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High-resolution Digital Surface 
Model of the 2021 eruption deposit 
of Cumbre Vieja volcano, La Palma, 
Spain
Riccardo Civico   1 ✉, Tullio Ricci   1, Piergiorgio Scarlato   1, Jacopo Taddeucci   1, 
Daniele Andronico   2, Elisabetta Del Bello   1, Luca D’Auria   3,4, Pedro A. Hernández3,4 & 
Nemesio M. Pérez3,4

Identifying accurate topographic variations associated with volcanic eruptions plays a key role in 
obtaining information on eruptive parameters, volcano structure, input data for volcano processes 
modelling, and civil protection and recovery actions. The 2021 eruption of Cumbre Vieja volcano is 
the largest eruptive event in the recorded history for La Palma Island. Over the course of almost 3 
months, the volcano produced profound morphological changes in the landscape affecting both the 
natural and the anthropic environment over an area of tens of km2. We present the results of a UAS 
(Unoccupied Aircraft System) survey consisting of >12,000 photographs coupled with Structure-
from-Motion photogrammetry that allowed us to produce a very-high-resolution (0.2 m/pixel) 
Digital Surface Model (DSM). We characterised the surface topography of the newly formed volcanic 
landforms and produced an elevation difference map by differencing our survey and a pre-event surface, 
identifying morphological changes in detail. The present DSM, the first one with such a high resolution 
to our knowledge, represents a relevant contribution to both the scientific community and the 
local authorities.

Background & Summary
The morphology of active volcanoes is dynamically shaped by eruptive activity and erosional processes acting 
at different timescales. Consequently, a precise digital elevation model is fundamental for mapping volcanic 
hazards, modelling volcanic processes, and complementing further analysis. Furthermore, in urbanised areas, 
detailed post-eruption topography is important for land recovery actions. Volcano morphologies can be quan-
tified using different techniques1–9. Recently, the increased capability of UASs and their applications for aerial 
observation10,11, together with the parallel development of Structure-from-Motion (SfM) process12, brought 
important and valuable advantages compared to the classical ground-based, satellite, and crewed aircraft sur-
veys. Nowadays, UAS-based photogrammetry is routinely applied on volcanoes to obtain very-high-resolution 
DSMs13–16.

Cumbre Vieja is the active volcanic rift on La Palma and has seen the largest number of eruptions of the 
Canary archipelago in historic times17, and its 2021 eruption was the largest eruptive event in recorded his-
tory for La Palma. The previous eruption occurred in the southern part of the island between September and 
November 1971. The 2021 eruption was preceded by an unrest phase characterised by increased ground defor-
mation starting from 200918, increased seismicity from 201719–22, and detection of geochemical anomalies from 
201023. A dramatic evolution of the seismicity began on 11 September 2021 with a seismic swarm characterised 
by an upward migration of the hypocentres reflecting the rising of magma towards the surface.

The volcanic eruption at Cumbre Vieja started on September 19, interrupting its 50-years-long period of 
quiescence, and lasted until December 13 (85 days and 8 hours24). During this period, the volcanic activity 
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was distributed along a fissure where a multiple-vents volcanic edifice formed (called “Volcán de Tajogaite’’). 
The explosive activity was characterised by alternating strombolian explosions and lava fountaining episodes, 
accompanied by abundant lava effusion. All such phenomena produced profound morphological changes in 
the landscape and severely affected settlements and industry. A total of about 12 km2 of territory, more than 
1,600 buildings and 200 hectares of banana plantations (the island’s main economic resource after tourism), and 
important infrastructures (roads, powerlines, waterlines, etc.) were buried and destroyed by lava flows in their 
6-km-long-path to the ocean. Here they expanded into two lava deltas, forming new land. In addition, the tephra 
fallout further affected the whole island and, to a smaller extent, the nearby islands of El Hierro, La Gomera and 
Tenerife.

Here, we present the results of a UAS survey carried out between 24 and 28 January 2022 using a DJI Phantom 
4 RTK (real-time kinematic). The aerial images were georeferenced using an onboard RTK receiver capable of 
cm-level positioning accuracy. The dataset was then processed using Structure-from-Motion (SfM) photogram-
metry and 40 Ground Control Points (GCPs) acquired between 23 and 27 January using the Differential Global 
Navigation Satellite System (DGNSS) positioning. This allowed us to achieve horizontal and vertical centimetre 
accuracy and to produce a very-high-resolution (0.2 m/pixel) Digital Surface Model (DSM) and orthophotomo-
saic (0.1 m/pixel), covering an area of about 17 km2.

Topographic change detection was obtained by differencing our survey and a pre-event (2015) 2m-pixel 
DTM25, thus identifying elevation changes at decimetre level precision. We characterised the whole topography 
of the new volcanic edifice and related lava field to detect elevation, areal, and volume variations.

Summary of the main findings:

•	 Subaerial deposit of lava flows and proximal fallout: volume 217.4 ± 6.6 Mm3 (voids in the lava field and sub-
merged portion of the two deltas are not considered), subaerial deposition rate 29.5 m3/s. In a previous survey 
carried out on 27/9, 35.8 ± 3.0 Mm3 and 59.2 m3/s were recorded26. Moreover, considering the volume differ-
ence between the 27/09 survey26 and the post-event survey, the resulting subaerial deposition rate is 27.2 m3/s.

•	 Volcanic edifice: volume 36.5 ± 0.3 Mm3 (8.9 ± 0.2 Mm3 on 27/926); surface 0.6 km2; major and minor axes 
of the cone, calculated along the main eruptive fracture, approximately 770 (N 140°) and 660 m, respectively; 
maximum elevation difference 187 m; maximum height 1071.2 m a.s.l.

•	 Subaerial lava flows: volume 177.6 ± 5.8 Mm3 (including fallout deposit on lava flows); surface 11.8 km2 
(deltas 0.48 km2); maximum and average thickness 65 and 15.2 m, respectively; effusion rate 24.1 m3/s (sub-
merged volume of lava deltas is not considered).

The present DSM represents a relevant contribution to both the scientific community and the authorities in 
charge of the restoration activities management.

Methods
UAS survey and DSM generation.  We conducted a photographic survey campaign (Fig. 1 and Table 1) 
between 24 and 28 January 2022, collecting multiple sets of UAS-based high-resolution imagery. We acquired 
over 12000 aerial pictures using a DJI Phantom 4 RTK UAS with a 1” CMOS 20MP and a field of view (FOV) 84° 
and 8,8 mm/24 mm (35 mm equivalent) focal length lens.

A total of 10 multi-flight missions were conducted for the survey, for a cumulative flight path of over 800 km 
(Fig. 1). All flights except two were nadir image data collection missions, conducted at an approximate altitude 
of 200 metres above ground level (a.g.l.), resulting in a nominal ground-sampling-distance (GSD) of 5.4 cen-
timetres per-pixel. The 24 and 28 January 2022 flights carried out in the area of the cone were both nadir and 
oblique image data collection missions conducted at a variable altitude of 50–200 metres a.g.l. For the nadir 
flights, we flew the UAS using predefined missions. Flight planning was designed with 80% forward and side 
overlap at ground level. Before each flight, we adjusted the camera’s digital ISO, aperture, and shutter speed 
according to ambient light conditions.

With respect to other terrains, several additional difficulties characterised the aerial photographic survey 
campaign at Cumbre Vieja. The cone area has a highly irregular topography, characterised by notched cra-
ters and slopes. In addition, viewing conditions at Cumbre Vieja were still partially limited by the presence of 
vapour/gas plumes and, at times, by atmospheric haze and clouds.

The data on camera position were collected using GNSS-RTK information embedded in the image metadata 
by means of a DJI D-RTK 2 Mobile Station. In addition, 40 ground control points (GCPs) were distributed along 
the outer boundary of the lava flow and in the cone area to establish survey control (Fig. 1). In detail, 33 points 
were used as proper GCPs (i.e., used to georeference and scale the photogrammetric model and for camera 
calibration purposes), whereas 7 points were used as checkpoints (i.e., not directly used in the photogrammetric 
modelling process but available to check the accuracy of the generated model). GCPs were measured with a 
GNSS survey using a DJI D-RTK 2 Mobile Station in real-time kinematic (RTK) mode, with differential correc-
tions sent in real-time by the Instituto Geográfico Nacional differential positioning service available at https://
www.ign.es/web/ign/portal/gds-gnss-tiempo-real. The surveyed GCPs have an accuracy of 1–2 cm in horizontal 
coordinates and 2–4 cm in elevation.

Following image collection, we culled the photoset, removing dark and/or blurry photos. We then pro-
cessed 9970 georeferenced images using the Agisoft Metashape® software package (version 1.6.3) based on the 
Structure-from-Motion and multi-view stereo photogrammetry algorithm (SfM–MVS)12. The workflow of our 
photogrammetric analysis included the following: (1) image masking for areas with strong degassing and/or 
unnecessary background; (2) camera triangulation with image position and orientation and generation of sparse 
point cloud; (3) filtering of the sparse point cloud to remove points with bad geometry, large pixel matching 
errors, and large pixel residual errors; (4) generation of the dense point cloud; (5) cleaning of the dense point 
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cloud by using the “filter by confidence” tool and by manually removing anomalous floating points caused by the 
presence of the volcanic plume; and (6) generation of DSMs and orthomosaics. We set the processing param-
eters in Agisoft Metashape® to “high” for photo alignment accuracy and “high” quality and “aggressive” depth 
filtering for dense point cloud generation. For the details of the photogrammetric survey data and elaboration 
refer to Table 1.

We generated a 0.2 m/pixel DSM (Fig. 2) and a 0.1 m/pixel orthophotomosaic, covering an area of about 17 
km2. Unlike a digital elevation model (DEM), the DSM represents the elevation of the highest object within the 
bounds of a cell. Vegetation, buildings, and other objects have not been removed from the data.

The dataset was processed and analysed in the REGCAN95/UTM zone 28 N [EPSG:4083] Coordinate 
System. The transformation from ellipsoidal to orthometric heights has been performed using the Geoid model 
EGM08-REDNAP (https://datos-geodesia.ign.es/geoide/).

Elevation change detection.  Elevation change detection (Fig. 3) was obtained by differencing our surveys 
and a pre-event 2m-pixel DTM acquired in 2015 for the Spanish PNOA-LiDAR project25. The assumption is that 
between the acquisition of the pre-event DTM (2015) and the beginning of the volcanic activity (19 September 
2021), no significant height variation took place in the study area, so that elevation differences obtained in our 
analysis are mainly linked to the volcanic eruption. To subtract the post- and pre-event surveys, we resampled 
our DSM to 2 m/pixel resolution (same resolution as the 2015 DTM). Considering the vertical Root Mean Square 

Fig. 1  Map identifying the location of each image acquired during the survey (grey dots) and the ground 
control points used to establish survey control (orange dots). Extent of the lava field (in red) as of 2021-12-18 - 
[EMSR546] - from Copernicus Emergency Management Service (© 2021 European Union28). The inset at the 
top right of the figure shows the location of La Palma island and the survey area.

Number of images Camera stations
Flying altitude 
(m a.g.l.)

Ground resolution 
(cm/pixel) Tie points Projections

10,437 9,970 187 4.46 2,751,497 17,509,917

Reprojection error 
(pixel) Dense cloud points DSM resolution 

(cm/pixel) Point density (pts/m2) DSM area (km2)

0.642 2,746,820,588 8.91 126 17.16

Table 1.  Details of the photogrammetric survey data and elaboration.
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Error (RMSE) of 0.26 m for our model (before resampling), we set the threshold elevation change (minimum level 
of detection or minimum elevation change that can confidently be considered a true change) to 0.5 m. It is worth 
mentioning that the pre-event reference surface is a DTM while our product is a DSM. Such difference must be 
considered when subtracting both layers as height contributions from vegetation and buildings are still present 
on the DSM. However, the contribution of such areas is negligible as they are not present above the lava flows and 
in the cone area.

Data Records
The data record consists of a high-resolution (0.2 m/pixel) photogrammetric Digital Surface Model processed 
from survey campaign photographs using Agisoft Metashape®. Details of the photogrammetric survey data 
and elaboration are summarised in Table 1. The Digital Surface Model was processed and analysed in the 
REGCAN95/UTM zone 28 N [EPSG:4083] Coordinate System. The dataset is stored in GeoTIFF file format in 
the OpenTopography repository27 and is shared under the CC BY 4.0 use license.

Technical Validation
Errors in our photogrammetrically-generated DSM result from a complex interplay of geometric and physical 
parameters, such as image scale, GSD, camera network geometry (nadiral, cross, oblique strips), percentages 
of image overlap (forward and sidelap), camera shutter speed and exposure settings, lens specifications, image 
sharpness, camera calibrations, flight design (e.g., flight-line geometry and altitude), surface texture and albedo, 
lighting conditions, accuracy and distribution of GCPs, disturbances from volcanic activity, as well as on pro-
cessing: SfM, BBA, image matching, point cloud noise, and outlier removal algorithms.

We therefore applied several strategies to mitigate errors, among which the most important were the fol-
lowing: (1) the use of fast (>1/400 s) camera shutter speeds (i.e., exposure times) whenever possible, (2) the 
variation of flight altitudes and camera orientation, (3) the application of best practices for processing in Agisoft 
Metashape, (e.g.12), and (4) the removal of sparse cloud points with large uncertainty via Metashape’s gradual 
selection tools.

The technical quality of the reconstructed DSM was assessed by using the survey report generated by Agisoft 
Metashape® and by comparing our DSM to a pre-event DTM25. According to the Agisoft Metashape® survey 
report the GCPs and check points error estimates are as follows: the total GCPs Root Mean Square Error (RMSE) 

Fig. 2  Digital Surface Model (DSM) of the 2021 eruption deposit of Cumbre Vieja volcano. (a) Multidirectional 
hillshade of the DSM. The inset at the top right of the figure shows the location of La Palma island and the 
survey area. The grey square in the eastern portion of the study area marks the extent of Fig. 2b,c; (b) detailed 
view of the cone on 27 September 202126 and (c) in January 2022, respectively.
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is 6.18 cm and the total check points RMSE is 14.59 cm (Table 2). The residual elevation difference with respect 
to a 2 m/pixel pre-event (2015) DTM25 extracted at 13 check points placed in the unchanged regions of our DSM 
was used as an additional indication of the vertical RMSE, which is 0.26 m. Our model is thus sufficiently accu-
rate for the scale of changes reported in this study.

Code availability
No custom code was used to generate or process the data described in the manuscript.
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