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A subnational reproductive, 
maternal, newborn, child, and 
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David Kerr1, Samik Ghosh4, Amy Bonnie1, Maksym Bondarenko   1, Mihretab Salasibew4 & 
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Understanding the fine scale and subnational spatial distribution of reproductive, maternal, newborn, 
child, and adolescent health and development indicators is crucial for targeting and increasing 
the efficiency of resources for public health and development planning. National governments are 
committed to improve the lives of their people, lift the population out of poverty and to achieve the 
Sustainable Development Goals. We created an open access collection of high resolution gridded and 
district level health and development datasets of India using mainly the 2015–16 National Family 
Health Survey (NFHS-4) data, and provide estimates at higher granularity than what is available in 
NFHS-4, to support policies with spatially detailed data. Bayesian methods for the construction of  
5 km × 5 km high resolution maps were applied for a set of indicators where the data allowed  
(36 datasets), while for some other indicators, only district level data were produced. All data were 
summarised using the India district administrative boundaries. In total, 138 high resolution and district 
level datasets for 28 indicators were produced and made openly available.

Background & Summary
Reproductive, maternal, newborn, child health and development, adolescent’s health, climate change, ending 
poverty and hunger and promoting gender equality and literacy among boys and girls are all central to the 
Sustainable Development Goals (SDG) agenda for 2030. With the commitment of World leaders who pledged 
common action and endeavour across such a broad and universal policy agenda, SDGs have the ambition of 
building a better future for all people, achieving improved health and quality of life of current and future gener-
ations, implement sustainable development and equal access to health for all, and leaving no one behind1.

In India, women and children comprise approximately 70% of the population2. As part of its interventions at 
national and sub-national levels, the Ministry of Women and Child Development promotes social and economic 
empowerment of women and the care, development, and protection of children3. However, despite the gains 
over the last three decades, uplifting the condition of women and children remains a challenge4,5.

Over recent decades, the Government of India has shown a commitment to addressing several develop-
ment concerns, especially those affecting children, adolescents, and women4. Through a series of initiatives in 
the context of its national development agenda, the Government has successfully lifted more than 250 million 
people out of multidimensional poverty through economic growth and empowerment6,7, improved health and 
sanitation conditions, electricity and housing as well as nutrition and education among vulnerable populations 
and enhanced social inclusion and social protection in the country8. Moreover, it is widely recognised that there 
is an association between air pollution and adverse health outcomes9,10, and increasingly studies have investi-
gated the impact of the burden of air pollution on the economy11. Climate action strategies for clean and efficient 
energy systems have been put in place8,12, and progress observed towards the achievement of the climate-related 
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SDGs (SDG 13)1. However India presents wide variations between and within states in terms of the effects of air 
pollution on health and the economy11.

Despite progress in all areas and while the reforms implemented to achieve the SDGs have reduced the dis-
parities across many socio-economic, health and environmental indicators, within country inequalities are still 
widespread13–15. The country is ranked 120 out of 193 UN Member States, with a score of 60.07, where the score 
measures a country’s total progress towards achieving all 17 SDGs and a score of 100 signifies that all goals have 
been achieved16,17.

Regional level studies have shown heterogeneities in maternal, newborn and child health indicators, and 
inequalities in child undernutrition and in access to health care affect the most vulnerable groups in the 
country15,18–21. Some areas of India still lag behind on women’s education, economic empowerment, access to 
maternal and child health services, child mortality and malnutrition22. When looking at individual health and 
development indicators, data from the NFHS-4 survey show how inequalities persist. For example, there is a 
difference of 48 percentage points between women in the richest quintile (73%) and those in the poorest quintile 
(25%) in the percentage of women attended four or more times during pregnancy by any provider23.

Reproductive, maternal, newborn, child, and adolescent health and development indicators are essential 
to track progress towards the SDGs and to inform development policies, ensuring that no one is left behind. 
Monitoring progress towards the SDGs for 2030 is typically done at national level24,25, while concerns about 
health and wealth inequity indicate that there is a need for analysis of health indicators at the microgeographic 
level or for population subgroups15. With geospatial approaches being used to produce fine scale estimates of 
SDG-related indicators, sub-national maps are now widely produced to support planning and implementation 
of health and development interventions in different settings, and geographically disaggregated information are 
increasingly serving the targeting of resources and more precise policy applications26–28.

Here, using the most recent sources of data at the time of writing, including household surveys and other 
openly available data sources, we assembled a collection of subnational reproductive, maternal, newborn, child, 
and adolescent health and development indicators for India, to support policy and planning activities and to 
improve geographic targeting towards the achievement of the SDGs. A health and development atlas con-
sisting of a collection of 138 datasets for 28 indicators at subnational scales, including estimated 5 km × 5 km 
high-resolution maps of India with relative prediction uncertainties mapped, as well as district level maps of 
India, was assembled to support the review of development and health strategies and inform future actions.

Methods
Gridded estimates of selected reproductive, maternal, newborn, child, and adolescent health and development 
indicators were produced for India at a spatial resolution of 5 km. Where the construction of gridded estimates 
was not feasible, district level estimates were produced.

The indicators mapped in this work were collected from a range of sources, including geolocated and nation-
ally and sub-nationally representative household surveys and pre-existing subnational datasets. These covered 
indicators on child, adolescent and women’s health, nutrition, and wellbeing, as well as selected climatic indi-
cators. For each indicator, the most appropriate data source was selected, according to criteria such as date, 
administrative level unit, sample size and policy priority. Where possible, for selected indicators and using the 
latest available household survey for India at the time of writing, geospatial modelling techniques were applied 
to estimate 5 km spatial resolution maps. Conversely, district level maps only were produced in the following 
cases: i) where indicators or rates were derived through application of a model to the household survey data; 
ii) for indicators classified as rare events; iii) where input data sources were already at district level and no 
finer scale resolutions were available. For cases i) and ii) we define the data produced as maps of rare events or 
model-based indicators at district level, and the main source of data was the NFHS-4. All datasets were finally 
harmonised and aggregated at district level. Figure 1 shows a flowchart of the data preparation and processing 
methods adopted to generate gridded and district level reproductive, maternal, newborn, child, and adolescent 
health and development indicators datasets in India. Details of each indicator including definition, geographical 
level of aggregation of the output dataset, data source and year are outlined in Tables1,2.

Data collection, preparation, and processing.  Estimating 5 km × 5 km high resolution datasets using cluster level 
proportions from household surveys.  India NFHS-4: Geolocated and sub-nationally representative household 
survey.  The 2015–16 India National Family Health Survey (NFHS-4) was conducted by the Ministry of Health 
and Family Welfare, Government of India and International Institute for Population Sciences, Mumbai, with the 
technical assistance of ICF through the Demographic and Health Surveys (DHS) Program (funded by USAID). 
NFHS-4 provides estimates of fertility, mortality, family planning, reproductive, maternal and child health, wealth 
and nutrition indicators at the national and state levels. Most of the indicators are also provided for the 640 dis-
tricts of India (as per the Census, 2011)22.

NFHS-4 is based on a two-stage stratified sample of households, where 28,586 primary sampling units 
(PSUs), also called enumeration areas (EAs) or clusters, were first selected with probability proportional to the 
EA size and by urban and rural areas, with a total of 28,522 PSUs completed. The 2011 census served as the sam-
pling frame for the selection of PSUs, where PSUs were villages in rural areas and Census Enumeration Blocks 
in urban areas. PSUs with fewer than 40 households were linked to the nearest PSU22. This first stage of selec-
tion provided a listing of households for the second stage, where segments of PSUs of approximately 100–150 
households were randomly selected for the survey using systematic sampling with probability proportional to 
segment size. Survey clusters can therefore be either PSUs or segments of PSUs. Subsequently, in every selected 
rural and urban cluster, 22 households were randomly selected with systematic sampling, to create statistically 
reliable estimates of key demographic and health variables29,30. PSUs or EAs are usually pre-existing geographical 
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areas which are derived from census. The boundaries of the EAs are defined by the country’s census bureau, as 
are the urban and rural status of each cluster. In recent DHS surveys geolocations (latitude and longitude) for 
each survey cluster are available. The survey cluster coordinates represent an estimated centre of the cluster 
and are collected in the field through GPS receivers. The georeferenced datasets can be linked to individual and 
household records in DHS household surveys through unique cluster identifiers. To protect the confidentiality 
of respondents, cluster locations are displaced up to 5 km in rural areas and up to 2 km in urban areas at the 
processing stage. A further 1% of the rural clusters can be displaced up to 10 km. Because displacement affects 
the physical location of the data, it is necessary to account for displacement when undertaking spatial modelling 
with DHS surveys31,32.

Fig. 1  Schematic overview of the data processing method adopted to generate 5 km × 5 km high resolution and 
district level reproductive, maternal, newborn, child, and adolescent health and development datasets in India.
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Construction of the indicators for high resolution mapping using NFHS-4.  Cluster-level propor-
tions of reproductive, maternal, newborn, child, and adolescent health and development indicators were calcu-
lated and used as input data to construct 5 km × 5 km gridded high resolution maps using geospatial modelling 
techniques, where the GPS from the surveys and spatial covariates were exploited to predict surfaces33–36.

The construction of cluster level indicators from the India NFHS-4 survey followed the definitions and 
instructions of the DHS programme22,37,38. Details of each indicator are outlined in Tables 1 and 2.

Geospatial covariates for high resolution mapping.  We considered variables that are known to influ-
ence or are proxies for other variables that are known to influence the health and development indicators in this 
study. We categorized them as geographical, socioeconomic, and environmental variables; see Table SI.1. We also 
called these variables “geospatial covariates”. Geospatial covariates are important for model construction, parame-
ter estimation and prediction. They provide information on the observed spatial distribution of the response vari-
ables and are utilized as predictors to improve the predictions of the response variables28,35,39. Since the geospatial 

Name Definition
Geographical 
level Source Year

Low birth weight Percentage of live births in the five (or three) years preceding the 
survey whose birth weight is less than 2.5 Kg.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Use of contraception Percentage (%) of currently married or in union women currently 
using any modern method of contraception.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Number of antenatal care visits Percentage (%) of women who had a live birth in the five years 
preceding the survey who had 4+ antenatal care visits.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Timing of antenatal care visits
Percentage (%) of women who had a live birth in the five years 
preceding the survey whose first antenatal care visit was at less 
than 4 months.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Urine sample taken during 
antenatal care visit

The percentage (%) of women with a live birth in the five years 
preceding the survey who received antenatal care (ANC) for the 
most recent birth with urine sample taken.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Blood sample taken during 
antenatal care visit

The percentage (%) of women with a live birth in the five years 
preceding the survey who received antenatal care (ANC) for the 
most recent birth with blood sample taken.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Iron tablets or syrup received 
during antenatal care visit

The percentage (%) of women with a live birth in the five years 
preceding the survey who received iron tablets or syrup during 
antenatal care.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Children stunting
Percentage (%) of children under age five years stunted 
(below –2 SD of height-for-age according to the World Health 
Organisation’s (WHO) standard).

5 km × 5 km 
high- resolution NFHS-4 2015–16

Children wasting Percentage (%) of children wasted (below -2 SD of weight for 
height according to the WHO’s standard).

5 km × 5 km 
high- resolution NFHS-4 2015–16

Female population with 
completed secondary 
education

Percentage (%) of women aged 15 to 49 who have completed 
secondary education at the time of the survey. District level IHME

2010–
2015–
2017

Net attendance rate for 
secondary school (girls)

Percentage (%) of secondary school age girls attending secondary 
school.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Net attendance rate for 
secondary school (boys)

Percentage (%) of secondary school age boys attending secondary 
school.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Child marriage (15 years old)
Percentage of women whose first marriage or consensual union 
occurred before the age of 15 over the full sample of women aged 
15–49.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Child marriage (18 years old)
Percentage of women whose first marriage or consensual union 
occurred before the age of 18 over the full sample of women aged 
15–49.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Female labour force 
participation

Percentage (%) of employed women among those currently in 
a union. Employment status in the last 12 months among those 
currently in a union. The indicator includes those who worked 
in the past year, those who are currently working and those who 
have a job but were on leave over the last 7 days.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Experience of physical 
violence

Percentage (%) of women aged 15–49 who have experienced 
physical violence since the age of 15 by anyone.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Women decision-making on 
her own health

Percentage (%) of married women who decide on own health 
care either alone or jointly with partner.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Children receiving vitamin A 
supplements

Percentage (%) of children aged 6–59 months who were given 
vitamin A supplements.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Comprehensive knowledge 
of HIV

Percentage (%) of women who have comprehensive knowledge 
of HIV. Comprehensive knowledge is defined as: knowing that 
consistent use of condoms during sexual intercourse and having 
just one uninfected faithful partner can reduce the chances of 
getting HIV/AIDS, knowing that a healthy-looking person can 
have HIV/AIDS, and rejecting two common misconceptions 
about transmission or prevention of HIV/AIDS.

5 km × 5 km 
high- resolution NFHS-4 2015–16

Table 1.  Indicators’ names, definitions, sources and year for 5 km × 5 km high-resolution reproductive, 
maternal, newborn, child, and adolescent health and development indicators for India.
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covariates were collated from different sources, we adjusted them such that they are all gridded datasets at the 
1 km × 1 km resolution. For modelling purposes, we aggregated the geospatial covariate gridded datasets further 
to a 5 km × 5 km resolution. The geospatial covariates at each health and development surveyed cluster location 
were extracted using ESRI ArcGIS v10.6.

Constructing high resolution maps for indicators with geospatial modelling techniques.  To 
construct prediction and uncertainty surfaces for the health and development indicators, we used the follow-
ing: the health and development indicator datasets, the geospatial covariate gridded datasets, and the boundary 
information. The methodology involved constructing models, fitting the models, prediction with the models and 
validating the models; see Fig. 2 for an illustration of the workflow.

The model construction was two-staged. In the first stage, we checked for multicollinearity amongst the geo-
spatial covariates. In the second stage, we employed the backward stepwise model selection algorithm to select 
the optimal set of geospatial covariates for the target indicator.

To check for multicollinearity, we first created a Pearson correlation matrix for the geospatial covariates 
and any pairs with a Pearson correlation coefficient r > 0.8 were flagged. The flagged covariates were then indi-
vidually fitted in non-Bayesian binomial generalised linear models (GLMs). We then calculated the Bayesian 
information criteria (BIC) of the models. The covariate in the model with a lower BIC was retained while the 
covariate in the model with the greater BIC was omitted. To further ensure that multicollinearity between the 
remaining geospatial covariates was not present, we calculated the variance inflation factors (VIFs) and any 
covariate that had a VIF > 4 was omitted.

After checking for multicollinearity, a backward model selection algorithm was used to select the best subset 
of geospatial covariates for the target indicator. To obtain the optimal set of geospatial covariates, the following 
steps were followed:

	 1.	 The remaining geospatial covariates were fitted in a non-Bayesian binomial GLM and the BIC was 
calculated.

	 2.	 A covariate was removed from the fitted model and the BIC recalculated.
	 3.	 If the recalculated BIC was less than the previously calculated BIC, this subset of covariates was preferred.
	 4.	 These steps were performed iteratively until the recalculated BIC is not less than the BIC calculated from 

the previous iteration.

Using the optimal set of geospatial covariates obtained and each health and development indicator as input 
data, a Bayesian point-referenced spatial binomial GLM fitted in INLA was fitted.

For i = 1,…,n, let Y(si) denote the number of events of the target indicator at the survey cluster location si. For 
example, Y(si) may be the number of women who use modern contraception or may be the number of women 
who received iron tablets or syrup during antenatal care visits; see Tables 1,2 for the full list of health develop-
ment indicators considered in this study. Furthermore, let m(si) denote the total number of surveys conducted 
within the survey cluster location. The Bayesian point-referenced spatial binomial GLM is given as follows:

ε
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Y(si) follows a Binomial distribution with the parameter p(si) which denotes the proportion of events hap-
pening at the survey cluster si. Following the examples above, this may be the proportion of women who use 
modern contraception or the proportion of women who received iron tablets or syrup during antenatal care 
visits. The model then assumes a logit link on p(si) with the linear predictors which consist of the fixed effects 
xʹ(si)β, spatial random effects ω(si) and independent identical (iid) random effects ϵ(si) as shown in Eq. (1).

The fixed effects are given by the geospatial covariates xʹ(si) selected from the backward model selection 
algorithm mentioned above and β is a vector of regression coefficients to be estimated. The spatial random 
effects follow a multivariate normal distribution with zero-mean and some covariance matrix Σω as shown in Eq. 
(2). In this study, elements of the covariance matrix are calculated with the exponential covariance function as 
shown in Eq. (3). The exponential covariance function is calculated with the spatial variance 2σω, the spatial decay 
parameter φ and the n × n Euclidean distance matrix D between the survey cluster locations. The parameters σω

2 
and φ are unknown and are to be estimated in INLA. The iid random effects follow a normal distribution with a 
mean of zero and an unknown variance σ2

ε  which will be estimated along with the other parameters mentioned 
above.

We estimated the parameters of Eq. (1) in the Bayesian framework with the integrated nested Laplace approx-
imation (INLA) method in conjunction with the stochastic partial differential equation (SPDE) approach40,41. 
More specifically, the parameters are the regression coefficients β, the spatial range (3/φ), the variance of the 
spatial random effect σω

2, and the variance of the iid random effect σ2
ε . The INLA method was developed by Rue 
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et al.41 as an alternative to the traditional Markov Chain Monte Carlo methods used for modelling and parame-
ter estimation in the Bayesian framework. It reduces computation time through analytic approximations with 
the Laplace method; see41,42 for a more comprehensive commentary on INLA. The SPDE approach projects 
continuous Gaussian fields, such as Eq. (2), as discrete Gaussian Markov random fields to further reduce com-
putation cost43. This projected surface is called a “mesh” since the projection involves triangulating the spatial 
domain under consideration. The decision lies in the number of triangles to create within the spatial domain as 
more triangles will improve the approximation but increases computation time44. The SPDE approach imple-
mented with the INLA method is useful for high dimensional problems such as parameter estimation for spatial 
models. The INLA method can be implemented in the statistical programming software R45 with the INLA 
package40,41.

To fit Eq. (1) with the INLA-SPDE approach, we specify non-informative priors N(0,1000) on β, 
LogGamma(2,1) on the variance of the iid random effect, and penalized complexity46 priors p r r( ) 0 01sp 0< = .  
and σ < = .ωp ( 3) 0 01 for (3/φ) and 2σω respectively. Here, rsp denotes the spatial range to avoid confusion with 
the Pearson correlation coefficient and r0 is calculated as 5% of the extent of India in the east-west direction. The 
parameter σω is called the partial sill and is the square-root of 2σω. The mesh was constructed by supplying the 
coordinates of the surveyed clusters and additional arguments to determine the number of triangles to construct 
within our study domain.

After fitting the model with INLA, we predict using the geospatial covariate gridded datasets at the 
5 km × 5 km resolution. We extract the mean and the standard deviation from the distribution of the prediction 
at each grid to create the prediction and uncertainty surfaces.

An application of the modelling framework just described showing how to construct 5 km × 5 km high res-
olution map and uncertainty for the percentage of women who received iron tablets or syrup during antenatal 
care visits is presented in SI.2 to SI.6.

Tables SI.7 show the summary statistics of the fitted models for each health and development indicator cal-
culated at 5 km × 5 km high-resolution using INLA.

Estimating district level proportions and rates from household surveys for other indicators based on NFHS-4.  
Construction of indicators at district level using NFHS-4.  The India NFHS-4 survey was constructed to be 
representative at national, province and district level for most of the indicators. In the case of rare events indi-
cators such as stillbirth rates, or where more sophisticated estimation methods were needed such as mortality 
rates, indicators were constructed and mapped at district level (denoted in this work as “NFHS-4 rare events 
indicators or model-based district level indicators”). Mortality rates and the fertility rates were modelled using 
a generalised linear model and consider the number of occurrences (birth or deaths) as a random variable47. 
The distribution of the random variable of occurrences is assumed to be Poisson in the case of fertility rates and 
binomial for mortality rates. The child mortality rate was calculated using a synthetic cohort life table approach 
which combines mortality probabilities for specific age segments (12–23, 24–35, 36–47, and 48–59) into the 
standard age segment (1 to 4 years). Given the scarcity of occurrences measuring the events of interest across 
small-scale geographical areas (i.e., clusters) district level estimates were created. For example, for stillbirth rates 
the amount of cluster with no data was around 90% while for teenage pregnancies it was about 75%.

Name Definition Geographical level Source Year

Stillbirths
Number of pregnancies that lasted seven or more months 
and terminated in a foetal death in the five years preceding 
the survey per 1000 births (stillbirths plus the number of 
live births in the five years preceding the survey).

District level NFHS-4 2015–16

Teenage pregnancies
Percentage (%) of women within 15–19 years old who have 
given birth or are pregnant with their first child over the 
full sample of women aged 15–49.

District level NFHS-4 2015–16

Child mortality rate
The probability (expressed per 1000 children surviving 
their first birthday) of a child dying on or after their first 
birthday but before reaching the age of five years over a 
5-year reference period.

District level NFHS-4 2015–16

Total fertility rate Total fertility rate for the three years preceding the survey 
for age group 15–49 expressed per woman. District level NFHS-4 2015–16

Total fertility rate for 
age group 15–19

Age-specific fertility rate for the three years preceding the 
survey for age group 15–19 expressed per 1,000 women. District level NFHS-4 2015–16

Total fertility rate for 
age group 20–24

Age-specific fertility rate for the three years preceding the 
survey for age group 20–24 expressed per 1,000 women. District level NFHS-4 2015–16

Neonatal mortality rate
The probability (expressed per 1000 live births) of a child 
dying before reaching the age of 1 month over a 5-year 
reference period.

District level NFHS-4 2015–16

Night time lights
Satellite-derived night time lights have been used as a proxy 
to measure energy consumption. Nightlight intensity data 
displaying radiance measured as nanoWatts/cm2/sr.

District level WorldPop/NOAA 2016

Air quality
Particulate matter PM2.5 concentration - 10 μg/m3 is 
WHO’s threshold above which health impacts become 
more severe.

District level
Socioeconomic Data 
and Applications 
Centre (SEDAC)

2016

Table 2.  Indicators’ names, definitions, sources and year for district level reproductive, maternal, newborn, 
child, and adolescent health and development indicators for India.
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The confidence intervals for modelled rates, mortality, and fertility rates were calculated using the delta 
method to estimate the standard error using the variance-covariance matrix of the modelled rates47. The confi-
dence intervals for proportions (e.g., teenage pregnancies) were calculated using the Wilson Score method48–51. 
The confidence intervals for the stillbirth rate were calculated using Byar’s approximation for counts above 552–54 
while tables of the exact probabilities were used for counts below 555.

The construction of district level indicators from the India NFHS-4 survey followed the definitions and 
instructions of the DHS programme22,37,38. Details of each indicator are outlined below in Tables 1,2.

District or State level data not available through household surveys or already estimated.  For indicators where 
data was not available in the NFHS-4, we used data from other openly available data sources, these included: 
the Socioeconomic Data and Applications Centre (SEDAC) https://sedac.ciesin.columbia.edu/56,57, from which 
we derived Global Annual PM2.5 Grids for years 2000–2015, satellite-derived night-time lights processed by 
WorldPop (2016)58,59 which was used as a proxy for energy consumption and, Institute for Health Metrics and 
Evaluation (IHME) http://www.healthdata.org/, used to obtain the data on women aged 15 to 49 who have com-
pleted secondary education for 2010, 2015 and 201760.

Summarization at the district level and joining to boundaries.  The data for 28 health and development indi-
cators including high-resolution estimates and district level estimates were matched and summarised using 

Fig. 2  Flow chart outlining the model constructing, fitting, and validating process of the health and 
development indicators. (a) The DHS geolocated household survey dataset of iron tablets or syrup received 
during antenatal care visits. (b) Geospatial covariates stack at the 1 × 1 km resolution. (c) Prediction (mean) 
surface for antenatal iron or syrup coverage at the 5 km × 5 km resolution. (d) Uncertainty (standard deviation) 
for antenatal iron or syrup coverage at the 5 km × 5 km resolution.
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an adapted vector geographical boundary (shapefile), based on the 2011 census, obtained from DataMeet 
Community Maps Project61.

Figure 3 below shows an example of an indicator at 5 km × 5 km high resolution (left panel) and summarised 
at the district level (right panel) for the percentage of women receiving iron Tablets or syrup during ANC visits. 
Indicator at high resolution allow users to summarise the data to a custom based area, while district area allows 
the comparability of the data at a known administrative level.

Data Records
The different types of data available described in this article referring to India are listed in Table 3. The 
high-resolution maps of the modelled indicators with their associated uncertainty have been compiled62. All the 
indicators estimated in this article have been summarised at the district level and have been compiled in a shape-
file and CSV63 for those rare events/ model-based indicators confidence intervals were calculated and compiled 
at the district level in a shapefile and a CSV64.

The input data used to produce this work are freely available after approval of registration and with a signed 
data access agreement on the websites of the data providers (i.e., NFHS-4). All other data sources were openly 
available and are referenced in Table SI.1.

Technical Validation
Model validation for the bayesian point-referenced spatial binomial GLM model used to con-
struct high resolution maps.  To access the performance of the model constructed for the target indicator, 
we used the k-fold cross validation and computed several evaluation metrics. The k-fold cross validation parti-
tions the dataset into k parts then trains the model with k-1 parts of the dataset and tests the trained model with 
the kth part of the dataset. We calculated the following evaluation metrics:
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the Pearson’s correlation coefficient, the root mean squared error, the mean absolute error, and the percent-
age bias. In the evaluate metrics above, pi is used to denote the observed values – i.e., the proportions of the tar-
get indicators partitioned for testing – and �pi

 is used to denote the predicted mean values from the Bayesian 
point-referenced spatial binomial GLM.

The notation ρ(⋅) is used to the denote the Pearson’s correlation coefficient in Eq. (4). Explicitly this is calcu-
lated with the covariance of the observed and predicted values and the standard deviation of the observed and 
predicted values
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Here, note that the vectors p p p( , , )n1 test
� � �= …  and p p p( , , )n1 test

= …  where ntest is the number of observa-
tions partitioned for testing. Better predictive performance is reflected from a greater Pearson’s correlation coef-
ficient. The root mean squared error (RMSE), mean absolute error (MAE) and percentage bias is given in Eqs. 
(5–7) respectively. Better predictive performance is reflected from smaller RMSE, MAE and percentage bias 
values.

Table SI.8 show the summary of model validation metrics for each health and development indicator calcu-
lated at 5 km × 5 km high-resolution using INLA.

Confidence intervals for estimates of district level indicators calculated using NFHS-4.  For 
those indicators where NFHS-4 district level estimates were produced (rare events and model-based district 
level indicators), we provided raster data of uncertainty associated with the indicators by mapping the difference 
between upper and lower limit of the 95% confidence interval relative to the point estimator of the indicator. The 
narrower the confidence interval, i.e., the smaller the value, lesser the uncertainty around the estimated indicator 
and thus higher the precision. More information on how confidence intervals were constructed can be found in 
the section “Construction of indicators at district level using NFHS-4”.

Accuracy of data.  The accuracy and quality of estimates from survey data such as those provided by the 
DHS (NFHS) have been assessed in several reports outside this work65,66. Input data (e.g. survey clusters and 
covariates) carry some degree of uncertainty which may affect the actual values in small areas. In particular, the 
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low birth weight indicator has a low degree of correlation (see SI.8) and the quality of the birthweight data from 
the DHS surveys has been widely investigated. The authors recommend using the birthweight indicator with cau-
tion67–69. Authors recommend to use the birthweight indicator with caution. The introduction of cluster location 
random displacement can introduce uncertainty although in general studies have shown that the impact of dis-
placement is considered to be limited70,71. Other sources of uncertainty may also be due to temporal miss-match 
of some of the covariates, as discussed in previous works72,73.

Most of the data used in this work, and in particular NFHS-4 round, refer to years 2015–16. At the time of 
writing, NFHS-4 round was the latest available survey for India. Upcoming work will focus on constructing a 
similar atlas using the new NFHS-5 data just released and assessing changes between the round 4 and 5.

Usage Notes
The datasets presented here can be used both to (i) support applications measuring sub-national metrics of 
reproductive, maternal, newborn, child, and adolescent health and development for India and (ii) to inform 
planning decisions, target interventions and development programs. However, considering that the gridded 
high-resolution datasets represent modelling outputs generated using ancillary covariates, to avoid circular-
ity, they should not be used to make predictions or explore relationships about any of those ancillary data-
sets74. Thus, before using the gridded high-resolution datasets in correlation analyses against factors which are 
included in their construction (e.g., correlating children stunting with temperature), ideally the modelling pro-
cess should be re-run using the code provided with this work75, with the applicable covariates removed.

Fig. 3  5 km × 5 km high-resolution (panel a) and district level summary (mean) (panel b) for the percentage of 
women receiving iron tablets or syrup during ANC visits.

Name Description Resolution
Files 
Format

University of Southampton 
DOI

High resolution gridded datasets 
with estimates and uncertainties 
for health and development 
indicators in India

High resolution gridded datasets with 
estimates and uncertainties for health and 
development indicators in India

5 km × 5 km GeoTIFF 10.5258/SOTON/WP00738

District level dataset with 
estimates for health and 
development indicators in India

-Summarised estimates of high-resolution 
data aggregated at district level;-District level 
estimates for rare events indicators/ model-
based from NFHS-4;-District level estimates 
for other sources for India

District shapefile 10.5258/SOTON/WP00739

District level confidence intervals 
for rare events/modelled-based 
indicators in India

District level confidence intervals for 
rate events/model-based indicators from 
NFHS-4, including the difference between 
upper and lower limit of the 95% confidence 
interval relative to the point estimator of 
each indicator

District shapefile 10.5258/SOTON/WP00740

Table 3.  Name and description of datafiles on available indicators in India.
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Moreover, when using estimates produced as a result of a modelled output, a degree of uncertainty always 
needs to be taken into account. Please, refer to the uncertainty data which were produced in the context of this 
work.

Code availability
The code for modelling, prediction and validation is publicly available via the project GitHub repository75. The 
code was written and ran in R version 4.0.4, and it is dependent on the R package INLA. Further documentation 
regarding the scripts can be found in the README file within the GitHub repository.

Instructions and code for constructing reproductive, maternal, newborn, child, and adolescent health and 
development indicators using NFHS surveys and DHS data which were used as input data can be found on the 
DHS Programme GitHub repository (www.github.com/DHSProgram).
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