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FAIR and Interactive Data Graphics 
from a Scientific Knowledge Graph
Michael E. Deagen   1 ✉, Jamie P. McCusker2, Tolulomo Fateye3, Samuel Stouffer2, 
L. Cate Brinson3, Deborah L. McGuinness2 & Linda S. Schadler1

Graph databases capture richly linked domain knowledge by integrating heterogeneous data and 
metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics 
(bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set 
of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite 
specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars 
to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. 
Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding 
channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and 
published charts populate a browsable gallery of the database. We discuss design considerations that 
arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and 
Vega-Lite—demonstrated here in the domain of polymer nanocomposite materials science—offers an 
extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization 
within a knowledge graph framework.

Introduction
From early cartography to modern digital interfaces, data visualization—the display of abstract information 
in graphical form—has helped humans navigate unknown and complex spaces with a history of conceptual 
advancements alongside innovations in printing and reproduction1. Today, the widespread availability of digi-
tized information, and the ability to process and display it with computers and web browsers, has brought inter-
action to the fore as a facilitator of higher-level cognitive processing on multidimensional datasets2. Interactive 
data visualization supports human reasoning and understanding through iterative exploration and investiga-
tion3. Given the deluge of data in many scientific domains, human-interpretable means for managing, trouble-
shooting, and disseminating information—particularly those that preserve machine-interpretability—remain 
essential in scientific research. This article illustrates such an approach, on a knowledge graph database, through 
the combination of a robust visualization grammar (Vega-Lite) and the query language for the semantic web 
(SPARQL) (Fig. 1).

In response to challenges around the reuse of scholarly data4, scientific communities have mobilized around 
a set of four guiding principles for data management: findable, accessible, interoperable, and reusable5. Known 
by the acronym FAIR, these principles aim to preserve the value of digital assets through machine-interpretable 
metadata standards and schema. In the materials science domain, the FAIR guiding principles have been 
embraced by numerous data resources and repositories, ushering the development of modern data infrastruc-
tures for materials research6–10. The backbone and nervous system for these and other scientific data infrastruc-
tures build upon the foundation of the World Wide Web.

Since the early vision of the semantic web to make data on the Internet machine-interpretable11, the World 
Wide Web has evolved from a repository of linked documents to an omnipresent medium for information 
exchange. The resource description framework (RDF), a metadata model for the semantic web, captures knowl-
edge through expressions known as triples, each comprising two nodes and a directional edge, that form a 
directed graph-based data representation inside a database, or triple store. SPARQL—a query language for 
RDF—uses graph-based expressions to retrieve sets of matches, or bindings, of variables in a graph pattern to 
content in a triple store. In the case of SELECT queries in SPARQL, sets of bindings take on a tabular form. The 
RDF model achieves interoperability through shared ontologies, or structured vocabularies that form the basis 

1Department of Mechanical Engineering, University of Vermont, Burlington, VT, USA. 2Tetherless World 
Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA. 3Department of Mechanical Engineering and 
Materials Science, Duke University, Durham, NC, USA. ✉e-mail: mdeagen@mit.edu

Article

OPEN

https://doi.org/10.1038/s41597-022-01352-z
http://orcid.org/0000-0002-8034-0667
mailto:mdeagen@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-022-01352-z&domain=pdf


2Scientific Data |           (2022) 9:239  | https://doi.org/10.1038/s41597-022-01352-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

for capturing and reasoning over domain knowledge. Graph databases, such as knowledge graphs12, can build on 
the infrastructure of the internet by using uniform resource identifiers (URIs) that follow the well-established 
hypertext transfer protocol (HTTP) to ensure global uniqueness. Contrary to digital object identifiers (DOIs), 
which represent digital resources, URIs can represent anything (physical objects, abstract concepts, etc.). 
However, similar to the way a DOI is accessible via redirection when “https://dx.doi.org/” is placed in front, 
URIs can serve representations in a process known as dereferencing, offering a way to capture information stored 
elsewhere on the Web. Despite challenges around the implementation of truly distributed knowledge representa-
tions13, this extensible data and metadata format shows promise as a FAIR mechanism for storing and linking 
scientific data.

Several tools and platforms have been developed for exploring and visualizing RDF and linked data14–21, 
but a common thread in these systems is the use of a typology to define charts (e.g., bar charts, pie charts, scat-
ter plots). Extensive research in data visualization has illuminated the deeper structure underlying most data 
graphics wherein graphical primitives known as data marks (e.g., point, line, area, text) have properties that can 
be encoded through channels (e.g., position, color, size, opacity) by mapping data attributes along discrete or 
continuous scales22,23. This grammar of graphics forms the basis for highly-cited and widely-adopted visualiza-
tion libraries24,25. Reactive Vega26, and later Vega-Lite27, extended this grammar to interaction. In the Vega-Lite 
grammar for interactive graphics, a chart specification (written in JSON syntax) defines the visual representation 
of a tabular dataset (e.g., marks, encodings, selection parameters), while lower-level details (e.g., color schemes, 
legends, axis scales, event handlers) compile with default values unless overridden in the specification. The result 
is a concise, declarative specification of an interactive view of a dataset, built and customized incrementally.

Interactive methods for querying databases, such as Polaris and later VizQL (Tableau)28,29, offer platforms for 
authoring interactive charts and dashboards through drag-and-drop interfaces. These systems have provided 
significant value to business analytics with their ease of use and suitability for many common tasks, but they are 
restrictive in terms of their proprietary nature, limited expressivity, and lack of support for graph-based data 
sources. To counter these drawbacks and provide a means for FAIR scientific data visualization, we focus our 
efforts on use of available open-source tools, a high degree of expressivity, and compatibility with knowledge 
graphs.

In this article, we describe a paradigm wherein charts defined through metadata provide a mechanism for 
exploring and documenting the contents of a knowledge graph of materials science data. Building on the concept 
of a visualization as a function of a data storage medium and a user specification30, we model a chart as a com-
bination of query (SPARQL) and chart specification (Vega-Lite) stored in the knowledge graph and processed 
on demand. This approach for bespoke, interactive data graphics is made possible by the high-level, declarative 
nature of SPARQL and Vega-Lite. Storing charts as metadata enables them to display the most up-to-date infor-
mation in the knowledge graph, and charts themselves can be queried and analyzed. We find that dereferenceable 
URIs—HTTP identifiers that serve human-readable representations when opened in a web browser—embody 
the complementarity of SPARQL and Vega-Lite. Examples presented here draw from a knowledge graph in the 
materials science domain, but the paradigm applies to other domains as a mechanism for FAIR scientific data 
visualization and interaction.

Results
By exploring the notion of charts as metadata, we find that the variety of bespoke data graphics offers a useful, 
interoperable platform for exploratory visualization of a knowledge graph.

Sandbox for exploratory visualization, infographics, and meta-analyses.  To address the trade-off 
between usability and expressivity, we opt for maximal expressivity in terms of content creation, taking usability 
into account by making all examples open-source and readily available for re-use. For example, domain experts 

Fig. 1  Extending FAIR to data graphics. In the paradigm of charts as metadata, a chart object is modeled 
as a set of metadata that includes semantic context (SPARQL query) and visual context (Vega-Lite chart 
specification). With the SPARQL query language and the Vega-Lite grammar of interactive graphics, one can 
specify interactive charts (bar charts, scatter plots, heat maps, etc.) that remain synchronized to the content of 
the knowledge graph and whose data marks can link to dereferenceable URIs (DOIs, images, other charts, etc.) 
through hyperlink encoding channels. Combined, these tools offer a human- and machine-interpretable way to 
explore and share scientific data.
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without fluency in query or visualization languages (e.g., SPARQL, Vega-Lite) can interact with data in the knowl-
edge graph by browsing a gallery of interactive charts, and those interested in creating their own charts have the 
code behind each chart as a precursor to adapt or modify for their own purposes. In this way, the collection of 
example queries and chart specifications provides a form of reusable documentation for accessing and viewing 
data in the knowledge graph.

To demonstrate the concept of charts as metadata, we extended the visualization capabilities of 
MaterialsMine (materialsmine.org) to accommodate the saving and processing of these bespoke data graphics. 
The knowledge graph at MaterialsMine, previously NanoMine8,31, contains curated data from research arti-
cles on polymer-matrix nanocomposite materials in the scholarly literature along with metadata describing the 
materials, processing, characterization, and bibliographic information from those articles. Structured as linked 
data conforming to semantic web ontologies and vocabularies32, data and metadata are made accessible through 
a SPARQL endpoint on the web.

Tailored interactive charts containing data from the knowledge graph range in purpose and complexity. 
Depending on the SPARQL query, datasets vary from individual sample data linked to a research article to 
meta-analyses of all articles curated into the knowledge graph (Fig. 1). All examples shown here use some com-
bination of layered and concatenated views combined with selections in Vega-Lite to provide explorable, inter-
active views of data. Following the mantra of overview first, zoom and filter, then details-on-demand33, these 
data graphics use elements of interactivity to display aspects of a dataset that exceed the capability of a static 
representation. Common modes of interaction include tooltips, conditional display on hover interactions or 
selections, cross-filtered views, and pan and zoom.

Offering the full expressivity of SPARQL and Vega-Lite for specifying charts resulted in a number of inter-
esting and often unanticipated interactive views of data in the knowledge graph. For example, rule marks with 
conditional opacity enable the overlaying of derived mechanical properties (tensile modulus, tensile strength, 
elongation at break) over representative curves showing raw tensile test data (Fig. 2a). Using Vega-Lite trans-
forms and layered rule marks permits the custom scaling and plotting of linearized Weibull distributions for 
real-time calculation of dielectric breakdown strength (Fig. 2b). A query of articles and the material systems 
studied within them offers an interactive view of trends in polymer nanocomposite materials research (Fig. 2c). 
Another meta-analysis demonstrates the results of entity resolution with the ChemProps API (Fig. 2d)34. 
Concatenated sub-views and text formatting parameters result in a stylized infographic demonstrating some 
of the ways to enhance data exploration by adding interactive elements (Fig. 2e). In addition to concatenated 
sub-views, sequence generators and Vega-Lite transforms make possible an embedded explanation of dynamic 
mechanical analysis for viscoelastic material properties atop experimental data (Fig. 2f). These and over 150 
other examples currently populate the gallery of charts in the MaterialsMine knowledge graph.

The examples presented here by no means represent the only way to query and display these data. By making 
available the expressivity offered by SPARQL and Vega-Lite, we encourage experimentation and rich custom-
ization in the pursuit of effective means of data exploration for a variety of applications. Any individual data 
visualization will have finite applicability. However, the collection of such open-source visualizations enabled by 
this approach can accomplish a variety of tasks and illuminate remote corners of a knowledge graph.

Leveraging dereferenceable URIs in a knowledge graph.  To avoid naming collisions, knowledge 
graphs employ URIs to globally identify resources without ambiguity. Using well-established internet protocols 
(e.g., HTTP) helps to ensure global uniqueness among distributed systems on the semantic web. A helpful prac-
tice for documenting resources involves the owner of a domain having a representation delivered by a server (e.g., 
HTML page) when a URI is requested through internet protocols. URIs can exist solely as identifiers, but those 
with available representations on the web are known as dereferenceable URIs.

URIs can be returned in the results of a SPARQL query, but a column of URIs in a table may be less useful 
than an interactive visualization that allows a user to sort and refine the results of interest. Overview first, zoom 
and filter, then details-on-demand33. We identify two encoding channels in Vega-Lite that make the language 
well-suited to knowledge graphs: the url encoding channel for image marks (Fig. 3a), and the href (hyperlink 
reference) encoding channel for other data marks such as text (Fig. 3b) or point marks (Fig. 3c). First, images 
serve as useful visual representations in many scientific domains, and rendering them on-demand via derefer-
enceable URIs avoids the need to download or cache a full set of images. Second, the practice of hyperlinking 
to primary sources or representations leverages the notion of linked data by directing to additional information 
about resources outside the confines of a given chart.

Interactive data visualization offers myriad ways to explore a dataset, and we describe how knowledge graphs 
with dereferenceable URIs can expand the reach of these graphics to the entire Web through hyperlinks. By 
combining the strengths of knowledge graphs for storing knowledge and interactive visualizations for accessing 
knowledge, this approach provides a means for communicating data in a way that builds trust and makes data 
analysis more transparent, building on the idea that sharing the graphic should equate to sharing the data35.

Interoperability with other web platforms.  The semantic web facilitates data exchange in a distributed 
manner by building on the infrastructure of the internet and encouraging the use of common vocabularies and 
ontologies. One demonstration of interoperability enabled by SPARQL is the extension for federated querying. 
Federated queries aggregate data from multiple sources by running sub-queries across distributed SPARQL end-
points on the internet. Furthermore, the ability to send a query to a public SPARQL endpoint via HTTP GET 
request and receive machine-readable results (e.g., JSON) enables other web platforms to query and process data 
from a knowledge graph.

Here, we demonstrate a two-fold example of interoperability by showing an example chart from 
MaterialsMine, with federated querying of DBpedia36, all within a reactive computational notebook on 
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Observable (Fig. 4). Platforms such as Observable (https://observablehq.com), which natively supports 
Vega-Lite, can fetch a chart’s metadata, parse the query and chart specification, run the query for the chart’s data 
(in this case, at the same endpoint), then render those data as an interactive Vega-Lite chart. In this example, the 
query contains a SERVICE clause to the DBpedia SPARQL endpoint to return the English-text abstract for the 
material compound “Silicon dioxide” from Wikipedia, and the Vega-Lite specification displays this abstract as a 
text mark on the chart (Fig. 4, red dotted lines). At present, federated querying adds several seconds to the query 
runtime, therefore the development of such queries requires optimization.

Interoperability is arguably the most challenging of the FAIR principles to implement, and we have shown 
how a SPARQL-equipped knowledge graph can interoperate with other public SPARQL endpoints as well as 
display charts and their metadata on an external platform that supports Vega-Lite. In the Discussion section, we 

Fig. 2  Interactive views of sample data, meta-analyses, and stylized infographics. Charts shown here are specified 
by a SPARQL query (semantic context) as well as Vega-Lite specification (visual context). The snapshots of 
interactive data graphics shown here display (a) mechanical tensile testing data curated from Bandyopadhyay et 
al. (2005)48, transformed into a layered composite view; (b) a Weibull plot of dielectric testing data using custom 
y-axis scaling and the regression transform to estimate dielectric breakdown strength (DBS); (c) a meta-analysis 
of nanocomposite filler materials in curated research articles per year of publication, highlighted to show the 
trend for graphene; (d) a meta-analysis of entity-resolved compound names (computed by the ChemProps 
API34) versus curator-provided strings; (e) an infographic showing a dataset with increasingly interactive views; 
and (f) an explanatory graphic for viscoelastic data. These examples created for the materials science domain 
represent a small subset of the variety of datasets and visualizations made possible by using SPARQL queries 
and Vega-Lite specifications to capture interactive views of content from a knowledge graph database.

https://doi.org/10.1038/s41597-022-01352-z
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Fig. 3  Direct linking to representations of resources in the knowledge graph. These charts make use of 
dereferenceable URIs in the knowledge graph to display or link to resources. (a) Image marks with 
accompanying URL encoding channels are used to display curated sample images from Natarajan et al. (2013)49 
corresponding to the selected points on the adjacent scatter plot. (b) Text marks with a hyperlink encoding 
channel link open the URL of a journal article DOI when selected. (c) A scatter plot displays charts published 
to the knowledge graph, arranged by the character length of their Vega-Lite specification and description. Point 
marks with the hyperlink encoding channel link to a chart page when selected. This final chart is self-referential; 
the highlighted point mark represents the chart itself.
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present design considerations for queries and chart specifications that arise in this approach to FAIR scientific 
data visualization.

Decoupling (meta)data from graphical representation.  Data graphics assemble and contextualize 
information for scientists, similar to how metadata package and describe data for machines. By choosing to 
model a data graphic (e.g., interactive Vega-Lite chart) as a form of metadata itself, researchers can simultane-
ously capture human-interpretable and machine-interpretable representations of their research output. This FAIR 
approach to data visualization leverages Vega-Lite’s grammar of interactive graphics, which differs fundamentally 
from conventional tools (Excel, Plotly, Matlab, etc.). By describing an interactive representation of data as a JSON 
object, a Vega-Lite specification illuminates the inherent structure of most data graphics, as opposed to a chart 
typology that requires many preset chart types to achieve expressivity. Upon introducing the ability to encode 
URIs as hyperlinks in data marks, Vega-Lite becomes an ideal tool for combining with semantic web technologies. 
While a formal grammar of graphics ontology falls outside the scope of the present work, such an effort could 
build upon these demonstrations of the reciprocal benefits of SPARQL and Vega-Lite and include stakeholders 
from both the semantic web and data visualization communities.

To further illustrate the benefits of the combined approach of SPARQL and Vega-Lite, we can consider the 
substitution of either tool with traditional alternatives. In the case of SPARQL with a typology-based plotting 
tool, one loses expressivity in terms of building interactive data graphics and may obscure the visual meaning 
captured in the rendered graphic. The inverse case—an isolated tabular dataset with a Vega-Lite specification—
may lack sufficient metadata and semantic context necessary to interpret the raw data. With the combined 
approach, data and visual representations exist as metadata, with the added benefit that interactive charts can 
use hyperlink encoding channels to provide direct access to dereferenceable resources in the knowledge graph. 
Jointly, these tools embody FAIR scientific data visualization, and we elaborate further on the framing of specific 
FAIR guiding principles around these notions in the Methods section.

Discussion
In the paradigm of charts as metadata, the data instances that populate a chart are absent from the chart spec-
ification. This may seem counter-intuitive, but the resulting specification describes what data to retrieve (i.e., 
semantic context) and how to display it (i.e., visual context). As a result, these metadata-defined charts represent 
interactive lenses, each with a particular vantage view of the knowledge graph, that display the most up-to-date 
instances from the knowledge graph at the time of rendering. Many approaches to designing static visualizations 
no longer apply when visualizations become interactive and subject to changing data37. We organize these design 
considerations into three broad categories: portability, persistence, and performance.

Portability poses a key challenge for web-based charts and interactive charts in general. The wide adoption of 
a given approach or toolset hinges on its reliability and compatibility with a diverse set of platforms and devices. 
To serve the intended use as a means for analyzing or disseminating data, an interactive data graphic must retain 
its ability to respond to user input when embedded in some other format (e.g., offline document, presentation 
slide), or offer a pre-recorded animation displaying its contents. Two recent projects, Chameleon and Loom, 
have begun to tackle some of these challenges around portability of interactive data graphics38,39.

Persistence, or the ability to continue existing as a useful data graphic, largely depends on the stability 
of the underlying data representations and their ability to be interpreted in the future. In a Vega-Lite chart 

Fig. 4  Interoperability with other web platforms and FAIR data sources. The ability of public SPARQL endpoints 
to send queries and receive data through internet protocols enables interoperability within a query (e.g., 
federated querying from DBpedia36) as well as displaying and processing information from the knowledge 
graph using external web-based platforms, such as an Observable notebook (https://observablehq.com/@
mdeagen/figure-4-notebook).
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specification, one may specify the schema used as a form of version control against future software changes 
in Vega-Lite. On the data query side, if vocabulary URIs or the way data are modeled in the knowledge graph 
change, SPARQL queries may cease to function as originally intended. We experienced this challenge when 
converting terms in the MaterialsMine ontology from their prior namespace (http://nanomine.org/ns/) to a new 
namespace (http://materialsmine.org/ns/). Updates to charts typically only involved a one-line change in the 
SPARQL PREFIX header of the query, but the issue highlighted the effect of upstream changes involving URIs 
on downstream resources such as charts. To mitigate these issues, communities should invest requisite resources 
to ensure robust ontologies and stable SPARQL endpoints that provide reliable access to data and a consistent 
semantic representation.

Performance of these charts may involve technological or data limitations. Query runtimes and chart rendering 
are necessarily impacted by the quantity of data available in the knowledge graph and how much data can be stored 
in memory. Moreover, responsiveness of public SPARQL endpoints, particularly with respect to federated query-
ing, remains an ongoing challenge. For visualization and interaction design, accounting for future data involves 
considering how new data may impact scale extents, latency, or occlusion of data marks. Consideration of the 
scope of the data graphic becomes important, for example separating a large dataset into separate views that show 
a high-level view of the dataset with access to instances through interaction. Overview first, zoom and filter, then 
details-on-demand33. On a more technical note, rendering images in Vega-Lite requires the use of image URIs within 
the same domain or ensuring that images from external domains have the appropriate HTTP header enabling 
cross-origin resource sharing (CORS). Finally, scalability of a gallery of charts from a knowledge graph involves 
considerations of the ease with which domain experts can search and navigate the collection of charts available.

Relational and non-relational databases (e.g., SQL, NoSQL) provide limited account of the relationships 
between individual data objects, simplifying initial development of limited-scope data resources but hindering 
the later integration and interoperability with other data resources as these models and applications scale in 
complexity. Knowledge graph databases, on the other hand, use a graph data model upfront to capture these 
abstract relationships and semantics. Backend database performance still remains a concern when metadata 
employ a graph data model, but the use of shared ontologies mitigates the scaling issues around interoperability. 
When graph databases build upon the infrastructure of the World Wide Web and employ globally unique and 
dereferenceable identifiers (URIs), they lower the barriers for distributed data exchange and can benefit from a 
web-based interactive visualization grammar such as Vega-Lite.

Defining charts as metadata in a knowledge graph captures semantic context and visual context while pro-
viding interactive, human-interpretable documentation of the contents of a knowledge graph. These chart rep-
resentations may also be considered a form of “visualization data,” an emerging data format relevant to the 
application of artificial intelligence (AI) to visualization generation, enhancement, and analysis40. The comple-
mentarity of SPARQL and Vega-Lite make this approach to scientific data visualization well-aligned with the 
FAIR principles by preserving machine-interpretability of underlying data while simultaneously providing an 
interactive means for domain experts to explore the contents of a knowledge graph.

Methods
In this section we describe the metadata model for charts, show a minimal example of a functional chart, and 
describe how charts are created and managed.

Metadata for a chart.  Expressing data queries and chart specifications as text allows them to be stored as 
string literals in the knowledge graph. We assign each chart URI to the class sio:Chart from the Semanticscience 
Integrated Ontology41, along with metadata corresponding to the widely-adopted Dublin Core, Schema.org, and 
FOAF vocabularies. In addition to the SPARQL query (i.e., semantic context) and Vega-Lite specification (i.e., 
visual context), we include a title, description, and thumbnail depiction of each chart (Fig. 5). When published to 
the knowledge graph, provenance metadata (when a chart was created and by which logged-in user) are captured 
as extensions of a named graph using the nanopublication framework42.

Concise specification of chart metadata.  The raw data within a chart are not explicitly enumerated in its 
metadata but are instead captured implicitly via the SPARQL query. This method allows charts to accommodate 
data instances added to or updated within the knowledge graph at a future point in time. Here, we demonstrate a 
minimal (non-interactive) Vega-Lite chart that displays the count of research articles curated into the knowledge 
graph as a function of the year each article was published (Fig. 6). Combined, the query and chart specification 
require only 300 characters. Behind the scenes, the SPARQL engine processes the query to collect all available 
matches in the knowledge graph. The result of this query is a set of tabular data with two variable attributes (DOI, 
Year) which occupy nearly 10,000 characters if serialized as a single string. Tabular query results are passed to the 
Vega-Lite renderer, which processes the chart specification, performs an aggregation operation, formats the axes, 
and draws the data marks according to the specified encodings and default parameter values. As content is added 
to the knowledge graph, the tabular data returned by running the query will capture those new instances, and the 
Vega-Lite chart will reflect those data when compiled and rendered. Although the bar chart represents a minimal 
example, the figure shows how the sizes of the SPARQL query and Vega-Lite specification compare to other, more 
elaborate data graphics presented in this article.

Browsing and creating charts.  We use Whyis43, a Python Flask application for knowledge graphs, to 
upload and manage charts in the knowledge graph. All instances of sio:Chart currently populate a paginated gal-
lery featuring the thumbnail depiction, chart title, preview of the description, and link to the chart URI. By click-
ing on a chart, a user is directed to a chart instance view which queries the knowledge graph, displays the chart 
title and description, and renders the Vega-Lite chart. Icons above the chart allow the user to view the SPARQL 
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query and Vega-Lite chart specification. Given the many possible ways to visualize a tabular dataset, we also ena-
ble the user to explore the raw data returned by the query inside an instance of Data Voyager44,45, which provides 
a drag-and-drop interface for defining chart encodings and exploring recommended views.

To add a chart to the knowledge graph, a user enters the SPARQL query, Vega-Lite specification, title, and 
description into the custom chart editor interface in Whyis. SPARQL query syntax highlighting is enabled by 
embedding a YASGUI interface46. On the opposite panel of this interface, the user can toggle between views of 
the raw data as a table or Vega-Lite chart. When a chart is saved, a nanopublication is published to the knowl-
edge graph, a backup of the chart metadata is created in MongoDB, and the chart joins the gallery of charts. At 
present, all charts published to the knowledge graph are publicly available. Future deployments may consider 
whether to offer tiered access or intermediate publication, for example saving progress on a chart under devel-
opment or publishing with a limited scope (e.g., to a research team). In the meantime, development of charts 
can occur by using an offline platform such as Visual Studio Code with Vega-Lite plug-in, or by using an online 
platform such as Observable.

Framing the FAIR guiding principles for data graphics.  Here, we highlight several of the guiding prin-
ciples of FAIR laid out by Wilkinson et al.5 and relate them to design decisions around the combined approach of 
SPARQL and Vega-Lite for scientific data visualization:

•	 “F1. (Meta)data are assigned a globally unique and persistent identifier”
Chart objects, modeled as the combination of a SPARQL query and Vega-Lite specification among other 
metadata, are assigned a globally unique URI.

•	 “A1. (Meta)data are retrievable by their identifier using a standardized communications protocol”
A chart object is dereferenceable through its HTTP URI, and data objects within a chart that have their 
own dereferenceable URIs can use image marks or the hyperlink encoding channel in the Vega-Lite 
specification.

•	 “A1.1. The protocol is open, free, and universally implementable”
A public SPARQL endpoint provides access to the data, and the free, open-source software developed by 
the Vega-Lite community enables the rendering of valid chart specifications.

•	 “A1.2. The protocol allows for an authentication and authorization procedure, where necessary”
To ensure provenance of chart objects, posting to the knowledge graph is limited to authenticated users 
who are logged into the web application.

•	 “I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation”
The RDF (meta)data model has been employed to capture the semantic relationships between a chart 
object, its associated metadata, and its provenance.

•	 “I2. (Meta)data use vocabularies that follow FAIR principles”
We use the Semanticscience Integrated Ontology41 along with Dublin Core, Schema.org, and FOAF 
vocabularies.

•	 “R1.2. (Meta)data are associated with detailed provenance”
The Whyis knowledge graph framework43, using the concept of nanopublications42, captures provenance 
metadata for charts posted to the knowledge graph, such as the creator and time of publication.

•	 “R1.3. (Meta)data meet domain-relevant community standards”

Fig. 5  Metadata describing a chart resource in the knowledge graph. Each chart instance is a member of the class 
sio:Chart, with metadata including a thumbnail depiction (created at the time of chart publication) as well as 
string literals defining the title, description, query, and chart specification. URI namespace prefixes are shown at 
the bottom.
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Vega-Lite provides a high degree of expressivity, of which the figures in this article provide a small sample. 
The approach could also apply to scientific domains that utilize geospatial visualizations using Vega-Lite’s 
geographic projection abilities. Scientific visualizations outside of the scope of Vega-Lite (e.g., 3D mod-
els, molecular structures, annotated schematics, force-directed graphs, animations) can instead use static 
depictions with image marks and a hyperlink encoding channel to link to a more advanced representation.

Data availability
The “living” versions of these interactive charts, which require an operational SPARQL endpoint and Whyis 
application, can be found in the MaterialsMine Gallery of Interactive Charts at https://materialsmine.org/wi/
gallery. As a backup, archival versions of each interactive chart featured in this article (using a static snapshot of 
queried data) are available on Observable (https://observablehq.com/@mdeagen/archival-interactive-charts). A 
zipped folder with the query and chart specification for each chart featured in this article, as well as a snapshot of 
the data retrieved by the query, is available on Figshare (https://doi.org/10.6084/m9.figshare.19352258)47.

Code availability
Source code for the Whyis application framework can be found on Github at https://github.com/tetherless-world/
whyis/. Source code and documentation for the Vega-Lite project can be found on Github at https://github.com/
vega/vega-lite. The W3C Recommendation for the SPARQL 1.1 Query Language can be found at https://www.
w3.org/TR/sparql11-query/.
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