD034525. https://doi.org/10.6069/wefm-vv52. Access URL: https://panoramaweb.org/ 
ADBrainCleanDiagDIA.url16.

DIA data is available in 5 different categories based on the level of post-processing (Fig. 1e) for each brain 
region. Level 0 represents the raw data in two different formats - the raw format is directly from the Thermo 
mass spectrometer and the mzML format is the demultiplexed version of the raw data (Proteowizard version 
3.0.20064). Level 1 describes the zipped Skyline document grouped by batch. Level 2 is a csv file grouped by 
batch of the Skyline output with the integrated peak area for each peptide (row) in each replicate (column). Level 
3 A is a csv file of the normalized peptide abundance across all batches. Level 3B is a csv file of the normalized 
protein abundance across all batches.

Quality control Skyline documents, peptide QC plots and instrument raw files for system suitability runs are 
provided by brain region. The Skyline documents and peptide QC plots for enolase and PRTC process controls 

https://doi.org/10.1038/s41597-023-02057-7
https://bioconductor.org/packages/release/bioc/html/pvca.html
https://bioconductor.org/packages/release/bioc/html/pvca.html
http://dx.doi.org/10.6069/wefm-vv52
https://panoramaweb.org/ADBrainCleanDiagDIA.url
https://panoramaweb.org/ADBrainCleanDiagDIA.url
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are provided by brain region. The instrument raw files for process controls are the same as DIA sample raw files 
by brain region. An interactive dashboard is available for the SMTG and Hippocampus data.

Technical Validation
Balanced and controlled experiment design.  We have designed our experiment to perform quantita-
tive, peptide-centric proteomics using brain tissue from four different brain regions selected specifically because 
they represent distinct anatomical regions with varying pathological involvement by AD (Fig. 1). The experimen-
tal design was intended to compare individual samples from the four different categorical disease groups within 
each brain region. Samples were prepared in batches of 16 samples which consisted of 14 brain tissue samples and 
two external control samples. The batch size was determined by the number of samples, 16, that could be prepared 
within a Barocycler (Pressure Biosciences, Inc.). For each batch, the samples were randomized in a balanced block 
design (Supplementary Table 5 available on Panorama Public).

Within each batch we included both internal and external controls. Internal controls were added to each 
sample to provide a QC check of the sample preparation and LC-MS data collection process. These “Process 
Controls” consisted of the addition of yeast enolase protein after lysis and prior to digestion and the Pierce 
Retention Time Calibration (PRTC; 15 synthetic stable isotope labeled peptides) peptide mixture follow-
ing digestion. The “Protein Internal Control” was used to assess the protein digest and peptide recovery and 
the “Peptide Internal Control” was used to distinguish between sample preparation and measurement issues 
post-digestion.

The two external controls were different brain lysates that were prepared, measured, and analyzed with the 
rest of the samples in the batch. One of the controls was a brain region specific pool used to assess between batch 
quality control. This inter-batch quality control is composed of a randomized balanced pooled sample set for 
each respective brain region. For example, the inter-batch quality control “TRPR” is composed of 3 HCF/high 
ADNC samples, 3 HCF/low ADNC samples, 3 AutoDom ADD samples and 5 Sporadic ADD samples from the 

Fig. 1  Experimental scheme for the collection of the proteomics data using data independent acquisition-mass 
spectrometry. (a) Brain tissue sections from 4 regions were analyzed for all groups. (b) Samples were prepared 
and analyzed in batches of 16, with 14 individual samples per batch selected by balanced randomization. 
Each batch contained an inter-experiment quality control sample generated from pooling portions of several 
individual samples from across all 4 brain regions sampled. Each batch also contained an inter-batch quality 
control sample generated from pooling portions of individual samples within that brain region. (c) In addition 
to quality control samples, both protein and peptide sample processing controls were included in all samples to 
track system suitability. (d) For each batch an on-column data independent acquisition chromatogram library is 
generated from overlapping, narrow window gas-phase fractionation of an inter-batch QC. Individual samples 
are acquired by a single injection wider window data independent acquisition method. Peptide detection and 
scoring is performed using EncyclopeDIA and extracted ion chromatograms integrated with Skyline. (e) The 
proteomics data is publicly available on the Panorama web server in 5 different states, each corresponding to the 
level of post-processing.
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SMTG. The same inter-batch quality control is run in every batch of the experiment from the SMTG and was 
used to assess data quality post-normalization. The second external control was an inter-brain region quality 
control (“HAD” samples) and composed of a homogenate of a mix of cerebellum and occipital lobe tissue which 
we had ample material available to use throughout all our brain tissue experiments. The cerebellum and occipital 
lobe external control is distinct from the rest of the brain tissue regions in the experiment, but this should not 
hinder the interpretation of the experimental results, as this control is only monitoring the reproducibility of 
our entire system. The same pool of inter-brain external control was prepared and run in every batch across all 
brain regions for the entire experiment.

We can determine when our sample preparation and system is not functioning as expected with a combi-
nation of system suitability checks, inter-batch quality controls, inter-experiment quality controls and process 
controls (Fig. 1b). Our system suitability consists of a mixture of a BSA tryptic digest and PRTC prior to sample 
analysis and throughout sample collection at a frequency of once every six to eight samples.

Run level and experiment level peptide and protein detections.  For each sample in each brain region 
tryptic peptides can be detected at a 1% FDR cut-off. IPL samples ranged from 37840–73168, SMTG ranged from 
51582–69590, hippocampus from 32995–59853, and caudate nucleus ranged from 31426–58105 (Table 5). To integrate 
data across all individual samples within each brain region we control with an experiment level error rate. This leads to 
the same peptides quantified in all samples within a brain region; 48271 in IPL, 40346 in SMTG, 31863 in hippocam-
pus, and 26135 in caudate nucleus. These peptides map to 6497 quantified proteins in IPL, 5851 in SMTG, 5117 in 
hippocampus, and 4636 in caudate nucleus (Table 5). The distribution of peptide abundances is aligned with median 
normalization, as demonstrated with the SMTG data (Fig. 2b) as well as all brain regions (Supplementary Figures 1 and 
2 available on Panorama Public).

Inter-batch precision and reproducibility.  The inclusion of inter-batch quality control samples allows us 
to assess the impact of normalization and batch correction on peptide and protein quantitative reproducibility. 
For example, the SMTG experiment was split into 5 batches for processing and acquisition. Using the inter-batch 
control replicate samples, the coefficient of variation can be calculated for all peptides quantified in the SMTG. 
The distribution of peptide coefficient of variation improves with normalization and batch correction, with the 
mean decreasing about 8.2%. Likewise, the protein coefficient of variation also improves following batch cor-
rection, with the mean decreasing by about 1.25% (Fig. 3). Peptide and protein quantities are highly correlated 
across inter-batch replicates. Inter-batch control replicate samples in SMTG have peptide Pearson correlation 
coefficients ranging from 0.867 to 0.950, and protein correlations ranging from 0.894 to 0.960 (Fig. 4).

Expected biological differences.  Of the peptides quantified, we detect several proteins known to be 
involved in AD. In the SMTG data we quantify peptides mapping to 250 proteins found in AD-related pathways 
(Supplemental Fig. 5 available on Panorama Public). Preliminary assessment of peptide and protein data show we 
can distinguish between sample groups (Supplemental Fig. 3 available on Panorama Public). Differential abun-
dance analysis between HCF/low ADNC and autosomal dominant ADD in SMTG captures known biology (Fig. 5).  
Protein groups found to be significantly different between the groups include previously documented increases 
in Amyloid precursor protein (APP/A4), Apolipoprotein E (APOE), SPARC-related modular calcium-binding 
protein 1 (SMOC1), midkine (MK/MDK) and netrin-1 (NET1/NTN1)23. We detect and quantify two peptides 
mapping to the n- and c-terminal sides of the alpha-secretase cleavage site in amyloid-β sequence (Fig. 6). Both 
peptides have an expected difference in abundance across the sample groups in all four brain regions, with 
autosomal dominant ADD having the highest distribution, followed by sporadic ADD, HCF/high ADNC, and  
HCF/low ADNC. Peptides mapping to microtubule-associated protein tau (MAPT) also have some expected dif-
ferences between the experimental groups. In the SMTG brain region the seven quantified peptides spanning the 
microtubule binding region of MAPT (residues 243–368) are increased in autosomal dominant ADD, followed by 
sporadic AD, compared to both HCF groups. This trend has been observed previously and leads to the aggregated 
protein abundance to be differential in the same manner as the microtubule binding region peptides24.

Usage Notes
We provide quantitative data both for tryptic peptides directly and for protein groups derived from peptide 
quantities. Based on extensive existing knowledge of AD, we know that modified forms of the APP or amyloid-β 
and Tau proteins are important in disease progression. Historically mass spectrometry proteomics data has 
aggregated multiple tryptic peptides per protein coding sequence to arrive at a singular protein level value. This 
would result in a loss of important information regarding the status of the individual peptides7. By collecting 

Brain Tissue Region
Run Level FDR Peptide 
Detection Range

Experiment Level 
Peptide Detections

Experiment Level 
Protein Detections

SMTG 51582–69590 40346 5851

Hippocampus 32995–59853 31863 5117

IPL 37840–73168 48271 6497

Caudate 31426–58105 26135 4636

Table 5.  Run level and experiment level peptide and protein detections.
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these samples by DIA we can reproducibly quantify individual tryptic peptides across our entire sample set. 
With this peptide data we observe differentially abundant peptides within a protein coding gene. If aggregated 
to a singular value this important signal would be lost.
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Fig. 2  Peptides detected in individual runs and across the entire dataset for SMTG. (a) The number of peptides 
detected for each sample in the SMTG brain region experiment, with those detected in the sample at a 1% 
FDR indicated by the red line, and those detected across all samples at an 1% experiment level FDR indicated 
in gray. Although zeros exist in this remaining data, these represent a lack of signal above background. 
(b) Kernel density plots (above) and box plots (below) for each individual sample show the distribution of 
peptide abundances before and after log2 transformation and then median normalization. Sample groups are 
highlighted with different colors in the log2 transformation and median normalization box plots. Figure is 
generated with level 2 data.
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Fig. 4  Correlation of the quantitative results from five different sample preparation and analysis batches 
following normalization and batch correction for SMTG. (a) The log2 peptide abundances measured in 
the inter-batch quality control samples across each of the 5 SMTG experimental batches, with the Pearson 
correlation coefficient. Figure 4a is generated from level 3a data. (b) The log2 protein group abundances 
from the inter-batch quality control samples in the 5 SMTG batches samples, and their Pearson correlation 
coefficient. Significance is indicated with *** being p < 0.001. Figure 4b is generated from level 3b data.

Fig. 3  Effect of normalization and batch correction on the inter-batch variance for SMTG. (a) The effect of 
median normalization and batch correction on the inter-batch peptide coefficient of variance. Mean coefficient 
of variation (μ) is indicated by the red line. Figure 3a is generated from level 2 to 3a data. (b) Effect of batch 
correction on the inter-batch protein coefficient of variance. The relationship between coefficient of variation 
and the log2 median abundance is visualized with a loess fit of a contoured density plot (red line). Figure 3b is 
generated from level 2 to 3b data.
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Fig. 5  Summary data of quantitative changes observed for SMTG. (a) Volcano plot showing proteins that are 
statistically different between the autosomal dominant Alzheimer’s disease (AD) dementia (ADD) and the high 
cognitive function (HCF)/low AD neuropathologic change (ADNC) SMTG using cut-off of log2 fold-change 
> ± 0.5 and FDR adjusted p-value < 0.05. (b) Heatmap showing complete linkage hierarchical clustering of 
33 SMTG samples using the 115 proteins with significant differences between ADD and the HCF-low ADNC 
samples. Figure 5 is generated from level 3b data.
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Fig. 6  Amyloid-β and tau peptide abundances recapitulate known molecular changes for the SMTG. 
(a) Two tryptic peptides mapping to amyloid-β (amino acid residues 6–16: HDSGYEVHHQK, 17–28: 
LVFFAEDVGSNK) are z-scored across all individuals and plotted as the mean and standard error for each 
sample group. (b) Abundances for tryptic peptides mapping to tau are z-scored across all individuals and 
plotted as the mean and standard error for each sample group. While there are some common signatures within 
protein domains, these signatures are lost if aggregated to a protein level. Tryptic peptides are labeled based on 
their first and last amino acid residues. Figure 6 is generated from level 3a data.
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Use Case 1. Sporadic and autosomal dominant Alzheimer disease dementia differential peptide 
and protein abundance.  This mass spectrometry data has typically been reported as relative protein group 
abundance measures, enabling differential abundance testing of protein groups between disease states (Fig. 6). In 
SMTG there are proteins with statistically different abundance between healthy controls and autosomal domi-
nant ADD. This type of analysis can be extended to all brain regions. A large portion of research investigating the 
molecular and pathological basis of AD has been generated using model systems informed by genetic causes. Studying 
individuals with sporadic ADD can be challenging due to the presence of comorbidities. Here we present data gen-
erated from both autosomal dominant ADD with minimal comorbidities and sporadic ADD with minimal comor-
bidities. These data can be used to better understand biological differences or similarities in these two types of ADD.

Use Case 2. Differential peptide and protein abundance with neuropathologic markers and 
dementia.  The HCF/high ADNC samples have classic histopathologic features of AD - amyloid-β plaques 
and neurofibrillary tangles - at levels overlapping with individuals who have Sporadic ADD. This enables analyses 
to measure the differences in protein pathology between individuals who have developed dementia and those 
who have not developed dementia despite similar levels of high amyloid-β plaques and Tau tangles.

Use Case 3. Mass spectrometry data reuse and reanalysis.  Beyond the analyses presented here, the 
storage of this data is done in a way that facilitates use of this data for informing subsequent mass spectrometry 
assay development. All data from this project is available on the Panorama server-based data repository appli-
cation for targeted mass spectrometry assays15,16. Thus, all extracted ion chromatogram information from every 
sample across all brain regions is available in an interactive Skyline document format, and readily available for 
download and reuse. Information about fragment ions and chromatography is important for the development of 
targeted assays25,26, making this data valuable to the wider community.

Using DIA mass spectrometry methods allows for the data to be easily reanalyzed. This could be used 
to search for post-translational modifications or sequence variants not searched for in our current analysis. 
Additionally, this data can be reanalyzed to look at other unique features, such as isomerized peptides. The feasi-
bility of this was recently shown by Hubbard et al. through reanalysis of a subset of this dataset27. Peptide-centric 
reanalysis is possible due to the comprehensive sampling by data-independent acquisition of a preset range 
across all samples.

Code availability
The MSConvert installer and documentation is available from https://proteowizard.sourceforge.io/.

EncyclopeDIA is available at https://bitbucket.org/searleb/encyclopedia/. The Skyline-daily installer and docu-
mentation are available from https://skyline.ms/skyline.url. The source code for both the MSConvert and Skyline 
projects are available as part of the Proteowizard project https://github.com/ProteoWizard/pwiz.

 All code used for the analysis of the data matrix including data QC, normalization, pre-processing, visuali-
zation, and figure generation is available online at https://github.com/uw-maccosslab/ADBrainCleanDiagDIA.
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