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A multi-sensor human gait dataset 
captured through an optical system 
and inertial measurement units
Geise Santos   1 ✉, Marcelo Wanderley2, Tiago Tavares3 & Anderson Rocha1

Different technologies can acquire data for gait analysis, such as optical systems and inertial 
measurement units (IMUs). Each technology has its drawbacks and advantages, fitting best to 
particular applications. The presented multi-sensor human gait dataset comprises synchronized 
inertial and optical motion data from 25 participants free of lower-limb injuries, aged between 18 and 
47 years. A smartphone and a custom micro-controlled device with an IMU were attached to one of 
the participant’s legs to capture accelerometer and gyroscope data, and 42 reflexive markers were 
taped over the whole body to record three-dimensional trajectories. The trajectories and inertial 
measurements were simultaneously recorded and synchronized. Participants were instructed to walk 
on a straight-level walkway at their normal pace. Ten trials for each participant were recorded and pre-
processed in each of two sessions, performed on different days. This dataset supports the comparison of 
gait parameters and properties of inertial and optical capture systems, whereas allows the study of gait 
characteristics specific for each system.

Background & Summary
Gait analysis has been explored since the 17th century1. Advances in understanding the human motion through-
out the last centuries allowed researchers apply this analysis to many applications, such as clinical assessment, 
monitoring of sports and athletic performances, rehabilitation support, robotics research, and biometry-based 
recognition2. This type of analysis can use data acquired by means of different technologies, like optical sys-
tems, inertial measurement units (IMUs), force-plate platforms, force shoes, and techniques based on computer 
vision. Although some of these are commonly used in most fields, as optical systems and imaging techniques, 
each technology has its drawbacks and fits best to particular applications3–7.

One popular technology to acquire data for gait analysis is the optical motion capture system. It has minimal 
impact on the natural motion of the participant, as it does not need tethering any hardware onto the individual8. 
This system also fosters a precise acquisition of physical movements over virtual modeling and accurate recon-
struction of movement marks and participants’ geometry9. However, optical motion capture systems are usually 
expensive, require high-speed processing devices and specific installations in a controlled space for their use3.

Recently, IMUs have been considered an appropriate option to perform gait analysis because they miti-
gate these drawbacks of optical motion capture systems. They are typically more cost-effective, do not need 
a controlled environment, and support indoor and outdoor places. However, they have other limitations as 
being more susceptible to drift caused by changes in motion direction, and to low-frequency noise from small 
vibrations during the capture. Also, the sensor attachment position significantly impacts the estimation of gait 
parameters3,9–11.

Several important gait datasets comprising either optical motion capture data or inertial data have been 
made available12–18 in the prior literature. However, there are currently no datasets with data being simultaneous 
captured from both systems, which may allow a multi-modal gait analysis. This synchronized capture has proven 
helpful in specific applications, such as music gesture analysis19 and sports science20. We propose, in this work, a 
multi-sensor gait dataset, which consists of inertial and optical motion data, and aims to provide basis for com-
parison and reasoning of human gait analysis using data from both systems.

The presented dataset comprises inertial and optical motion data from 25 participants free of lower-limb 
injuries, aged between 18 and 47 years. A smartphone and a custom microcontroller device with an IMU were 
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attached to one of the participant’s legs to capture accelerometer and gyroscope data, and 42 reflexive markers 
were taped over the whole body to record three-dimensional trajectories. The participants were instructed to walk 
on a straight-level walkway at their normal pace. The custom device uses a wireless protocol to communicate with 
the computer to which the optical system was connected. This setup enabled recording and synchronizing the 
trajectories (acquired by the optical system) and the inertial measurements (acquired by the dedicated device and 
the smartphone). Ten trials for each participant were recorded and pre-processed in each of two sessions, per-
formed on different days. This amounts to 500 trials of three-dimensional trajectories, 500 trials of accelerometer 
and gyroscope readings from the custom device, and 500 trials of accelerations from the smartphone.

In addition to contributing with a multi-sensor dataset which supports the comparison of gait parameters and 
properties of inertial and optical capture systems, the full-body marker set and the inertial sensors attached to the leg 
favor the study of gait characteristics specific for each system. This dataset also allows analyzing gait variations between 
participants and for each one (i.e., intra and inter-participants) by the captures in different days. This characteristic 
of the dataset fosters investigations about the effectiveness of gait recognition and user profiling using inertial data.

Methods
Participants.  Twenty-five participants (12 women, 12 men, and one undeclared gender, aged between 18 and 
45 years) participated in this study, which took place between December of 2019 and February of 2020. Neither of 
them reported injuries for both legs or medical conditions that would affect their gait or posture. The participants 
were either students of the School of Music at McGill University, members of CIRMMT, or authors of this work. 
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Fig. 1  The adopted marker set based in the model proposed by Dumas and Wojtusch and the Plug-in Gait 
model.
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Labels Description Landmarks for marker placement

top_right Marker on the top right of the 
band Located approximately on the top right of the smartphone

top_left Marker on the top left of the 
band Located approximately on the top left of the smartphone

top_imu Marker on the center of the 
band Located approximately on the top of the MCU’s box

head_imu Marker on the left half of the 
band Located approximately on the left side of the MCU’s box

power Marker on the right half of 
the band Located approximately on top of the powerbank used as power source to the MCU

finger Index finger Placed on the distal phalanx of the right/left index finger

head_FR Right front head Located approximately over the right temple

head_FL Left front head Located approximately over the left temple

head_BR Right back head Placed on the back of the head, roughly in a horizontal line of the right front head marker

head_BL Left left head Placed on the back of the head, roughly in a horizontal line of the left front head marker

shoulder_R Right shoulder Placed on the acromio-clavicular joint

shoulder_L Left shoulder Placed on the acromio-clavicular joint

c7 7th Cervical Vertebrae Spinous process of the 7th cervical vertebrae

clav Clavicule Jugular Notch where the clavicles meet the sternum

elbow_R Right elbow Lateral epicondyle approximating elbow joint axis

elbow_L Left elbow Lateral epicondyle approximating elbow joint axis

wrist_BR Right wrist marker B Right wrist bar pinkie side

wrist_AR Right wrist marker A Right wrist bar thumb side

wrist_AL Left wrist marker A Left wrist bar thumb side

wrist_BL Left wrist marker B Left wrist bar pinkie side

finger_R Right finger Dorsum of the right hand just below the head of the second metacarpal

finger_L Left finger Dorsum of the left hand just below the head of the second metacarpal

ips_R Left PSIS Right posterior-superior iliac spine

ips_L Left PSIS Left posterior-superior iliac spine

ias_R Right ASIS Right anterior-superior iliac spine

ias_L Left ASIS Left anterior-superior iliac spine

ftc_R Right greater trochanter Most lateral prominence of the right greater trochanter

ftc_L Left greater trochanter Most lateral prominence of the left greater trochanter

fme_R Left medial femoral epicondyle Most medial prominence of the left medial femoral epicondyle

fme_L Right medial femoral 
epicondyle Most medial prominence of the right medial femoral epicondyle

tcc_R Right tibial tuberosity Most anterior border of the right tibial tuberosity

ttc_L Left tibial tuberosity Most anterior border of the left tibial tuberosity

fax_R Right fibula head Proximal tip of the head of the right fibula

fax_L Left fibula head Proximal tip of the head of the left fibula

fle_R Right lateral femoral 
epicondyle Most lateral prominence of the right lateral femoral epicondyle

fle_L Left lateral femoral epicondyle Most lateral prominence of the left lateral femoral epicondyle

heel_R Right heel Right posterior calcaneus

heel_L Left heel Left posterior calcaneus

fal_R Right lateral malleolus Lateral prominence of the right lateral tibial malleolus

fal_L Left lateral malleolus Lateral prominence of the left lateral tibial malleolus

tam_R Right medial malleolus Most medial prominence of the right medial tibial malleolus

tam_L Left medial malleolus Most medial prominence of the left medial tibial malleolus

fm5_R Right 5th metatarsal head Dorsal margin of the right fifth metatarsal head

fm5_L Left 5th metatarsal head Dorsal margin of the left fifth metatarsal head

fm2_R Right 2nd metatarsal head Dorsal aspect of the right second metatarsal head

fm2_L Left 2nd metatarsal head Dorsal aspect of the left second metatarsal head

fm1_R Right 1st metatarsal head Dorsal margin of the right first metatarsal head

fm1_L Left 1st metatarsal head Dorsal margin of the left first metatarsal head

Table 1.  Description and placement of each reflexive marker attached to the participants’ body.
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McGill University’s Research Ethics Board Office approved this study (REB File # 198–1019), and all participants 
provided informed consent.

Experimental design.  A proprietary optical system21, with 18 infra-red Oqus 400 and Oqus 700 cameras 
and sampled at 100 Hz, was adopted to track the 3D trajectories of 42 reflective markers over the participants’ 
body. The marker set was based on the lower-limb IORGait model proposed by Leardini et al.22, and a simplified 
upper-limb and trunk Plug-in Gait models23. This marker set is depicted in Fig. 1, and each reflexive marker, as 
well as its anatomical landmarks, are described in Table 1. Gait analysis usually focuses on the lower limb tra-
jectories; thus, the upper-limb and trunk simplified models are used only for skeleton reconstruction purposes. 
The marker placement was performed by anatomical palpation using the landmarks reported in Table 1 at the 
beginning of each session, and was not changed during the session trials. The proprietary motion capture software 
(Qualisys Track Manager - QTM)24 was employed to record and pre-process the 3D trajectories of the reflexive 
markers. All trajectory measurements were acquired in units of millimeters.

A Nexus 5 Android-based smartphone with an InvenSense MPU-6515 six-axis IMU was used to capture 
accelerometer data. An Android application was designed and developed to read accelerations at a sampling rate 
of 100 Hz and store them into a comma-separated values (CSV) file. The accelerometer measurements yielded 
by the Android platform are in units of m/s2.

An InvenSense MPU-925025 six-axis IMU mounted to an ESP8266 microcontroller (MCU) was used to cap-
ture accelerometer and gyroscope data. A firmware to the ESP8266 was developed using Arduino Core libraries, 
to read raw accelerometer and gyroscope data by I2C protocol at a sampling rate of 100 Hz. The acceleration 
measurements were read in g units and transformed into units of m/s2 using g = 9.81 m/s2. The gyroscope meas-
urements are in units of °/s. The MCU board was connected to the WiFi during its initialization. Then the 
inertial measurements were read from the MPU-9250, and sent using Open Sound Control (OSC) packages 
over UDP, following the defined rate. The smartphone and the MCU, screwed within a projected box, were 
attached to the leg using a band, as showed in Fig. 2. Five reflexive markers were taped in the band to calibrate it 
as a rigid body in the motion capture system, then at least three markers were kept during the walking trials to 
track it as a six-degree freedom object. These markers are also described in Table 1, at the fifth first lines. In the 
Fig. 3 is showed the motion capture software visualization of the coordinate reference calibrated for the optical 
motion capture system, smartphone and MCU attached to the leg being tracked as a rigid body. The MCU and 
smartphone were positioned to correspond to the motion capture reference in a way in which their coordinate 
systems are aligned.

An integration API was designed and developed to receive data from the MCU over UDP protocol and 
from the optical motion capture system by a real-time SDK provided by the Qualisys corporation26. The MCU’s 
inertial measurements and the 3D trajectories were acquired independently by this integration API but syn-
chronously. The API starts to listen to the OSC packages from the MCU when the optical system begins the data 
acquisition. Also, the API stops listening to the OSC packages when the optical system finishes the data acquisi-
tion. Once the integration API guarantees both acquisitions initiate and finish together, and both systems have 
the same sampling rate, hence their data streams are synchronized.

Data acquisition.  Two data acquisition sessions were performed for each participant, and each one lasted 
about one hour. The sessions were performed on different days. In each session, the following procedure was 
adopted:

	 1)	 Calibration of the systems: the optical motion capture system was calibrated by the Wand calibration 
method following the manufacture’s instructions24. During the calibration, the coordinate system was de-
fined as: x was the direction in which the participant walked; y was orthogonal to x; and z was orthogonal 
to both, pointing to the participants’ head. The MCU also was turned on at this moment, and its commu-
nication to the computer was verified. As well as, the Android application was started to read and store the 
accelerometer readings in a CSV file.

Fig. 2  The smartphone and MCU box mounted to a band to be attached to the leg.
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	 2)	 Participant preparation: the investigator showed the laboratory to the participant, explained the record-
ing procedure, and asked the participant to sign the consent form. Further, the participant changed their 
clothes to tight-fitting outfits and wore tight caps to cover their hair. The investigator attached the reflexive 
markers presented in Fig. 1 on the participants’ skin or the tight-fitting clothes, using a proper double-sid-
ed tape. Also, the smartphone and the MCU box placed in the band were attached to the participant’s leg.

	 3)	 Trials: The participant was asked to stand up at the beginning of the walkway for few seconds to guaran-
tee the proper function and communication of the systems. After these few seconds, the participant was 
asked to tap three times on the smartphone and MCU box (using their index finger, on which an additional 
marker was placed). Finally, the participant walked forth on a 5-m straight level walkway at their normal 
pace. At the end of the walkway, the participant stopped and tapped on the smartphone and MCU box 
again. The accelerations peaks generated by these taps allow a later verification of the data synchronization. 
Five trials of the participant walking using the band on their left leg were recorded, and five other sessions 
were recorded using the band placed on their right leg.

	 4)	 Session ending: After recording the ten trials, the band, and all the markers were removed from the par-
ticipants’ bodies. The Android application also was stopped. The obtained visualizations from the session 
recordings were shown, and the scheduling of the participant’s next session was confirmed.

Data processing.  The marker trajectories were labeled using the QTM software (QTM version 2018.1 (build 
4220), RT Protocol versions 1.0–1.18 supported), as well as their gap-filling procedure. The investigator manually 
selected the best fit of interpolation in the trajectory editor27 for each missing trajectory. Polynomial interpola-
tion was applied in gaps smaller than ten frames, and relational interpolation, which is based on the movement 
of surrounding markers, was adopted for more complex cases (e.g., occlusions caused by the alignment of both 
legs during mid-stance and mid-swing phases). After that, the trajectories were smoothed, when necessary, using 
QTM software tool27 by selecting a range of the trajectories and employing the more appropriated filter. This 
filter was selected and applied using the QTM trajectory editor. Local spikes were identified using an acceleration 
threshold of 10 m/s2. Only these spikes were locally smoothed using the moving average filter of QTM trajectory 
editor. This approach was used to smooth local spikes without affecting the movements. The beginning and end 
of trials containing expressive high-frequency noise were smoothed using a Butterworth low pass filter with a 
5 Hz cut-off frequency. This filter was applied only on the non-walking data, that corresponds to the first and final 
seconds of the trials in which the participants where preparing to start walking, as detailed in the Subsection Data 
acquisition. After that, these filled and smoothed trajectories were exported to the c3d (https://www.c3d.org) and 
Matlab file formats. These trajectories were then imported and processed using MoCap Toolbox28 under Matlab29. 

Fig. 3  Coordinate reference of the motion capture system, and the smartphone and MCU attached to the leg 
being tracked as a rigid body.
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The exported trajectories were structured as MoCap data from MoCap Toolbox, and processed to extract the tem-
poral section containing only walking data, i.e., removing the beginning and end of the trials. The second-order 
time derivatives (i.e. accelerations) from these walking data were estimated using the MoCap Toolbox, being also 
structured as MoCap data. The raw inertial measurements recorded by the MCU and smartphone were exported 
into CSV files, including the full trials, i.e., the beginning, walking data, and end of the trials. Additionally, the 
corresponding walking sections were extracted from these inertial data and exported to a CSV file. The walk-
ing sections obtained from the trajectories, MCU’s inertial measurements, and smartphone accelerations were 
assured to present temporal alignment.

Data Records
All data are available from figshare30. They are organized in two folders: raw_data containing the complete trials; 
and processed_data storing the walking sections extracted from the raw data by removing the beginning and 
end of the trials. In both folders, the participants’ trial files are organized in sub folders associated to each par-
ticipant identification: userID, which IDs are from 01 to 30, not necessarily consecutive. A total of 20 trials have 
been recorded of each participant, 10 in day1 and 10 in day2.

Raw data.  This folder stores the complete trials, including the beginning and end of them. These trials con-
sists in 3D trajectories exported from the QTM software into c3d files, and MCU’s inertial readings stored in 
CSV files. The c3d files are referenced as capture_userID_dayD_TT_qtm.c3d, and CSV files as capture_use-
rID_dayD_TT_imu.csv, in which:

•	 userID is the participant identification, as explained before;
•	 dayD refers to the first or second day of the participant trials, day1 or day2;
•	 TT is the trial number, i.e. 0001 to 0010, for each dayD.

The description of the c3d labels are presented in Table 1. All trajectories have the dimension n×3 (n is the 
number of frames recorded), and the number format is real. Information about the columns of CSV files are 
presented in Table 2. The corresponding frames to the inertial measurements are indicated in the first column of 
CSV files. In some cases, the frame counting of the MCU’s inertial measurements does not start in one, but they 
are surely synchronized to the marker trajectories’ frames.

Processed data.  This folder stores the walking sections obtained from the complete trials, removing the 
beginning and end of them. The walking sections of 3D trajectories were stored in Matlab files whereas the cor-
responding sections of inertial readings from the MCU and smartphone were stored in CSV files. The Matlab 
files are referenced as capture_userID_dayD_TT_qtm_walk.mat, and CSV files as capture_userID_dayD_TT_
imu_walk.csv and capture_userID_dayD_TT_nexus_walk.csv, in which:

•	 userID is the participant identification, as explained before;
•	 dayD refers to the first or second day of the participant trials, day1 or day2;
•	 TT is the trial number, i.e. 0001 to 0010, for each dayD.

First, the c3d files containing the markers trajectories were read over Matlab, and their data were stored in a 
structure array from MoCap Toolbox named MoCap data. The scheme and fields of this structure are described 
in Table 4. Format and set values of the fields are also presented. Some fields are composed by Structures, which 
are described on the columns to the right. Those fields kept as default values of Mocap data Structure are pre-
sented as empty or zero-valued in this table. Through the functions provided by Mocap Toolbox, walking sec-
tions were extracted by analysing the trajectories on x-axis of feet markers, medial and lateral malleolus of both 
sides (details in Table 1), to find the frame in which the participant displacement begins and ends. These frame 
numbers are stored in the field frame_init and frame_end of the Structure other of Mocap data.

Once the MCU’s inertial readings were synchronized to the trajectories by the corresponding frame num-
bers, these yielded beginning and ending frames were also used to section the MCU measurements. The col-
umns and scheme of CSV files which store the walking sections extracted from MCU inertial data are the same 
of the presented in Table 1. The first value of column named frame presents the same amount of frame_init, and 
the last value presents the same amount of frame_end from the MoCap data Structure.

Columns Description Format

Frame Frame number to correspond to the marker trajectories' frames Integer

Acc x x-axis of accelerometer reading in the referenced frame number Real (in units of m/s2)

Acc y y-axis of accelerometer reading in the referenced frame number Real (in units of m/s2)

Acc z z-axis of accelerometer reading in the referenced frame number Real (in units of m/s2)

Gyro x x-axis of gyroscope reading in the referenced frame number Real (in units of °/s)

Gyro y y-axis of gyroscope reading in the referenced frame number Real (in units of °/s)

Gyro z z-axis of gyroscope reading in the referenced frame number Real (in units of °/s)

Table 2.  Description of the columns of the CSV files generated by the MCU’s inertial measurements during the 
participants’ trials.
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Aiming to facilitate comparison analyses between MCU’s inertial readings and markers’ data, second-order 
time derivatives (i.e., accelerations) were estimated from marker’s trajectories of walking sections. These data are 
also stored in MoCap data structures in Matlab files following the same nomenclature: capture_userID_dayD_
TT_qtm_acc_walk.mat. The fields and values of this structure which stores the estimated accelerations are 
describe in Table 5. The schema, fields and format are basically the same of the trajectories’s MoCap data struc-
ture. However, the values in field data are the estimated accelerations of the corresponding trajectories (in units 
of mm/s2), and the value 2 of field timederOrder indicates that these data are the second-order time derivatives.

Accelerations from the smartphone were not capture synchronously to the marker trajectories, and only 
one CSV file stored all the accelerometer measurements of the 10 trials performed by a participant in each 
day. This CSV file was split into walking sections by correlation analysis between it and the walking sections 
of MCU accelerations, which were synchronized to the trajectories. Thus, these extracted walking sections 
from the smartphone accelerations do not contain the information about frame numbers although these were 
motion-aligned to the MCU’s accelerometer readings. The columns of the CSV files that store the walking sec-
tions of the smartphone accelerations are described in Table 3.

Technical Validation
The presented multi-sensor dataset consists of three sources: an optical motion capture system, an IMU 
mounted to an ESP8266 board and an Android-based smartphone. The same experienced investigator attached 
the markers and the smartphone and MCU within a box mounted to a band on the participant’s body for con-
sistency purposes.

Optical 185 motion capture system.  The calibration of the optical motion capture system was performed 
as described in the Data acquisition of the Section Methods, right before the beginning of each data acquisition 
session. In all achieved calibrations, the average residuals of each camera remained below 3 mm and similar 

Columns Description Format

Acc x x-axis of the accelerometer measurement Real (in units of m/s2)

Acc y y-axis of the accelerometer measurement Real (in units of m/s2)

Acc z z-axis of the accelerometer measurement Real (in units of m/s2)

Table 3.  Description of the columns of the CSV files generated by the smartphone accelerations during the 
participants’ trials.

Field name Format Value

type String ‘MoCap data'

filename String

nFrames Integer f

nCameras Integer 18

nMarkers Integer 47

freq Integer 100

nAnalog Integer 0

anaFreq Integer 0

timederOrder Integer 0

markerName String 47 × 1 String

data Real f × 141 Real (in units of mm)

analogdata Real

other Structure

descr String

timeStamp String

dataIncluded ‘3D'

RigidBodies Structure

Bodies 1

Name ‘imu_nexus_box'

Positions 1 × 3 × f Real (in units of mm)

Rotations 1 × 9 × f Real (rotation matrices)

RPYs 1 × 3 × f Real (in units of degrees–roll, pitch and 
yaw)

Residual 1 × 1 × f Real (in units of mm)

frame_init Integer

frame_end Integer

Table 4.  Description of the scheme, fields, their format and set values on Mocap data structure. *f is the 
number of frames of the walking section. All fields’ names are in bold. The ones which format is Structure, their 
fields are detailed on the rightmost columns. The empty or zero-valued fields were not filled in the Mocap data 
structure.
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among the 18 cameras. Also, the standard deviation between the actual wand length and the length perceived 
by the cameras was up to 1 mm in the adopted calibrations. The gaps in the 3D trajectories of the markers were 
filled (i.e., all the trajectories are 100% tracked), and the average residuals of 3D measured points fell below 4 mm.

MCU.  The firmware was implemented using Arduino Core libraries without adopting IMU libraries to avoid 
potentially applying of library default filters to the inertial measurements. Commonly, a scale range between ±2 g 
and ±8 g is adopted to the accelerometer in the gait literature31. The scale range of ±2 g is enough to measure the 
maximums instantaneous accelerations of normal walking (bellow to 1 g), and can capture more gait details (a 
scale range of ±2 g corresponds to 16384 LSB/g according to the MPU-9250 specification25). The scale range of 
±250 was adopted to the gyroscope because it also presents the higher sensitivity scale factor (131 LSB/(°/s)). 
Thus, the firmware reads the registers’ position of the MPU-9250 accelerometer and gyroscope, then calculates 
the measurements according to each sensor’ sensitivity.

Smartphone.  The developed Android application uses the sensor routines provided by the platform32 and 
the Android Open Source Project (AOSP)33. The same scale range of ±2 g used to the MPU-9250 accelerometer 
was set to the MPU-6515 one using the Android Sensor API. This scale also corresponds to a specificity of 16384 
LSB/g for the MPU-6515. The Android API reads these accelerations from the IMU and calculates them in units 
of m/s2, including the gravity.

Data synchronization.  We performed a quantification of the latency communication stages of the adopted 
setup consisting of Qualisys adopted optical motion capture system and a micro-controlled device communicat-
ing over UDP, in the same capture laboratory. We conducted event-to-end tests on the critical components of this 
setup to determine the synchronization suitability. This investigation showed suitability in the synchronization 
because the near individual average latencies of around 25 ms for both systems34.

Usage Notes
The c3d files can be read by several free and open source tools which provide support to c3d files, such as 
EZC3D35 and Motion Kinematic & Kinetic Analyzer (MOKKA)36. The Matlab files store the structure MoCap 
data from MoCap Toolbox28, and can be manipulated using the functions provided by this Toolbox. It presents 
several routines to visualize, perform kinematics and kinetics analysis and apply projections on the data. This 
Toolbox supports any kind of marker set. The CSV format files can be read using any text or spreadsheet editor, 

Field name Format Value

type String ‘MoCap data’

filename String

nFrames Integer f

nCameras Integer 18

nMarkers Integer 47

freq Integer 100

nAnalog Integer 0

anaFreq Integer 0

timederOrder Integer 2

markerName String 47 × 1 String

data Real f × 141 Real (in units of mm/s2)

analogdata Real

other Structure

descr String

timeStamp String

dataIncluded ‘3D'

RigidBodies Structure

Bodies 1

Name ‘imu_nexus_box'

Positions 1 × 3 × f Real (in units of mm)

Rotations 1 × 9 × f Real (rotation matrices)

RPYs 1 × 3 × f Real (in units of degrees–roll, pitch and 
yaw)

Residual 1 × 1 × f Real (in units of mm)

frame_init Integer

frame_end Integer

Table 5.  Description of the scheme, fields, their format and set values on Mocap data structure generated by the 
estimation of second-order time derivatives (i.e., accelerations) from the trajectories. *f is the number of frames 
of the walking section. All fields’ names are in bold. The ones which format is Structure, their fields are detailed 
on the rightmost columns. The empty or zero-valued fields were not filled in the Mocap data structure.
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as well as by common functions over Matlab (https://www.mathworks.com/help/matlab/ref/readtimetable.html) 
or Python (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html).

Code availability
The developed Matlab and Python codes to process the data are freely available on the first author’s github 
repository (https://github.com/geisekss/motion_capture_analysis). The MoCap Toolbox is freely available and 
extensively documented on the University of Jyväskylä website (https://www.jyu.fi/hytk/fi/laitokset/mutku/en/
research/materials/mocaptoolbox).
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