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A curated diverse molecular 
database of blood-brain barrier 
permeability with chemical 
descriptors
Fanwang Meng   , Yang Xi, Jinfeng Huang    & Paul W. Ayers✉

The highly-selective blood-brain barrier (BBB) prevents neurotoxic substances in blood from crossing 
into the extracellular fluid of the central nervous system (CNS). As such, the BBB has a close relationship 
with CNS disease development and treatment, so predicting whether a substance crosses the BBB is a 
key task in lead discovery for CNS drugs. Machine learning (ML) is a promising strategy for predicting 
the BBB permeability, but existing studies have been limited by small datasets with limited chemical 
diversity. To mitigate this issue, we present a large benchmark dataset, B3DB, complied from 50 
published resources and categorized based on experimental uncertainty. A subset of the molecules in 
B3DB has numerical log BB values (1058 compounds), while the whole dataset has categorical (BBB+ or 
BBB−) BBB permeability labels (7807). The dataset is freely available at https://github.com/theochem/
B3DB and https://doi.org/10.6084/m9.figshare.15634230.v3 (version 3). We also provide some 
physicochemical properties of the molecules. By analyzing these properties, we can demonstrate some 
physiochemical similarities and differences between BBB+ and BBB− compounds.

Background & Summary
The blood-brain barrier (BBB) denotes a regulatory and protective mechanism of microvasculature in the central 
nervous system (CNS) that is central to regulating the homeostatis of the CNS1,2 and protecting the CNS from 
toxins, pathogens, and inflammations3. However, it is estimated that 98% of small molecule drugs are not BBB 
permeable4. Therefore, predicting BBB permeability for small molecules is a vital but challenging task in drug 
discovery and development4–7. However, existing computational models for a molecule’s BBB permeability are 
inadequate. In particular, they are restricted by the limited size and chemical diversity of existing sets of training 
data8. Moreover, although many different machine-learning (ML) models for predicting BBB permeability have 
been proposed, these models are not directly comparable because they use widely varying training data, ranging 
from as few as 45 molecules9,10 to as many as 7236 molecules11. The purpose of this paper is to curate an accessi-
ble, clean, well-documented, and reasonably comprehensive dataset of BBB permeability data and present it in a 
way that is convenient for those building new BBB predictive models. While our database, B3DB, is not the first 
attempt to curate data from the literature to construct a molecular BBB database, B3DB contains more molecules, 
and categorizes the molecules based on experimental uncertainty. Both features are very helpful when developing 
and validating ML models for BBB.

There are two types of data for BBB, numerical and categorical data. Numerical data is usually reported as log 
BB, the logarithm of brain-plasma concentration ratio,
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Categorical data simply labels whether a compound is BBB permeable (BBB+) or not (BBB−).
Among existing studies of BBB permeability, we mention Zhuang et. al., who built a ML model with res-

ampling using a binary dataset of 2358 molecules12. Similarly, Zhao et al.13 compiled a dataset of 1336 BBB 
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crossing drugs (BBB+) and 360 BBB non-crossing drugs (BBB−). To our knowledge, the largest dataset pre-
viously reported in the literature was used in developing the lightBBB model, which uses the Light Gradient 
Boosting Machine (LightGBM) algorithm to build a predictive model. The lightBBB model’s database included 
7162 entries. (These entries include duplicates (multiple entries with the same International Chemical Identifier 
(InChI)) and molecules that could not be recognized by RDKit, so in the end there are only 4491 unique valid 
molecules). We curate data from these three efforts, and 47 other smaller efforts, in B3DB. Unlike many previous 
efforts, B3DB includes many (1058) molecules with numeric log BB values. The largest previous dataset we know 
was the data source for lightBBB, which has log BB values for 696 unique valid molecules.

Here, we present a new Blood-Brain Barrier Database, B3DB, which is intended to provide a benchmark data-
set for modelling BBB permeability of small molecules. The original data was collected from 50 peer-reviewed 
publications or open access datasets. As described in the next section, we processed and cleaned the data, then 
categorized it based on its reliability. By categorizing the data in this way, users can choose whether they want to 
focus on the smaller subsets with the highest reliability, or prefer to consider larger datasets with slightly lower 
reliability. We hope that our meticulous methods of preparing and sorting the data may be of interest those who 
wish to curate databases for other, similar, properties.

B3DB includes both numerical data (1058 log BB values) and categorical data (4956 BBB+ and 2851 BBB−). 
Here is summary of key features of B3DB dataset. (1) This is the largest BBB data set we know, both for categor-
ical labels and log BB numerical values. (2) Because the chirality of molecules plays an important role in BBB 
permeability14,15, isomeric SMILES is to used to incorporate chiral specifications of molecules. (3) Because some 
molecules have been measured multiple times, using different experimental methods and under different con-
ditions, we divide the value into groups based on the quantity of experimental data and the similarity between 
reported values, so that users of B3DB can easily select subsets of the data with varying degrees of reliability. (4) 
B3DB is extended with molecular descriptors computed with mordred16, so that it can be used out-of-the-box 
for building BBB predictive models.

Methods
The next three sections describe how raw data was collected from various sources, cleaned, and curated. We 
then describe how the dataset was extended with chemical descriptors (beyond the reference BBB value). This 
workflow is summarized in Fig. 1. For consistency and reproducing purposes, all the data processing were per-
formed in a Python 3.7.9 virtual environment created with Conda in CentOS Linux release 7.9.2009 which 
include pandas 1.2.1, tabula-py 2.2.0, RDKit 2020.09.1, pubchempy 1.0.4, OEChem 
Toolkit17 provided by openeye-toolkit 2020.2.0, ChEMBL_Structure_Pipeline 1.0.0, 
SciPy 1.5.2, Numpy 1.19.2, mordred 1.1.1, PyTDC 0.1.5. ALOGPS version 2.1 is also 
used for calculating octanol/water partition coefficient log P.

Data collecting.  All the data was collected from the literature and open source databases. The dataset size, 
main available information, and data types are listed in Table 1. For each data source, a standard Excel workbook 
is formatted for further processing. If the original data is in portable document format (PDF), it is converted to a 
pandas18. DataFrame and then stored in XLSX format with tabula-py19. For files in DOCX or DOC extension, 
as well as CSV, TXT and other Excel compatible formats, they are converted to Excel XLSX format directly, using 
Microsoft Office. We performed several automated consistency checks (e.g., numerical data should be reported 
as floating-point numbers) and manually verified a subset of the data to ensure that the data was faithfully trans-
ferred to *.xlsx format. In total, 33825 raw data records were collected.

The 50 datasets have various formats and include a wide range of information, so we constructed a tem-
plate that contained only the most essential data, compound name, simplified molecular-input line-entry system 
(SMILES) string, PubChem compound identifier (CID), log BB, BBB+/BBB− (whether a compound is BBB 
permeable or not), the IUPAC International Chemical Identifier (InChI), the threshold value used to determine 
categorical type of a compound, and the literature source for that data value.

Data cleaning.  In the data cleaning stage, an initial molecule specification (a SMILES string, PubChem CID, 
and/or compound name) is input; the output is also a SMILES string, but with transcription and typographical 
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Fig. 1  Workflow for building B3DB. From left to right, the collection of raw BBB data, cleaning the raw data, 
categorization of cleaned data, and finally, extension of B3DB by computing other molecular descriptors.
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errors fixed, and with salts/solvents removed. In addition, molecules containing heavy metal atoms are removed 
from the database. A followed up standardization of molecular reorientation is performed which include updat-
ing valences, kekulizing and normalizing molecules, and neutralizing molecular charges. The basic procedure is 
shown in Fig. 2(a).

ID Data Source Size Information Available Data Type Reference

R1 2053 name, smiles categorical data 28

R2 1210 name, smiles categorical data, numerical data 32

R3 328 name, smiles numerical data 35

R4 189 CAS, name, smiles numerical data 36

R5 108 name, smiles numerical data 37

R6 1692 name, smiles categorical data 38

R7 224 name categorical data 29

R8 439 smiles, CID numerical data 25

R9 415 name, smiles categorical data 39

R10 462 name, CID categorical data 40

R11 151 name, logBB numerical data 41

R12 182 name, smiles numerical data 42

R13 2321 smiles categorical data 12

R14 942 name, smiles categorical data 43

R15 390 name categorical data 44

R16 374 name, CID categorical data 30

R17 55 name numerical data 45

R18 332 name, smiles numerical data 27

R19 1990 name, smiles categorical data 13

R20 139 name numerical data 46

R21 362 name, smiles, CID numerical data 47

R22 27 name numerical data 48

R23 1090 name, smiles categorical data 49

R24 1866 smiles categorical data 50

R25 581 name, smiles numerical data 26

R26 448 CAS, name, smiles categorical data, numerical data 51

R27 7236 smiles categorical data, numerical data 11

R28 415 name, smiles categorical data 31

R29 181 name categorical data 52

R30 3620 name, smiles categorical data 53 *

R31 12 name numerical data 54

R32 26 name numerical data 55

R33 26 name numerical data 56

R34 153 name numerical data 57

R35 145 smiles numerical data 58

R36 525 name, smiles categorical data 59

R37 111 name, smiles categorical data 60

R38 291 name, smiles numerical data 61

R39 122 name numerical data 62

R40 405 name numerical data 63

R41 296 smiles numerical data 64

R42 45 smiles numerical data 9

R43 328 name, smiles numerical data 65

R44 89 name numerical data 66

R45 8 smiles numerical data 67

R46 483 smiles numerical data 68

R47 529 name numerical data 69

R48 115 smiles numerical data 70

R49 181 name, smiles numerical data 71

R50 113 name, smiles categorical data, numerical data 72

Table 1.  Data source and the available corresponding information. *Data accessed with PyTDC 0.1.5 as of Jan 
25, 2021.
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The first step is to fix invalid SMILES strings. For example, white spaces and line breaks in SMILES were 
removed. Some other issues (e.g., where a dash was used in lieu of a negative sign for the molecular charge) were 
manually remedied. Our data is drawn from 50 distinct sources, and a full molecule specification is not always 
provided. For example, some sources list only the compound names (and not the SMILES strings or PubChem 
CIDs); other sources list only PubChem CIDs. In these cases, PubChemPy20 was used to access the PubChem21 
database to retrieve information about missing compound names, SMILES strings and PubChem CIDs. When 
only the compound name was available, there can be multiple PubChem instances. If this were to happen, the first 
Pubchem instance is selected and a note is added to the database flagging the potential ambiguity. Fortunately 
this does not seem to occur in this specific database. There are also a few molecules for which only molecular 
structures, and not SMILES or compound names, are provided. In these cases we built the molecules manually 
and searched for the Pubchem CID and SMILES string with the PubChem web interface. All the SMILES strings 
were loaded into RdKit22 (version 2019.03.4) to build molecule objects. If the object is None, the SMILES is 
considered to be invalid. This leads to 33771 measured BBB instances.

Stereochemistry can play a significant role in a molecule’s BBB permeability because of transporters’ specific 
stereoselectivity14,15. However, there is no stereochemical information in SMILES strings. To add stereochemical 
information to SMILES, and to deal with generic SMILES strings that were technically valid but not in canonical 
form, the original SMILES were upgraded to isomeric SMILES by using PUG-REST API23 wherever possible. 
Otherwise, the canonical SMILES were retrieved from PubChem database with PUG-REST API23. The inclu-
sion of stereochemical data about the molecules is an important, and (we believe) unique feature of B3DB.

Once the SMILES representations are fixed, ChEMBL_Structure_Pipeline24 was used to strip the salts 
and neutralize the charge. Molecules containing metal atoms or heavy atom with atomic number greater than 
20 (e.g., Zinc, Bromine, Krypton, Iodine, and Xenon) were removed. Molecules with more than 7 boron atoms 
are also excluded due to problems of depicting borane compounds. Implicit valence and ring information were 
recomputed followed by kekulizing, normalization of molecules and molecular charges were neutralized. These 
revisions change the molecular structure, so the Pubchem CIDs were updated from the revised SMILES strings.

Data curation.  The curation procedures for numerical and categorical data are summarized in Fig. 3. 
To curate the data, a unique chemical identifier is required. Although InChI is unique in principle, it cannot 
resolve tautomeric forms, which is a common source of ambiguity and error in chemical structure representa-
tion. Therefore, we examined the unique InChI generated with RdKit and the isomeric SMILES (and canonical 
SMILES where isomeric SMILES is unavailable). The number of unique SMILES is greater than the number 
of unique InChI values, but the redundancy is merely because each SMILES represents a specific resonance 
structure.

Curation of numerical data.  To curate the 8841 numerical BBB data values, log BB values for each molecule were 
merged into a list. The 20 instances with log BB <= −9 were regarded as outliers because, based on the distribu-
tion of log BB values, they seemed suspicious. Next, we identified molecules where there are multiple reported 
log BB values and eliminated those molecules from the database if the reported values differed significantly. 
Specifically, we eliminated 16 molecules where max (log BB) − min(log BB) > 1. The values that remain after 
curation are merged into 1065 molecular records. The molecular records are augmented, as necessary, to ensure 
that they are complete, including compound name, IUPAC name, isomeric (canonical) SMILES, etc..

Here is the detailed curation procedure for numeric data.

	 1.	 Group A (243 molecules). Molecules with only one unique log BB value.
	 2.	 Group B (663 molecules). Molecules with more than one log BB value, but all the the reported values differ 
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Fig. 2  Molecule representation cleaning and technical validation. (a) Flowchart of cleaning SMILES string 
representation of molecules. (b) Technical validation of molecular representation.

https://doi.org/10.1038/s41597-021-01069-5


5Scientific Data |           (2021) 8:289  | https://doi.org/10.1038/s41597-021-01069-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

by less than 5% from the mean value. In these cases, the mean value is used as the log BB value for the 
molecule.

	 3.	 Group C (3 molecules). Other molecules with two distinct log BB values. The (weighted) mean value is 
used as the curated value for group C (just as for group B).

	 4.	 Group D (149 molecules). Other molecules with more than two distinct values; whichever value occurs 
with greatest frequency is used. In three case, two distinct values were reported with maximum frequency; 
we discarded those molecules from the dataset.

The 7 molecules which failed to be categorized as group A, B, C or D, they are discarded. The final dataset 
therefore contains 1058 molecules; for most of these molecules (815 molecules) multiple, mutually consistent, 
values of log BB are reported in the literature.

Curation of categorical data.  The 33689 data values were divided into two categories, numerical data and 
(binary) categorical data.

	 1.	 Group A (1058 molecules). Molecules with numerical data. Several threshold values for log BB have been 
used to determine if a molecule is BBB permeable or not, including 025,26, 0.127, −112,13,28–31, (−2, 1)32. The 
value of −1 is chosen as the threshold value to define if a compound is BBB+ or BBB− since this is the 
mostly widely used threshold and maximizes the ease of comparison with other studies.

	 2.	 Group B (3621 molecules). Molecules from sources that use log BB = −1 as the threshold value, and where 
all sources agree on the categorical label. The unambiguous label is used.

	 3.	 Group C (3077 molecules). Molecules where all sources agree on the categorical label, but the sources that 
do not report their threshold value.

	 4.	 Group D (51 molecules). Molecules with two different BBB permeability labels. The most prevalent label is 
used. In the 45 cases where the two labels occurred with equal frequency, the molecule was discarded.

The 7807 remaining molecular records are augmented to ensure that they are complete, including compound 
name, IUPAC name, isomeric (canonical) SMILES, etc..

Data extension with chemical descriptors.  To better facilitate building BBB predictive models, the 
curated datasets were extended with chemical descriptors. Then 1613 chemical descriptors were calculated with 
mordred version 1.1.116. The purpose of providing this extended data is to facilitate easy use of the B3DB, without 
requiring precomputation of cheminformatics descriptors.

Data Records
There are two datasets provided in this study, one with numeric log BB values (1058 molecules) and the 
other with categorical labels (7807 molecules with 4956 BBB+ and 2851 BBB−). B3DB data is stored in the 
comma-separated values (CSV) format and contains SMILES representations, compound name, IUPAC name, 
log BB value, threshold, BBB+/BBB− and the corresponding references along with 1613 molecular descriptors. 
This is summarized in Table 2. The data are openly accessible at GitHub (https://github.com/theochem/B3DB) as 
well as figshare platform33.

Fig. 3  Curation algorithm for numeric and categorical BBB data. (a) Curation pipeline for BBB data with log 
BB values. (b) Curation pipeline for BBB data with categorical information, either BBB+ or BBB−.
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Technical Validation
Validation of molecular representations.  All the molecules are in canonical SMILES format and, if 
available from PubChem, also isomeric SMILES. We then attempt to load each SMILES string into OEChem 
Toolkit17 as an OEGraphMol object; if this is successful then this SMILES is regarded as valid. (See Fig. 2(b)).

Analysis of curated datasets.  The BBB data comes from 50 sources, and was acquired in different labo-
ratories, under different conditions, and using different protocols. To characterize the experimental uncertainty, 
we examine the agreement between reported values, Fig. 4. For 92.82% of the numerical data, there at most two 
unique log BB values are reported as shown in Fig. 4(a,c). Similarly, for 99.34% of the molecules, only a single 
categorical label is reported (Fig. 4(d)); this is true even though the same molecule may appear in as many as 23 
distinct sources (Fig. 4(b)). More detailed data can be found in Tables 3–6.

Figure 5 reveals some features of the B3DB dataset. Presuming that the molecules in the dataset are relatively 
representative of (bio)organic molecules in general, the log BB for most of organic compound lie within the 
interval [−2, 2] (see Fig. 5(a)). The distribution of log BB values indicates that the numerical dataset is relatively 
balanced, though skewed towards BBB+ compounds.

Lipinski’s Rule of 5 https://www.sciencedirect.com/science/article/abs/pii/S0169409X00001290?via%3Dihub  
is a simple rule-of-thumb for evaluating a molecule’s drug-likeness. Specifically, Lipinski’s Rule of 5 states 
that good absorption or permeation is more likely if a molecule has less than: 5 hydrogen-bond donors, 10 

Column Header Description Data Type

compound name Generic name of compound string

IUPAC name Name of compound following the IUPAC nomenclature naming scheme string

SMILES SMILES representation of compound, isomeric SMILES if available string

CID PubChem compound identifier string

log BB log BB value of compound float

BBB+/BBB− Categorical labels to indicate if compound is BBB permeable (BBB+) or not (BBB−) string

InChI The IUPAC International Chemical Identifier of compound string

threshold Threshold value used to determine BBB permeability label float

reference Data sources string

group Group classification string

comment Complementary information string

Table 2.  List of information in the curated datasets. The BBB+/BBB− and threshold columns are only available 
for categorical dataset. The 1613 2D chemical descriptors are not listed in this table.

Fig. 4  Characterization of the nature and frequency of multiple/redundant data in B3DB. (a) Multiplicity of 
source log BB values in each group of the numerical dataset. (b) Prevalence of source BBB permeability labels 
in each group of the categorical dataset. (c) Multiplicity of unique log BB values in each group of the numerical 
dataset. (d) Prevalence of unique BBB permeability labels in each group of the categorical dataset. More data 
can be found at Tables 3–6.

https://doi.org/10.1038/s41597-021-01069-5
https://www.sciencedirect.com/science/article/abs/pii/S0169409X00001290?via%3Dihub


7Scientific Data |           (2021) 8:289  | https://doi.org/10.1038/s41597-021-01069-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

hydrogen-bond acceptors, 500 Dalton molecular weight, and a predicted log P value less than 5. It is observed 
that the molecule weight of most BBB+ compounds (93.10%) is less than 500 Dalton. In contrast, there are many 
molecules with molecular weight greater than 500 Dalton (31.22%) that are BBB− compounds. Nonetheless, 
aside from the a long tail of heavy BBB− compounds, the distribution of molecular weights for BBB+ and BBB− 
molecules is not dissimilar (see Fig. 5(b,f)). 98.8% of BBB+ compounds and 23.4% of BBB− compounds have 
fewer than 5 hydrogen-bond donors; 97.6% of BBB+ compounds and 66.0% of BBB− compounds have fewer 
than 10 hydrogen-bond acceptors. This supports the idea that hydrophilic compounds find it difficult to cross 

Group

A B C DFrequency

1 243 0 0 0

2 0 32 3 0

3 0 172 0 6

4 0 38 0 7

5 0 71 0 4

6 0 46 0 8

7 0 29 0 5

8 0 19 0 3

9 0 29 0 5

10 0 13 0 4

11 0 17 0 3

12 0 19 0 3

13 0 26 0 4

14 0 58 0 6

15 0 8 0 6

16 0 5 0 0

17 0 10 0 3

18 0 6 0 11

19 0 4 0 7

20 0 10 0 3

21 0 4 0 5

22 0 6 0 3

23 0 7 0 4

24 0 9 0 7

25 0 4 0 5

26 0 7 0 3

27 0 2 0 6

28 0 5 0 5

29 0 3 0 10

30 0 1 0 6

31 0 1 0 3

32 0 1 0 3

33 0 1 0 0

34 0 0 0 0

35 0 0 0 1

Table 3.  Occurrences of source log BB values for different groups in numerical dataset.

Group

A B C DFrequency

1 243 652 0 0

2 0 9 3 84

3 0 2 0 29

4 0 0 0 21

5 0 0 0 8

6 0 0 0 7

Table 4.  Occurrences of unique source log BB values for different groups in numerical dataset.
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the BBB, but this is not a hard-and-fast rule: there are BBB+ compounds that violate Lipinski’s rule of 5. Finally, 
the octanol/water partition coefficient log P was estimated using ALOGPS version 2.134. There is not much 
difference in the log P values for BBB+ and BBB− compounds: 93.8% of BBB+ and 95.1% of BBB− compounds 

Fig. 5  Analysis of the curated datasets. (a) Distribution of log BB values for numeric dataset. (b–e) Distribution 
of molecular weight, number of hydrogen-bond donors, number of hydrogen acceptors and log P for BBB+ 
compounds. (f–i) Distribution of molecular weight, number of hydrogen-bond donors, number of hydrogen 
acceptors and for BBB− compounds.

Group

A B C DFrequency

1 1058 892 2062 0

2 0 618 831 0

3 0 533 162 37

4 0 409 17 13

5 0 181 5 1

6 0 313 0 0

7 0 121 0 0

8 0 55 0 0

9 0 41 0 0

10 0 338 0 0

11 0 26 0 0

12 0 47 0 0

13 0 15 0 0

14 0 8 0 0

15 0 11 0 0

16 0 3 0 0

17 0 2 0 0

18 0 1 0 0

19 0 3 0 0

20 0 1 0 0

21 0 1 0 0

22 0 1 0 0

23 0 1 0 0

Table 5.  Occurrences of source BBB permeability labels for different groups in categorical dataset.

https://doi.org/10.1038/s41597-021-01069-5


9Scientific Data |           (2021) 8:289  | https://doi.org/10.1038/s41597-021-01069-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

have log P < 5. Taken together, the analysis of the selected physiochemical descriptors suggest that no single 
parameter can determine the BBB-permeability of a compound. This confirms that predicting BBB permeability 
computationally is challenging, and emphasizes the value of the B3DB dataset.

Usage Notes
None of the original data sources contain any quantification of uncertainty (e.g., the standard derivation), so it 
is recommended to incorporate the group categories when using the datasets. If one decides to use a different 
threshold to determine BBB+ and BBB− for a molecules, log BB can be used directly from the data reported in 
this study. The 1613 2D chemical descriptors, computed with mordred can facilitate building predictive models. 
Any further molecular preprocessing can be done with RdKit.

Code availability
The codes used in this study have been deposited to https://github.com/theochem/B3DB and https://doi.
org/10.6084/m9.figshare.15634230.v3 (version 3)33. All the calculation were done with Python 3.7.9 under 
a virtual environment created with Anaconda on Linux.
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