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City-scale holographic traffic flow 
data based on vehicular trajectory 
resampling
Yimin Wang1,2, Yixian Chen1,2, Guilong Li1,2, Yuhuan Lu1, Zhaocheng He1,2 ✉, Zhi Yu1,2 ✉  
& Weiwei Sun3

Despite abundant accessible traffic data, researches on traffic flow estimation and optimization still 
face the dilemma of detailedness and integrity in the measurement. A dataset of city-scale vehicular 
continuous trajectories featuring the finest resolution and integrity, as known as the holographic 
traffic data, would be a breakthrough, for it could reproduce every detail of the traffic flow evolution 
and reveal the personal mobility pattern within the city. Due to the high coverage of Automatic Vehicle 
Identification (AVI) devices in Xuancheng city, we constructed one-month continuous trajectories of 
daily 80,000 vehicles in the city with accurate intersection passing time and no travel path estimation 
bias. With such holographic traffic data, it is possible to reproduce every detail of the traffic flow 
evolution. We presented a set of traffic flow data based on the holographic trajectories resampling, 
covering the whole city, including stationary average speed and flow data of 5-minute intervals and 
dynamic floating car data (FCD).

Background & Summary
The hologram technology1 uses continuous media to record the optical information of objects whose 
three-dimensional light field can be reproduced afterward. Analogously, in this paper, the holographic data of 
the traffic flow is defined as the global information of all vehicles’ dynamics, i.e., the trajectories of each vehicle in 
the traffic flow. And the ability to reproduce accurate traffic flow on a city-wide scale has significant implications 
for real-world traffic control, path planning, and decision-making process.

Therefore, trajectory reconstruction is essential, considering the limitations of directly observed data. The 
most intuitive method to get trajectory data might be object recognition from a high-angle camera, such as 
the well-known NGSIM dataset2. However, further data enhancement procedures are needed to overcome the 
measurement error, such as data filtering3,4, and traffic dynamic-based model calibration5. Considering the price 
and the installation coverage, high-angle cameras are more suitable for application in local scenarios. On the 
contrary, FCD has the advantage of spatial-temporal coverage and the ability to track individual trajectories, 
which is better for creating city-wide scenarios. Such FCD could be generated by varying mobile sensors, such as 
GPS, RFID, or automated vehicle built-in sensors. In this way, the challenge is reconstructing the non-equipped 
vehicles’ trajectories in the traffic flow. Using the “first-in-first-out” principle on the signalized intersections and 
the traffic wave theory, one can reconstruct the trajectories of each vehicle based on the partial observation of 
the floating cars6. With the development of connected and automated vehicles (CAV), the method could also be 
used in the mixed traffic flow of human-driven vehicles and CAVs7,8. However, the reconstructed data’s accuracy 
depends on the floating cars’ sampling rate. And the rate changes during the day, which leads to the uncertainty 
of the data.

On the other hand, an AVI9 device is able to capture the identity and the timestamp of vehicles when passing 
by a specific checkpoint on the road. With the growing number of traffic cameras, AVI detectors are imple-
mented in almost every intersection in Chinese cities. And one can obtain timestamped location sequences of 
all vehicles benefit from wide distributed AVI detectors on the road network.
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With such comprehensive identified traffic data, it is possible to generate the holographic trajectories by 
enriching details of traffic flow dynamics. This paper presents a method to reconstruct trajectories of vehi-
cles from discrete serials of AVI observations. Based on the reconstructed trajectories, we propose a sampling 
method on traffic flow data to simulate the detecting processes from both views of Eulerian and Lagrangian 
traffic flow observations, such as traffic count detection by loop detectors and real-time position detection by 
floating cars.

Moreover, the proposed methods are implemented in Xuancheng, China. With 97% of intersections equipped 
with AVI devices, the system captures almost every vehicular movement on the road network, daily producing 
4 million records. In this case, Xuancheng might be known as the first city empowered with the insight of 
all-field round-the-clock vehicular trips. Considering the risk of personal information leaking, researchers are 
encouraged to collect cross-sectional aggregating data and limited vehicular trajectories through a supervised 
interactive virtual traffic measurement service.

Such resampled traffic data could support various of transportation-related researches. For instance, 1) con-
sistent multi-source detected data could be resampled from the holographic dataset for data fusion research; 2) 
mobility patterns could be found from full sampled individual trip data; 3) optimal planning of traffic detectors 
deployment could be tested by placing custom virtual detectors on the data platform.

Methods
The AVI technology is widely used in traffic enforcement cameras to automatically identify vehicles involving 
traffic violations10, saving numerous human works to recognize license plates from raw images. Generally, active 
AVI detection identifies and records every vehicle passing the checkpoint11, even those not involving traffic vio-
lations. Thus, each vehicle on the road network would generate a trajectory constituted by a series of identifying 
records known as license plate recognition (LPR) data12.

However, in the early days, the AVI deployment coverage and license recognition accuracy are not enough 
to get precise travel paths. Hence, some of the researches focused on the macroscopic profile of the traffic flow, 
such as original-destination (OD) reconstruction13,14, and speed profile estimation15. With the significant devel-
opment of dynamic AVI technology and the wide deployment of AVI cameras, it is possible to reconstruct 
the closed travel chain using successive LPR records16,17. Moreover, deep learning algorithms like GNN are 
employed to reduce uncertainties in identifying vehicles in recent research18,19.

Although the above methods provide plausible solutions to trip reconstruction, path estimation errors are 
introduced due to the limited AVI coverage. The estimation accuracy mainly depends on a certain coverage rate, 
as known as the proportion of AVI-equipped intersections in the whole road network. The higher coverage of 
AVI-equipped intersections implies that there are fewer trip paths to reconstruct. With the benefit of this high 
coverage, we could get promising results from some simple and effective reconstruction algorithms.

Therefore, the generic workflow for generating the holographic trajectories and the related resampled data is 
depicted in Fig. 1. Two main procedures (P1 & P2) turn the discrete raw LPR data into continuous trajectories 
through the workflow. Trip measurement turns the partial observable LPR data into segmental trip data with 
certain paths on a constructed full-sensing road network (FSRN). Then trajectory reconstructing interpolation 
is applied to each segment to form the holographic traffic flow data20. Finally, one can run virtual traffic detec-
tion (P3) on holographic trajectories and resample various traffic flow data.

Road network description.  To avoid path estimation error, the trajectory reconstruction is conducted on 
a well-defined road network on which the LPR data are mapped. This paper describes the physical road network 
(PRN) as a directed graph, denoted asG*(N*, S*). The other related notation is in Table 2. There should be at most 
one trip path for any serial of LPR records to guarantee no path estimation bias, i.e., m(as, t) ϵ {0, 1}. Let NA be the 
set of the AVI-equipped intersections. It is clear that ⊆ ∗N NA . Assuming an ideal circumstance that NA = N*, all 
the trip paths on the physical network can be observed.

Fig. 1  Data processing workflow.
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When N NA ⊂ ∗, it is still possible to capture all of the trips, as long as the following full-sensing condition is 
satisfied.

Definition 0.1 (Full-sensing road network (FSRN)) A full-sensing road network (FSRN) is a road network 
graph that among all the paths between any two different AVI-equipped intersections, there is no more than one 
path with non-AVI-equipped intersections.

It guarantees that the path between two consecutive LPR records is determined. Details of the full-sensing 
theorem are in Appendix A. This theorem demonstrates that it is unnecessary to deploy an AVI detector on each 
intersection to get the full-sensing condition.

Let LPR data be t Ia ( , )I I= , containing the timestamp and indicator of a vehicle passing Node I. Then the 
record of the trip rI, J consists of a serial of spatial-temporal locations, i.e., a a a a{ , , , }I J I A J, = ... . Such as consecu-
tive LPR records a a{ , }B D  in Fig. 2, the path =r B E D{ , , }B D,  can be determined regardless of missing detection.

Generally speaking, if the PRN fails the full-sensing condition, the challenge is to construct an FSRN accord-
ing to the locations of AVI-equipped intersections. The idea is to extract an FSRN from the physical network by 
eliminating some road segments and intersections. Then a trip on PRN would be divided into two parts, includ-
ing on-FSRN parts and off-FSRN parts. For instance, a trip =r A B J K F I{ , , , , , }A I,  in Fig. 2 would be divided 
into r A B{ , }A B, = , r B J K F{ , , , }B F, = , and =r F I{ , }F I, , where rB F,  is the off-FSRN part. Furthermore, The 
closed traffic zone is constructed to keep the off-FSRN parts in a particular area.

Definition 0.2 (Closed traffic zone) A closed traffic zone is an area bounded by FSRN road segments, and for 
any non-FSRN segments in the zone, their connected segments are also within the zone area.

In this way, a trip on the physical road network might be represented by several parts on FSRN separated by 
staying or mobility within the traffic zones. The trip rA I,  mentioned above could be represented by inter-zone 
movements rA B, , rF I, , and inner-zone activity rB F, . Related details can be found in Appendix B.

In order to obtain vehicular movements as high resolution as possible from an AVI-fixed-locating road net-
work, the challenge is to minimize the area of the traffic zones by constructing a suitable sensing network under 
the constraint of the full sensing criterion. Additionally, more AVI implemented intersections indicate more 
resemblance to the FSRN and the PRN. Thus more detailed activities can be captured, i.e, → ∗N NA , 
FSRN PRN→ . A current sensing network of Xuancheng city is shown in Fig. 3. In Xuancheng city, the AVI 
installation rate among the intersections is 97%.

Despite such an almost ideal trip observation in Xuancheng, the trajectory reconstruction is still a problem 
of interpretation for observed passing time at both the upstream and downstream ends of a road segment. For 
trajectories, the turning directions on each intersection could be easily inferred by downstream LPR records, 
while their exact lanes are hardly recognized. Consider a series of AVI records from network in Fig. 2, 

= ...a a a a a{ , , , , }A F A B C F, . We can infer the vehicle passing straight on Intersection B because sA B,  and sB C,  are 
in the same direction. And the vehicle was most likely in the right-turning stream passing Intersection C for a 
similar reason. The lane-level information, unfortunately, lacks confidence due to the complicated circumstances 
such as the left and straight sharing lane and even the occasional detection error by the AVI cameras. Thus, the 
traffic flow dynamic would be described by the turning stream on each intersection, rather than different lanes 
on the road segments21. For vehicular dynamics within the road segment sI J,  of the trip, the trajectory x t( ) 
between aI and aJ can be calculated as follows:

Fig. 2  Demonstration of the road network and AVI deployment.

Time (s) Segment Direction Position (m)

0 BC {B,C,F} 0

10 BC {B,C,F} 200

20 BC {B,C,F} 400

20 CF {C,F,E} 0

30 CF {C,F,E} 200

40 CF {C,F,E} 400

Table 1.  Demonstrate of trajectory records.
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Since traffic flow dynamics are adapted to the stream level, a vehicular location on the FSRN at time t con-
tains the linear reference of the road-segment upstream end and the turning direction. A direction is described 
as u(t), representing the traffic stream from the current segment to the next segment of a trip. u(t) during the trip 
from I to O is described as follows,
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where I A B{ , , } denotes the direction from segment sI A,  to segment sI B,  during t t( , )I A . Note that the last 
observed segment is s*, O. The turning direction {*, O, P} is inferred by the traffic stream, and the trajectory on 
the downstream segment sO P,  is beyond the scope of reconstruction.

To sum up, for an observation (aI, O) on the FSRN, there is a determining trip path r( )I O,  where I and O are 
not adjacent. And one can infer the segment-level location of the vehicle, denoted as s(t).
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Thus, the network-wised stream-level continuous trajectory is represented as s t u t x t{ ( ), ( ), ( )}, while the 
segment-level trajectory is represented by s(t). For instance, assuming the length of each segment in Fig. 2 is 
400 m, and a vehicle moves with the speed of 20 m/s on the path {B, C, F}. Then the trajectory records with the 
10-second time step are shown in Table 1. Note that on t = 20 s, the vehicle is on intersection C, which is both the 
downstream end of BC (x = 400) and the upstream end of CF (x = 0).

Trip measurement.  As shown in the workflow (Fig. 1), a trip dividing algorithm is required to get trip-based 
spatial-temporal serials. The basic procedure is determining whether two consecutive records belong to the same 
trip. This paper uses the travel time of a vehicle passing two consecutive AVI-equipped intersections ni and ni + 1 as 
a spatial-temporal accessibility criterion. Here the index number of the intersection implies its sequence in the trip.
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Fig. 3  Road network and AVI distribution of Xuancheng city.
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where +li i, 1 is the length of segment 
+

sn n,i i 1
, vmin is the minimal travel speed, and tni

 is the passing time of record 
ani

. H 1=  indicates that records ani
 and ani 1+

 belong to one trip, while =H 0 means at least one staying behav-
ior between ani

 and 
+

ani 1
.

It is common to reconstruct vehicular trajectories on signalized intersections using traffic wave theory. In 
these researches5–8, it is assumed that the time of a vehicle passing the intersection is observable. However, as 
shown in Fig. 2, not each passing point in trip r can be recorded by AVI detectors, such as r B E D{ , , }B D, = . In 
other word, the observation could be a subset of the trip records, i.e., = ∈ ⊆{ }a a a an N ,o

n i
A o

i
.

Under such circumstances that a trip path contains non-AVI-equipped intersections, the following algorithm 
is introduced to get the inferred possible passing time. It considers the non-AVI passing points and accessibility 
criteria in Eq. 4 (details in Appendix C). The idea is that, one can use Eq. 4 to judge accessibility on segment 
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For trip r = {ni, ni+1,…,nk,…,nj}, we can search accessible downstream green light phases into a set Tk as 
depicted in Fig. 4a, iteratively. The downstream searching process runs for + ≤ ≤i k j1  and generates the 
potential passing graph P T E( , )i j,  in which the edges indicate two consequent passing phases. For each accessible 
phase node in layer Tj, we can pick the candidates T j

∗ where ∈ 





t g g,j j
start

j
end  fits (black dots in Fig. 4b). Then 

remove other phase nodes and their connecting edges (dotted lines in Fig. 4b) from the graph as follows.

τ= ∈−
∗

−
∗E e T{ }j j j i j j j1, ,

By updating candidates of phases and edges from the downstream end to the upstream end, we can trim the 
graph into an accessible passing graph ∗P T E( , )i j,  for the path from node ni to nj. Then the passing moments 
could be determined with the speed-density information given by the leading and following vehicles, as men-
tioned in Appendix D.

Note that AVI detectors might failed recognizing a small portion of the passing vehicles due to poor visual 
conditions. For instance, assuming missing observation aA on trip a a a a[ , , ]B A D=  in Fig. 2, the passing-time 
inference algorithm would be applied for path n n n[ , , ]B E D  since it is the only path between B and D without any 
AVI-equipped intersections. If the signals on E did not fit in, such situation would causes trip chain disconnection 

Fig. 4  Illustrations of inference for passing green light phases of intersections from i to j.

Notation Description

G*(N*, S*) The graph of PRN

sI, J The road segment from Node I to Node J

rI, J = {I, A, B,…,J} A trip path from Node I to Node J

Ri, J The set of rI, J

n(Ri, J) The number of the possible trip path from Node I to Node J

ai, J = {aI, aA, aB,…aj} A serial of consecutive LPR data

m(ai, J) The number of the possible trip paths for aI,J

Table 2.  Description of notations.
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P( ( , ))i j, φ φ=∗ . Otherwise, it would be a false match. Therefore, the accuracy of the AVI detection is important 
to the trip measurement.

Vehicular trajectories reconstruction.  The traffic streams consist of the vehicles of the same turning 
on the road segment. The dynamics in the same stream would be described as stop-and-go waves caused by the 
signal periods on the downstream end.

A demonstration of vehicular trajectories in the traffic stream is shown in Fig. 5. The green and red bars on 
x = xj represent green and red phases in the signal circles. Furthermore, the wave’s speed is determined by the 
vehicle queuing state and releasing state of the traffic flow, i.e.,

= − −( )w q k k/ (6)m j m

where qm is the capacity, km is the density under capacity, and kj is the jammed density. In order to calculate vehic-
ular trajectories in Eq. 1, such as the 5 vehicles in Fig. 5, the solution of v(t) is formulated as a piecewise function.
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To gain the solutions, a backward procedure of trajectories reconstruction is proposed for each passing vehi-
cle, calculating from the downstream to the upstream of the traffic flow. Hence, the reconstruction begins at the 
last signal period and iterates by signal circles. In other words, the v(t) is calculated from vj to v1. Each iteration 
starts with observations of the passing vehicles in the current period and the remaining ones from the former 
iteration, resulting in the new reconstructing states of these vehicles. For instance, Iteration 2 in Fig. 5 contains 
remained vehicles (veh3, 4) and passing vehicle(s) (veh2). At the end of the iteration, veh4’s trajector has been 
constructed, while trajectories of (veh2, 3) remained undone and passed to Iteration 3. The key is to distinguish 
queued vehicles from non-queued ones. Then we can complete the trajectories of the non-queued vehicles, 
leaving the queued ones to the subsequent iterations. Details of the reconstruction method are in Appendix 4.

Virtual traffic flow detection.  With the holistic reconstructed trajectories, the holograph of the city-scale 
mobility can be acquired. Note that such a high-resolution individual mobility dataset implies a high risk of per-
sonal information being abused. Thus it is restricted to access the generated raw trajectories directly. As an alter-
native, numerical traffic flow detection is applied. In reality, the traffic flow can be observed from both Eulerian 
and Lagrangian perspectives. Analogously, the reconstructed dataset supports both cross-sectional and vehicular 
detection.

Numerical stationary detection.  For stationary observation, traditional loop data can be simulated by counting 
intersections of the curves of trajectories crossing the horizontal loop location line as the blue dash line in Fig. 6. 
Moreover, the occupancy and velocity can be measured according to the loop’s length. Additionally, segmental 
measurement could be employed, which detects the instant density (as on orange line) and the swwpace-mean 
speed (as in orange frame) of the traffic flow as the orange dash line in Fig. 6. The missing rate is introduced 
in the loop data resampling process to simulate the systematic detecting error in realistic circumstances. Each 
vehicle counting is taken as a Bernoulli trial having the missing rate as the possibility of failure. By manipulat-
ing the aggregating interval of the loop detectors, we can observe the different characteristics of the evolving 
traffic flow. Under a short interval, the characteristic of short-term traffic flow appeals, showing the dynamic 
state-changing phenomena. In contrast, under a long interval, the detected flow-density states scatter more 
concentrated, revealing the equilibrium of the traffic flow.

Fig. 5  Demonstration of backward trajectory reconstruction from leaving time at xj to entry time at xi on a road 
segment.
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Virtual floating car detection.  The sample rate controls the penetration of vehicular trajectories resampling, 
resulting in the red trajectories in Fig. 6. In order to balance the data utility and personal privacy protection, 
only the trajectories of commercial vehicles are included in the dataset. The proportion of commercial vehicles 
is about 4.5% to 7% depends on the time. Moreover, all of the license numbers are substituted with their unique 
and irreversible hash code.

Data Records
We provide three types of data to support different research interests:

•	 Short-term anonymized original LPR data
•	 Long-term encrypted reconstructed holographic trajectory data
•	 Long-term resampled traffic data, including loop data and FCD based on the holographic trajectories

All of the data are available at the Figshare22 repository.
We limit the original LPR data because of the risk of personal information leaking, even if the data are 

anonymized. With travel characteristics revealed in the long-termed holographic trajectories, one can still 
recognize the personal identification using additional data, such as parking lot data. Hence, it is necessary to 
encrypt the trajectory data.

However, the long-term resampled traffic data could be used as the primary support for the related research, 
which could meet most of the needs. For supplemental use, others can customize their detectors’ settings and 
implement virtual traffic flow detection using the attached resampling software and the encrypted holographic 
trajectories. To those interested in the reconstruction method, the short-term anonymized original LPR data 
could be used for validation. Details of the three types of data are described as follows.

	 1)	 The city-scale loop data and FCD are the one-month long resampling results of the Xuancheng holograph-
ic data in Sept. 2020. The link-based graph is given in Table 3 for road network description, including the 
whole 578 road segments of the city. The loop dataset provides the 5-minute aggregated flow-speed data, 
as shown in Table 4. The FCD includes the trajectories of 500 commercial vehicles are in Table 5, which is 
sampled every 10 seconds. Their unique IDs can be found in the data repositories.

	 2)	 The encrypted holographic trajectories can not be accessed directly; however, one can obtain the self-cus-
tomized results by using the attached resampling software. The usage can be found in the following Usage 
Notes, and the source code of the software is available, see in Code Availability.

	 3)	 The short-term original LPR data for reconstruction validation are shown in Table 6, while the source code 
of the reconstruction can be found in Code Availability. The LPR data are collected from 7:00 to 8:00 on a 
workday morning in Xuancheng.

Fig. 6  Illustration of virtual traffic flow detection including loop detection (blue dash line) and floating car 
detection (red solid line).

Column name Description

ROADID The ID of road segment, composed of the upstream node ID and the downstream node ID

LANENUM The number of the lanes of the road segment end

TURN Directions of every downstream road, separated by #

DN_ROAD Road IDs of every downstream road, separated by #

GEOM String of geometry objects

LEN Length of road segment in meters

Table 3.  Road network data attributes.
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Technical Validation
The generated traffic flow profile of morning peak is revealed in Fig. 7. The number of passing vehicles is visu-
alized by the heat map. It presents the radial distribution of the traffic flow. To demonstrate the validity of the 
generated data, we compared the data with different sources to test the consistency in between. Also, the charac-
teristics of the generated data are analyzed. Several data profiles are drawn from the flow-based perspective and 
trip-based perspective, respectively.

Flow-based perspective.  The flow-based validation includes comparing the traffic flow data on red-marked 
roads against another observation and analyzing the generated fundamental diagram.

Figure 8a depicts the resampled count numbers and the manual results of the southern in-coming stream on 
intersection N4724. The resampled data on intersection N4694 and N4724 are compared to the on-sited manual 
observation, considering vehicles from each in-coming road segment from 11:00 to 12:00 on Sept. 15th, 2020. 
The correlative coefficient is 0.748 with RMSE = 4.3 veh/min, which shows the consistency.

Furthermore, the network-wide travel time data are compared to the dynamic estimated results from the 
Amap API and Baidu Map API. Due to the different strategies of Amap and Baidu Map, we propose different 
comparisons accordingly. Amap API provides travel time estimations of specific paths with a limit on total paths. 
So we would compare the results on Aofeng Rd., Zhaoting Rd., Baocheng Rd., and Xunhua Rd, which are the 
main-stream roads of the network. (see Fig. 7) On the other hand, Baidu API allows speed inquiry of each road 
segment in a specific area. However, only the speed data under congested traffic conditions are recorded. Thus we 
would compare the results during peak hours. Since some smooth filters and delays on intersections are usually 
applied in travel time estimation algorithms, the estimated results are likely different from the raw detected ones.

Column name Description

ROAD_ID The ID of road segment, composed of the upstream node ID and the downstream node ID

FTIME The beginning timestamp of the interval

TTIME The ending timestamp of the interval

INT Data aggregating interval (s)

COUNT The number of all passing vehicles

REG_COUNT The number of regular vehicles

LAR_COUNT The number of large vehicles

ARTH_SPD The arithmetic mean of vehicle speed (km/h)

HARM_SPD The harmonic mean of vehicle speed (km/h)

TURN The turning direction of the stream, S/L/R/U/Unknown represent straight, left, right, U-turn, and no downstream 
movements, respectively

Table 4.  Loop data attributes.

Column name Description

VID The ID of vehicles

TYPE Vehicle types: 1 for large vehicles, 2 for regular vehicles

TIME Trajectory recorded time

LON Longitude of the vehicle position

LAT Latitude of the vehicle position

SPD Vehicle speed

TURN The turning direction of the vehicle, S/L/R/U/Unknown represent straight, left, right, U-turn, and no downstream 
movements, respectively

DIS Distance from vehicle position to downstream end of the road segment

ROADID Road segment ID

Table 5.  FCD attributes.

Column name Description

VID The ID of vehicles

FROAD Road ID of the former passing moment

TROAD Road ID of the latter passing moment

FTIME Timestamp of the former passing moment

TTIME Timestamp of the latter passing moment

Table 6.  LPR data attributes.
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For Amap API, the weekly averaged and zero-mean normalized travel time series are proposed. Figure 8b 
shows the result on Zhaoting Rd., demonstrating the daily deviation of travel time from the average. Generally 
speaking, the overall averaging daily travel time is similar to the estimated result by Amap with the correlative 
coefficient of 0.749.

For Baidu API, the hourly averaged and zero-mean normalized travel time series are proposed. The average speed 
is weighted by the length and lane numbers of the road segments. The correlative coefficient is 0.738 (see Fig. 8c).

Due to the differences in lane numbers of each segment and the varying green occupancy ratio of each signal-
ized intersection, the fundamental diagram is adapted into a space-integrated form to describe the network-wide 
characteristics of the traffic. (Fig. 8d,e) The fundamental diagram is integratable on time and space dimen-
sions because traffic macroscopic characteristics are aggregated measures that can be done over vehicles, time, 
and space23. Therefore, the density term is changed from the number of vehicles per kilometer (veh/km) to the 
number of vehicles on a road segment (veh). Then the flow term (veh/h) is changed to hourly vehicle-kilometer 
(veh·km/h). As for the number of vehicles on the road and the hourly vehicle-kilometer, the network-wide quan-
tities can be represented by the sum of the segment-level quantities from each part of the road network.

However, since the speed is an averaging quantity, the ratio of the vehicle-kilometer and the number of vehi-
cles en route keeps the same physical meaning as the average speed of the whole traffic flow. We take a snapshot of 
the whole network every 30 seconds to count the number of vehicles on the roads and their average speed. Then 
the vehicle-kilometer could be calculated, which is the product of the number of vehicles and the average speed. 
Figure 8d,e show the 10-minute moving average of the snapshots’ samples, in which the white color area indicates 
a denser cluster. As shown in Fig. 8d, the speed-density diagram during the day shift (from 5 A.M. to 7 P.M.) dif-
fers from the night shift (from 7 P.M. to 5 A.M.). Note that under the same average speed, the number of vehicles 
at night is less than that at day. Similarly, with the same amount of vehicles on the network, the travel speed is 
lower at night. It is implied that under a dimmer lighting condition, vehicles might move slower, and the perfor-
mance of AVI equipment might be affected. Furthermore, the numbers of vehicles are around 200 and 1000 at 
night, while the numbers are around 1800 at day. As for the flow-density diagram in Fig. 8e, the vehicle-kilometer 
at day is slightly above that at night, which is consistent with the results in the speed-density diagram.

Trip-based perspective.  The trip-based analysis focuses on the spatial-temporal distribution of the travel 
demands. The trip-based analysis is mainly according to the spatial-temporal concentration of the individual 
trips. In this paper, the level of spatial concentration of individual travelers is evaluated by the number of dif-
ferent origin-destination zones (ODZ) in a month. Meanwhile, the level of time concentration is determined 
by the number of different departure time sections (DTS). As the individual trip is related to the specific traffic 
zone surrounded by the road segments, the number of different ODZ is easily counted. Since departure time is 
a continuous variable, we conduct a DBSCAN clustering algorithm on each trip to spontaneously generate dis-
crete departure time sections. Note that some vehicles, such as taxis, have random origin-destination points and 
departure time, which lead to a long tail distribution on ODZ and DTS, as depicted on Fig. 9a. To avoid the long 
tail phenomena of spatial-temporal distribution, we take the 85th percentile of the number of DTS and ODZ as the 
indicators of spatial-temporal concentrating characteristics.

Figure 9c shows the departure time distribution on weekdays of people in different DTS. One can recogni-
tion a typical “Work-Home” commute pattern of those DTS = 2, which has much higher peaks during commute 

Fig. 7  Morning peak traffic in Xuancheng city. The width of the blue shades represents the number of vehicles. Road 
segments (Zhaoting, Baocheng, Xuanhua, and Aofeng Rd.) and intersections (N4694 & N4724) are to be validated.
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time. Besides, the curve of DTS = 4 seems a “Work-Other-Work-Home” pattern and leads to a midday peak 
of traffic that does not exist in DTS = 2 or DTS = 3 curves. As for DTS = 3, there is a noticeable peak at around 
20:00 and indicates a “Work-Other-Home” pattern. For DTS = other, one can find that there are four equiva-
lent peaks at around 7:30, 11:30, 14:00, and 17:30, representing generally high frequent departure times. Since 
DTS = 2, 3, 4 show the comprehensive mobility patterns, the temporally concentrated travelers are defined as the 
ones with the 85th DTS in2–4. Note that these patterns have up to four different OD zones. Likewise, the spatially 
concentrated travelers are defined as the ones with the 85th ODZ less than 5.

Figure 9d shows the Lorenz curve of travel distance in a month for all travelers, where the cumulative propor-
tion of the travel distance is plotted against the cumulative proportion of individuals24. It reveals that mobility 
distribution on the road network is of the same pattern as other business behaviors. Among all travelers, the 
commercial vehicles at the top 1% of the population share nearly 20% of the cumulative travel distances.

Fig. 8  Validation from the flow-based perspective.
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Some of the trips are predictable due to the traveler’s comprehensive characteristics, such as the commut-
ers, the spatially concentrated ones, and the temporally concentrated ones. Furthermore, we can estimate the 
movements of commercial vehicles since they are under surveillance. These four types of travelers are defined as 
regular travelers whose patterns are recognizable.

Figure 9b is a pie chart of population and travel distance for different travelers, including commuters, commercial 
vehicles, temporally concentrated travelers, and spatially concentrated travelers. In summary, the regular ones share 
37% of the whole travelers but form 45% of the whole travel distance. Thus, once these 37% regular travelers are well 
modeled, we can reproduce nearly half of the trips, and the other half might be generated with random methods.

Usage Notes
As mentioned above, there are three types of data we provide. The short-term LPR data and long-term resampled 
traffic data can be downloaded for static data usage. On the other hand, the encrypted holographic trajectories 
can be used in the interactive measurement of the traffic flow. Users can modify the virtual detecting environ-
ment and get customized virtual detection results. In this way, we can offer the user-customized round-the-clock 
long-term traffic flow data to the most satisfactory resolution without exposing personal trajectories.

Static dataset usage.  The road network file can be imported into the PostGIS database or other supported 
GIS systems through QGIS. The loop data of each road segment can be used for studying large-scale traffic data 
prediction. By combining FCD with the loop data, users could examine various data fusion models. Moreover, the 
FCD data process script could help aggregate individual floating car samples into the segmental travel time. As for 
LPR data, each row of the dataset is a pair of consecutive records captured by the AVI detectors. One can rebuild 
the route between these two records with the road network.

Interactive measurement usage.  The resampling software is a command-line tool to implement virtual 
traffic flow detection in encrypted trajectories. Users could tweak the settings in the running properties file and 
get resampled traffic data straight in the local output files.

In the properties file, users can set the road sections (“ftNode”) and time (“fTime”, “tTime”) of the measure-
ment and define the parameters of loop and floating car detection. Users can switch on or off the floating car 
detection by setting the “needFCD” property to “true” or “false”. Furthermore, “fcdSamplingSec” denotes the 
FCD’s sampling period (seconds). For loop detectors, they are identified by the ID (“loopId”), detecting on the 
specified road segment (“ftNode”). The loop’s position is determined by the property “position”, which denotes 
the distance from the downstream end of the road. The missing rate (“missingRate”) and the aggregating interval 
(“interval”) settings are available.

The software can run on Linux, Windows, and macOS systems using different launchers. The command is 
simple as “osLauncher java -jar /path/to/resampling_software -d /path/of/holoData -c /path/of/properties_file”.

Other details can be found in the “README” file.
A. Full-sensing theorem
Among all the paths between any two different AVI intersections in the study area, if there is no more than one 
path with non-AVI-equipped intersections, then the trip path for the LPR record is determined, i.e.,

Fig. 9  Validation from the trip-based perspective.
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B. Closed zone theorem
If the traffic zone area is bounded by FSRN road segments, and for any non-FSRN segments in the zone, their 
connected segments are also within the zone area, then the trip of the physical road network (PRN) can be rep-
resented as parts on full-sensing road network (FSRN) separated by inner zone activities, i.e., ∵
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C. Passing-time inference algorithm

Algorithm 1 Passing Time Inference

D. Details of trajectory reconstruction
As shown in Fig. 10a, there are two different circumstances we need to deal with when it comes to queuing dis-
crimination. The common idea is that the low constructed travel speed assumes a queuing behavior since the 
vehicle does not move during the queuing process. For those vehicles leaving xj, the travel speed is simply deter-
mined by the slope between the entry point (A) and leaving point (B), as shown in Fig. 10a. As for vehicles from 
former iterations, since the exit point (G) remains unknown, the intersection (F) of the wave μτ and stopping 
position FH  is chosen as the referring point. Hence the adapted travel speed is related to Point E and Point F. 
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Especially when it provides the green light period instead of the exact entry time, the end of the green light 
period is used as referring point.

After the independent queuing discrimination, the result might show that several vehicles are assumed queu-
ing before the current green light period. For instance, let Vehicle 1,3 be the low-speed vehicles as depicted in 
Fig. 10b. It is a fact that there is no more than one stop wave during one signal period. Thus, the queuing vehicle 
must be in front of the other ones. Considering the one-wave constraint, let the last low-speed vehicle be the last 
queuing vehicle. In this case, Vehicle 1,2,3 would be marked as the queuing vehicles. Their stopped positions are 
calculated according to their leaving orders. The stop position of the i-th vehicle is formulated as follows,

P i
k

1

(8)
i

j
= −

τ

where kj is the jam density. The passing speed is related to the stopped position and the exit point. On the 
other hand, the travel speed of the non-queued vehicles is calculated according to the passing information. The 
reconstructed trajectory is the straight passing line to vehicles with specific entry and leaving points, such as 
vehicle 4. For vehicles with one exact passing point, such as vehicles 5 and 7, the travel speed is formulated by 
the speed-density model26,
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where vf is the free flow speed, and α = 1.0, β = 0.05 according to relating researches27,28. In this way, the travel 
speed is given based on the local density, representing the road segment’s traffic dynamic. Then their trajectories 
are fixed by one passing point and the running speed. Finally, to vehicles without exact observations, their speed 
is also calculated by the same speed-density model, and the endpoint is given randomly with constraints of the 
proceeding and following vehicles. (See Vehicle 4 in Fig. 10b.)

Code availability
To further describe the details of data processing in our method, we also provide code and instructions for 
reproducing the presented results25. In general, files that end with “.py” are supporting python module files, other 
files with “.ipynb” are written as Jupyter Notebook instruction, and the files under the folder “measurement” are 
the source code of the resampling software. The instruction files demonstrate the whole data processing workflow 
in Fig. 1, including trip measurement, trajectory reconstruction, virtual traffic flow detection, and data validation. 
These files can be used to better understand the modeling and validation steps.

This study proposes a resampling method of vehicular trajectories using the LPR data. A city-scale holographic 
unbiased trajectories dataset is reconstructed. Then it is validated by the consistency with other data sources on 
travel time results and demonstrated with the macroscopic characteristics of the fundamental diagram. The cor-
relative coefficient of travel time is about 0.688 to 0.749. Moreover, with the anonymous interactive measurement, 
users can acquire multiple traffic data from the individual level without the risk of personal information abuse. 
This dataset and the tool could support relative research goals such as data fusion, patterns of mobility recogni-
tion, and sensor network optimization.
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