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Harmonised global datasets of 
wind and solar farm locations and 
power
Sebastian Dunnett   1,2 ✉, Alessandro Sorichetta   1,3, Gail Taylor2,4 & Felix Eigenbrod1

Energy systems need decarbonisation in order to limit global warming to within safe limits. While global 
land planners are promising more of the planet’s limited space to wind and solar photovoltaic, there 
is little information on where current infrastructure is located. The majority of recent studies use land 
suitability for wind and solar, coupled with technical and socioeconomic constraints, as a proxy for 
actual location data. Here, we address this shortcoming. Using readily accessible OpenStreetMap data 
we present, to our knowledge, the first global, open-access, harmonised spatial datasets of wind and 
solar installations. We also include user friendly code to enable users to easily create newer versions of 
the dataset. Finally, we include first order estimates of power capacities of installations. We anticipate 
these data will be of widespread interest within global studies of the future potential and trade-offs 
associated with the global decarbonisation of energy systems.

Background & Summary
The estimated share of renewables in global electricity generation was more than 26% by the end of 20181. 
Moreover, many national, regional and international policies mandate for ever larger renewable shares of elec-
tricity generation2.

Solar photovoltaic (PV) panels and wind turbines are by far the biggest drivers of the rapid increase in renew-
able energy electricity generation. Globally, in 2018, 100 gigawatts of solar PV were installed, contributing 55% of 
new renewable energy capacity; wind contributed the second largest share, with 28% of new renewable capacity1. 
Both technologies are well established and feature heavily in decarbonisation scenarios as proven concepts to 
generate emission-free electricity. Indeed, myriad studies present the goal of 100% renewable energy as eminently 
achievable with current technology3. For example, available wind power in Europe alone may be able to produce 
enough electricity for global demand to 2050, whilst replacing US hydroelectric dams with solar PV could pro-
duce equivalent power output on just 13% of the land4,5.

Despite this widespread interest in solar and wind, policy makers and governments have struggled to main-
tain robust geospatial information on the rapid expansion of renewable energy technologies. This lack of spatial 
data is problematic for several reasons. For example, the impacts of wind and solar installations on biodiversity 
are far from well known6, even at the local scale. The mortality effects of wind turbines on volant species are rel-
atively well studied7, however ancillary effects such as noise, visual and landscape impacts are less well known. 
Furthermore, there may be significant trade-offs between increasing expansion of renewable energy globally, 
and efforts to reduce biodiversity decline through protected areas8–10. Another recent study suggests small-scale 
deployment of renewables has a lower impact on biodiversity than conventional energy, but the implications 
of scaling up renewable generation on biodiversity remain unknown11. Local-scale studies do show that siting 
of utility scale solar energy can have significant impacts on soil degradation and water availability12; and wind 
turbines can have significant effects on market prices13. However, hitherto studies have largely relied on the use 
of suitability maps for renewable energy which are not derived from historic placement of energy infrastructure 
but are rather based on purely climactic characteristics. As a result, they implicitly assume that the climactic 
characteristics will be the largest driver of installation placement4,5,8,9,14–16. At the global scale, a recent study used 
human influence as a proxy for where energy generation is occurring11. Both approaches are likely insufficient, 
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as two UK-based studies showed that when location data are available, a variety of socioeconomic factors affect 
the siting of wind turbines and solar PV17,18. Sufficient location data would allow researchers to interrogate the 
socioeconomic drivers of renewable energy infrastructure siting at a global scale to produce probability surfaces 
for energy development19.

Despite the evident utility of location data, spatially explicit national data are only publicly available for a 
handful of countries20–23. Furthermore, often when they are available they are not open access. Global renewable 
energy data are readily available when spatially aggregated and summarised at the national scale (e.g. through 
the International Renewable Energy Agency - IRENA), but there is an urgent need for spatially explicit, global 
data describing the distribution of solar and wind installations. A harmonised spatial database could support 
data-driven indicators to track progress towards Sustainable Development Goals (SDGs)24, especially SDG 7 
(Affordable and Clean Energy) and SDG 13 (Climate Action). A database would also allow the integration of 
global wind and solar installations with other geospatial datasets supporting SDGs, e.g. the World Database on 
Protected Areas informing the expansion of terrestrial protected areas for conserving threatened species support-
ing SDG 15 Life on Land.

Here, using OpenStreetMap infrastructure data, we present the first publicly available, spatially explicit, har-
monised dataset describing global solar PV and wind turbine installations. These data are available in vector 
format, either as geopackages, shapefiles, or comma-delimited and describe groupings of wind turbines or solar 
PV, i.e. energy ‘farms’, as well as lone installations, i.e. a single wind turbine or solar panel. These data include 
metadata describing whether the location is urban or beside/on a water body, as well as an estimate of its power 
capacity, created using a predictive model detailed in this paper.

Methods
Data collection.  OpenStreetMap structure.  OpenStreetMap (OSM) is an open-source, collaborative global 
mapping project generated by a community of millions of users that can provide a unique insight into energy 
infrastructure locations. OSM data have an analogous structure to other geospatial data in that they describe 
the physical world with three different elements: points (e.g. street lamps, phone boxes), lines (e.g. roads, power 
lines), and polygons (e.g. parks, buildings). However, in OSM, point data are referred to as nodes, lines as ways, 
and polygons are described as closed ways. These georeferenced data are then given tags to ascribe the spatial data 
with meaning. Tags consist of two text fields, a key and a value. For example, a service road for a wind turbine or 
set of wind turbines could be a way tagged with key ‘highway’ and value ‘service’ to give a key/value pair highway:-
service. The value field provides more detail to the key classifier. More information on the structure of OSM data 
can be found on the OSM Wiki25.

OpenStreetMap key/value pair selection and extraction.  To overcome the problem of inconsistent tagging in the 
OSM feature metadata, we conducted a preliminary analysis to determine the best key/value pairs to use as search 
terms for data extraction. We recorded the key/value pairs used for 50 randomly selected solar installations and 
50 randomly selected wind installations with known locations. 50 random solar installations were selected from 
the Wiki-Solar dataset26, a dataset comprising 4129 solar projects. The wind installations were selected from a 
study into bird and bat mortality around wind turbines at 134 onshore sites7.

13 unique keys and 21 unique values were used to tag the solar sites in our test dataset (Table 1), with 5 
unique keys and 11 unique values used to tag the wind sites (Table 2). The most common key/value pair for solar 
was power = generator paired with generator:source = solar. Frequently, OSM tags work in hierarchies; in this 
instance, features tagged power = generator should be further categorised to describe what type of energy is used 
for electricity generation. Moreover, anecdotally, it appears that the most common approach to tagging solar 
installations is to tag the entire area (closed way or polygon) as power = plant, while tagging groups of PV panels 
as power = generator and generator:source = solar.

For the sample of wind installations, tagging was much more straightforward. Again, the most common key/
value pair to use was power = generator, this time coupled with generator:source = wind. However, there is one 

Key Values

barrier fence; wall

building yes

frequency 50

generator:method photovoltaic

generator:output:electicity 10 MW; 3.5 MW; 5 MW; yes

generator:source solar

generator:type horizontal_axis; solar_photovoltaic_panel

highway track

landuse industrial

plant:output:electricity 250 MW; 290 MW; yes

plant:source solar

power generator; plant

wall no

Table 1.  OpenStreetMap key/value pairs used for the sample 50 global solar installations.
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more use of power = generator without a corresponding generator:source tag within the sample of known wind 
installations. In reality, in most instances this sort of tagging omission would not be a problem with these data, 
as features generally occur together, and so any untagged elements are highly likely to be tagged by a different 
element within the same project.

Given that tag omissions were rare in the sample dataset, it was judged that using generator:source as a search 
key would capture most target features, with either solar or wind as the corresponding value. We therefore 
selected generator:source = solar and generator:source = wind as two of our search terms. We coupled these with 
plant:source = solar and plant:source = wind as the OSM Wiki suggested that the outer boundaries of renewable 
energy installations should be tagged thus.

Data were extracted using the R package osmdata27 to build queries to send to the Overpass API, a read-only 
API (available at overpass-turbo.eu) that allows for customised access to OSM data. For example, to search for 
solar PV OSM elements tagged as either generator:source = solar or plant:source = solar in a geographic area 
bound by bounding box bbx, a query can be built as follows:

query opq(bbox bbx, timeout 5000) % %
add_osm_feature(“generator:source”, “solar”) % %
add_osm_feature(“plant:source”, “solar”)

= = = >
>

Applying this query globally resulted in four initial datasets: 326,234 solar polygons, 1,808,585 solar point 
data, 1,889 wind polygons, and 305,306 wind point data (Fig. 1).

Data processing.  Land cover.  The first stage of data processing was to classify data located in areas iden-
tified as either water (both sea and inland bodies), or an urban centre. Offshore, rooftop and residential installa-
tions are very different in structure to field-scale solar and wind installations. Offshore turbines tend to be larger 
than onshore turbines to counteract high development costs28, while groups of residential buildings with single 
solar PV panels could conceivably be grouped as one solar installation, but do not act as one. Processing was done 
using the 2015 Global Human Settlement Layer (GHSL) in World Mollweide projection at 1 km resolution, repro-
jected to Eckert IV equal-area at 1 km resolution29. Urban areas were considered as any of the following municipal 
level categories in the GHSL dataset: City, Dense town, Semi-dense town and Suburbs. Water was taken straight 
from the GHSL categorisation.

Aggregating individual elements to installations.  The raw OSM data extract contains sole polygons, sole points, 
as well as polygons and points within wider polygons. To counteract the potential for mis-tagging of these data as 
identified in our key/value pair analysis (Data Collection), we looked at the spatial clustering of the raw datasets 
to amalgamate any point and polygon data clearly referring to the same installation.

Firstly, we filtered any point already contained within a wider polygon, and the number of these points inter-
secting were recorded (strictly, the OSM guidance suggests tagging the wider installation as power:plant and 
plants:source: <source>, but in reality contributors tend to focus on the lowest unit: either a group of PV panels, 
or one wind turbine, tagging them with power:generator and generator:source: <source>). We then performed 
bespoke spatial clustering for each technology to group the remaining points that occur close together in space, 
as outlined below.

Determining the scale for spatial clustering: spatial distribution of wind and solar features.  In 
order to justify spatially clustering the remaining renewable energy point data into ‘farms’ based on their position 
in space relative to other points, we analysed the spatial characteristics of two large wind and solar databases, the 
United States Geological Survey (USGS) Wind Turbine Dataset (USWTD) and Wiki Solar22,23,26, to check whether 
they were significantly clustered in space.

We performed Ripley’s K function on both datasets30. Ripley’s K function returns a measure, K, for the spa-
tial characteristics of a point pattern for a range of neighbourhood search radii, r. The function can be used to 
estimate whether a point pattern is clustered, dispersed, or distributed randomly in space. A theoretical K value, 
K(r)theo, is calculated based on a completely random Poisson point process at search radius r. If the observed K 
value at r, K(r)obs, is above K(r)theo, the point pattern is clustered at that spatial scale. If K(r)obs is below K(r)theo, 
data are dispersed at that spatial scale. A difference of 0 suggests a completely random distribution.

In order to be calculated, the function requires a sensible study area. For the USWTD, this meant grouping 
the turbines by project (54481 turbines in 1311 projects). For Wiki Solar, we only had the point location of the 
installations. To address this, we applied circular buffers of the reported installation areas to the point locations 

Key Values

generator:method wind_turbine

generator:output:electricity 1.75 MW; 2.1 MW; 2.3 MW; 
3 MW; 800 kW; 900 kW; yes

generator:source wind

generator:type horizontal_axis

power generator

Table 2.  OpenStreetMap key/value pairs used for the sample 50 global wind installations.
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and assumed all points from the OSM dataset in these areas belonged to the buffered project (63901 points in 
1270 projects).

Next, we applied Ripley’s K function to the point data in every project in both datasets. The result of this can 
be seen in Fig. 2. At shorter neighbourhood distances, we would expect our point patterns to be dispersed: wind 
turbines and solar panels require at least some dispersion from one another in order to work (e.g. to avoid wind 
wake for turbines, and shade for solar panels). For solar, the relationship is not clear, but for r values between 
200 and 400 m, there appears to be a slight tendency towards clustering over dispersion (Fig. 2a). However, as r 
increases, we see a pronounced increase in clustering for wind; where 400 m < r < 1000 m, the majority of projects 
exhibit clustering over and above a random point process (Fig. 2b).

Determining the neighbourhood radius for spatial clustering.  Spatial clustering was achieved by 
running a density-based spatial clustering of applications with noise (DBSCAN) algorithm31. Given a set of points 
in space, DBSCAN groups together points that are closely packed together (points with many nearby neighbour-
ing points), classifying as noise points that lie alone in low-density regions (whose nearest neighbours are too far 
away). The algorithm takes two parameters as arguments: ε, a neighbourhood search parameter, and minPts, the 
minimum number of points to form a cluster.

DBSCAN clustering is more appropriate than, for example, k-means clustering for these spatial data for two 
main reasons. Firstly, you do not need to specify the number of clusters a priori. As we are explicitly searching for 
the number of clusters in the data, this suits our needs. Secondly, DBSCAN can find arbitrarily shaped clusters. 
This is important as many wind farms are linear in shape and may be overlooked by more conventional clustering 
methods. In order to run this algorithm, two parameters need to be set: the neighbourhood radius (i.e. the search 
distance), ε, and minPts, the minimum number of points for the algorithm to consider a cluster. It is usually rec-
ommended that for setting parameters, minPts should be >2 so as to specifically look for density-based clusters. 
However, in order to extract linear clusters (which can occur for energy installations), minPts was set to 2. When 
minPts is set to 2, DBSCAN acts as a single-linkage hierarchical clustering algorithm truncated at ε. Whilst this 
avoids some of the pitfalls associated with DBSCAN of choosing an appropriate density32, single-linkage cluster-
ing is not without its disadvantages: this implementation can produce large clusters joined by one lone point. As a 
sensitivity analysis to this single-linkage effect, we repeated the analysis for minPts values of 3, 5 and 10 (Technical 
Validation). Values of 1 were not considered, as a lone wind turbine or solar panel cannot be considered a ‘farm’.

For wind, the neighbourhood radius (ε) has been discussed at length in the energy literature through the lens 
of the optimal spacing of wind turbines in order to maximise wind speed for each turbine. This varies widely 

Fig. 1  Numbers of OSM elements per country (point and polygon data) returned by search query for solar PV 
(a) and wind (b).
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but is largely considered to be in the range of 3–10 rotor diameters33. The median rotor diameter in the US and 
German turbine datasets were 87 and 71 m respectively, thus ε was set to 800 m. This also falls within the range 
400–1000 m suggested by the Ripley’s K function analysis. Running DBSCAN on the OSM wind point data with 
differing values of ε suggests that 800 m is a sensible neighbourhood size (Fig. 3).

For the solar data, this proved much more difficult as there is no theoretical basis for spacing of panels in solar 
farms. There is recommended spacing at the very lowest level, as rows of panels are required to be a certain dis-
tance apart (dependent on their solar incidence slope) so as not to shade each other. However, we are interested 
in spatial clustering at the higher level of panel architecture, i.e. an array of multiple panel rows, on which there 
are no restrictions. The Ripley’s K function analysis suggested an optimal clustering distance of 200-400 m. Again, 
running DBSCAN with differing values of ε it appears there is no optimal value (Fig. 3).

Fig. 2  The difference between K(r)obs and K(r)theo per installation for the Wiki Solar dataset (a) and the USWTD 
(b) within different search radii, r. K(r)theo represents the number of neighbours found within search distance 
r for a completely random Poisson point process. K(r)obs represents the observed value of Ripley’s K. Where 
K(r)obs > K(r)theo, data are clustered at that search radius; where K(r)obs < K(r)theo, data are ordered. The horizontal 
dotted red line indicates a difference of 0, i.e. no different from a random process. Dark lines indicate the 
median differences of all projects.

Fig. 3  “Knee” plots for OSM solar (a) and wind (b) point data showing the number of unclustered points 
remaining for differing neighbourhood search radii. As the neighbourhood search distance increases, the 
number of unclustered points will eventually tend towards 0. Where the plot ‘turns’ indicates a sensible 
neighbourhood distance which captures the majority of points; for wind, this corroborates the previous analyses 
at ~800 m. For solar, it is more unclear but looks to lie in the range 300–500 m.
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We ran DBSCAN on the wind point dataset with minPts set to 2 and ε to 800 m, which yielded 23,534 clus-
ters and 9,980 noise points (here representing single turbines or polygons intersecting no point data). We ran 
DBSCAN on the solar point dataset, again with minPts set to 2, and ε set to 400 m, which yielded 30,394 clusters 
and 4,878 noise points. 400 m was selected for solar as the mid-range value suggested by Fig. 3.

Estimating power output of installations.  The vast majority of variables (including capacity, rotor 
diameters, and areas) that would ordinarily provide a straightforward way of calculating power were >99% miss-
ing values in geospatial data from OSM. We overcome this limitation and provide first order power estimates 
derived solely from the area of the polygon and the number of original points contained within the OSM data, 
using regression equations derived from independent datasets.

The processed wind and solar OSM datasets were spatially joined with three independent datasets each. A 
spatial join combines the characteristics of any data that overlap each other in space. Using this technique, we 
can assign more descriptive metadata from national databases to the spatial information gleaned from the pro-
cessed OSM data. For wind, these validation datasets were the USWTD, the United Kingdom Renewable Energy 
Planning Database (UK REPD), and data from a German renewable energy study20–23. Solar also utilised the 
German and UK data (these databases provide more than one type of renewable energy), swapping in data from 
Wiki Solar26 in place of the USWTD.

Spatial joins were performed using the sf package34. Duplicate matches, where more than one record spatially 
overlaps, were discarded in order to keep the model setup as simple as possible. This, for example, excluded 
instances where DBSCAN considered an area as one contiguous wind (or solar) farm and the corresponding 
national dataset considered the area as several different projects. This often happens when one larger installation 
is installed in successive funding rounds. Spatial joining with this caveat yielded 3096 instances for solar and 3457 
for wind where we knew the OSM characteristics, but also other descriptors provided by the validation datasets, 
such as the power capacity.

Two 5-repeat 10-fold cross validation models were trained on these data (Fig. 4) and used to predict power for 
the larger processed OSM solar and wind datasets. For solar, power was predicted from the installation panel area 
only, whereas for wind, power was predicted from both the number of turbines and the area of the installation. 
The power of a wind installation is dependent on the type of turbines installed; larger turbines require larger wake 
distances so are likely to be more sparsely spaced in an installation. Including landscape area as well as turbine 
number allowed us to create a de facto measure of turbine density. Predicting power solely from number of tur-
bines implicitly assumes the same turbine type occurs at all global installations; predicting power from number of 
turbines only was inferior to the full model (RMSE 14.24434 > 11.23803).

The power estimates are the best available currently, but should be viewed with caution as, for example, 
the Wiki Solar dataset only records solar installations >100 MW. Furthermore, these datasets are from three 
early-adopting countries, where wind and solar projects are more established, engineering expertise is more read-
ily available, and higher power projects are more likely. All three - USA, UK, and Germany - are in the top ten 
countries for solar and wind capacities in 2018. We understand that predicting power beyond the geographical 
range of the input data can be problematic. However, there is no reason to think that the relationship between 
solely geospatial predictors (area, number of points) and power would change with geography with the limited 
wind and solar technology currently available, and hence we feel that our extrapolation is reasonable and defen-
sible given data limitations.

Fig. 4  Fitted vs actuals for the solar (a) and wind (b) power models. Slope represents y~x, i.e. perfect prediction. 
5-repeat 10-fold cross validation models: solar (RMSE = 14.29, R2 = 0.70, MAE = 4.93, n = 3280) and wind 
(RMSE = 11.12, R2 = 0.734, MAE = 6.22, n = 3574).
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There were also 9 instances where the solar power model predicts power capacities in the larger OSM dataset 
beyond the power range present in the solar power model input data (where the maximum power capacity is 
377 MW). However, the solar power model input data capture 99.9% of the variation in panel area in the larger 
OSM dataset, so we opted to include these 9 extrapolated points as a justifiable small extension of the model. The 
wind power model captured 100% of the variability in turbine numbers and 99.95% of the variation in landscape 
area in the larger OSM dataset, with no power capacities beyond the range found in the independent datasets.

Data Records
This dataset is stored in three different formats: shapefiles for use with GIS software, geopackage for open-source 
usage, and .csv format for ease of use in any statistical software. Two final datasets were produced that repre-
sent the best publicly available global, harmonized geospatial data for field-scale solar PV and wind installations 
(Fig. 5). We provide vector data (point and polygon) for grouped installations (more than two features; Methods), 
in Eckert IV equal area projection.

(1) Global solar PV installations. 

	 a.	 global_solar_2020.gpkg
	 b.	 global_solar_2020.csv
	 c.	 global_solar_2020 layer in global_wind_solar_2020.gdb

(2) Global wind installations. 

	 a.	 global_wind_2020.gpkg
	 b.	 global_wind_2020.csv
	 c.	 global_wind_2020 layer in global_wind_solar_2020.gdb

Both datasets include the following variables:

Fig. 5  The global distribution of solar (a) and wind (b) installations. Solar installations represent those outside 
of urban cells and more than 1 hectare in panel area. Wind installations represent those outside of urban and 
water cells and with more than four turbines. ‘Area’ refers to landscape area for wind and panel area for solar.
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	 a.	 x_id; unique ID for data record
	 b.	 GID_0; country ISO-3 code
	 c.	 panels or turbines; the number of OSM tagged features that occurred within the boundaries of the cluster
	 d.	 panel.area (solar only); the (estimated) area of panels in the cluster in km2

	 e.	 landscape.area; the area of the site in km2, i.e. the area bounded by the outermost points or polygons, buff-
ered by 800 m for wind

	 f.	 water; binary indicator of whether the feature occurs in an area classified as water (Methods)
	 g.	 urban; binary indicator of whether the feature occurs on land classified as urban (Methods)
	 h.	 power; estimated power capacity in MW

The .csv and .shp files, in lieu of detailed spatial information, contain the X and Y coordinates of the data 
centroid. The geopackage format can contain multiple geometries and is the preferred option. To comply with 
ESRI field name specifications, landscape area and panel area are both renamed as p_area and l_area in the ESRI 
geodatabase.

The final, downloadable format of both databases is available from Figshare35.

Technical Validation
Data completeness assessment.  To assess whether the OSM data truly reflect global solar (Fig. 1a) and 
wind built infrastructure (Fig. 1b), or simply sampling bias (most observations are in developed countries with 
large OSM user communities36), we ran regressions for the raw number of solar and wind features extracted from 
OSM per country as explained by their respective reported solar PV and onshore wind capacities per country in 
2018, as well as other variables known to influence the completeness of OSM data.

While reported onshore wind capacity alone explains the number of wind feature observations relatively 
well (R2 = 0.90), the relationship between solar capacity and number of observations is a lot weaker (R2 = 0.13). 
However, removing data for China improves the solar correlation considerably (R2 = 0.52) due to an apparent 
dearth of OSM data compared to the enormous reported capacity.

One previous study assessing the OSM global road network identified three significant factors driving the 
completeness of a country’s data: land area, the number of Internet users, and the country governance36. We used 
the same World Bank variables from that analysis for the latter two: Internet users per 100 people in 2015, and 
the Voice and Accountability Governance indicator for 2018. This allowed us to assess whether the geographic 
variability in OSM features is driven primarily by the existence of wind and solar infrastructure (using reported 
capacity as a proxy), or factors relating to the completeness of OSM.

As number of observations represents count data, we looked at fitting Poisson general linear models. However, 
the number of observations per country for both solar and wind were heavily zero-inflated; i.e. the majority of 
countries worldwide do not have any renewable-tagged OSM data. Log transforming count data to correct for 
zero-inflation has previously been shown to have little use over alternative methods37,38, thus we decided to fit a 
zero-inflated negative binomial (ZINB) regression model. A zero-inflated negative binomial regression model 
was selected over the similar hurdle approach as we expect two types of zeroes in the data: structural zeroes, where 
a country with no renewable energy capacity could never have any renewable infrastructure, and sampling zeroes, 
where a country may have national renewable energy capacity, but no data in OSM. A ZINB first fits a binomial 
regression to the data to produce an estimate of the count being positive, then fits a truncated negative binomial 
model to produce an estimate of the count. The predictors do not have to be the same in both models.

For our application, the models fitted solely with reported capacity outperformed the models with only the 
three OSM completeness metrics (Likelihood ratio test, p < 2.2e−16 and p = 0.001659 for wind and solar respec-
tively). However, the most parsimonious models are presented in Tables 3 and 4 below, and these include some 
measures of OSM data completeness. National capacities and land area were both modified with a Yeo Johnson 
transformation to correct for heavy negative skew. All variables were scaled.

Coefficient Estimate Std. Error z value Pr(>|z|) Odds ratio

Count model coefficients (negbin with log link)

(Intercept) −0.6220 0.3173 −1.960 0.04994* 0.5369

Wind capacity 2018 2.6145 0.1236 21.158 <2e−16*** 13.6608

Governance 2018 0.2703 0.1047 2.582 0.00982** 1.3103

Land area 0.3547 0.1224 2.899 0.00375** 1.4258

Log(theta) 0.5579 0.1500 3.718 0.00020***

Zero-inflation model coefficients (binomial with logit link)

(Intercept) 0.3986 0.5336 0.747 0.455120 1.4897

Wind capacity 2018 −2.5573 0.6945 −3.682 0.000231*** 0.07752

Theta = 1.747

Log-likelihood: −668.6 
on 7 Df

Table 3.  Zero-inflated negative binomial regression fitted for OSM wind observations (n = 128). Whether 
a country has any wind observations at all is driven by the reported wind capacity, after which the capacity, 
governance and land area of the country explain the count.
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Although country governance and land area contribute towards the variability in OSM observations for both 
wind and solar, the odds ratios for the national capacities clearly suggest that the observed pattern is largely reflec-
tive of the true distribution of renewable infrastructure. Furthermore, the sole driver of whether a country has any 
OSM data at all, e.g. the binomial models, in both cases, is the reported national capacity.

Moreover, after data processing, the aggregated estimated power capacities of our datasets per country corre-
late even better with reported capacities (R2 = 0.82 and 0.97 for solar and wind respectively).

DBSCAN minPts parameter.  To assess the functioning of DBSCAN when passed a minPts argument of 2 
over more explicit density-based clustering, and to check whether the model fits were adversely affected by the de 
facto single-linkage clustering needed to identify some linear wind installations, we repeated the power analyses 
for different values of minPts and ε. Figure 6 shows the ‘knee’ plots for solar (a) and wind (b). For solar, the value 
of minPts does not appear to affect the appropriate value for the neighbourhood search radius (ε) of 400 m. The 
optimal neighbourhood search radius does appear to change with minPts for wind. The values selected for ε are 
shown in Tables 5 and 6.

As the primary purpose of our fitted power models is prediction, and not explanation, the root mean square 
error (RMSE) and mean absolute error (MAE) are the most appropriate performance measures for these models. 
The RMSE and MAE of the wind models are highest as the minPts parameter is increased to 10 (Table 5), but 
notably the models trained on minPts 2, 3 and 5 are very similar, suggesting that the wind data are not signif-
icantly affected by the lack of specifically density-based clustering. The solar data appear to be robust against 
different values of DBSCAN parameters (Table 6).

Coefficient Estimate Std. Error z value Pr( > |z|)
Odds 
ratio

Count model coefficients (negbin with log link)

(Intercept) 0.9262 0.4371 2.119 0.0341* 2.5250

Solar capacity 2018 1.4065 0.1775 7.922 <2.33e-15*** 4.0816

Governance 2018 1.1329 0.1909 5.933 2.97e-09*** 3.1048

Land area 0.8625 0.1942 4.440 8.98e-06*** 2.3690

Log(theta) −1.1101 0.1214 −9.144 <2e-16***

Zero-inflation model coefficients (binomial with logit link)

(Intercept) −0.2662 0.7886 −0.338 0.7357 0.7663

Solar capacity 2018 −1.7696 0.7805 −2.267 0.0234* 0.1704

Theta = 0.3295

Log-likelihood: −1120 
on 7 Df

Table 4.  Zero-inflated negative binomial regression fitted for OSM solar observations (n = 178). Whether 
a country has any solar observations at all is driven by the reported solar capacity, after which the capacity, 
governance and land area of the country explain the count.

Fig. 6  “Knee” plots for OSM solar (a) and wind (b) point data showing the number of unclustered points 
remaining for differing neighbourhood search radii and values of minPts. For wind, the optimal value of ε 
changes as minPts increases, but the value for solar remains relatively constant.
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Usage notes
Location data for wind and solar installations worldwide can be used to support a range of applications, including 
analysing the land impact of current infrastructure, measuring progress towards global goals, and informing 
future energy planning scenarios.

Ongoing work involves the integration of these datasets with socioeconomic and biophysical predictors to 
produce probability surfaces for the likely development of wind and solar infrastructure in order to more accu-
rately highlight potential trade-offs with other important sustainable land uses15. While potential regions of con-
flict have been highlighted in previous studies, for example biodiversity and renewable energy8,9, these new data 
allow analysis at whatever resolution there are readily accessible global predictors (currently 1 by 1 km grids). 
This is especially important as it has been suggested that the wider social and environmental impacts of energy 
scenarios are typically overlooked because the majority of scenarios are aspatial39.

Additionally, there are many applications of these data outside a purely renewable energy context. While this 
analysis focuses on renewable energy infrastructure, there is no reason why the methodology cannot be repli-
cated for other types of infrastructure lacking in openly accessible data. For example, conventional fuels also lack 
such consistent data. Appropriate tags for oil and gas can be found at the site of the Oil and Gas Infrastructure 
WikiProject40. We would caution that the specific methodology of this study was designed with renewable energy 
in mind, and some thought would be needed to recalibrate some of the analysis parameters, e.g. the neighbour-
hood distance.

R scripts are provided that allows users to generate and process their own raw OSM data at a future date. 
All model data is also provided so that users can recreate the power models and compare to reported national 
capacities.

We highly recommend using the geopackage data, which can be easily read into R with the sf package and has 
the advantage of holding multiple geometries, i.e. point, multipoint, polygon and multipolygon data. For ease, 
the shapefiles and comma-delimited files were restricted to point geometries by taking the centroid of each data 
record.

The datasets contain all data and require filtering in order to be meaningful for different use cases. For exam-
ple, the power models in this paper were trained on a subset of the raw data: solar farms not in urban centres, and 
with a panel area of >1 ha, and wind farms not in urban centres or in water and with more than four turbines (the 
median number of turbines in the three independent datasets was 5). For this reason, power capacity is missing 
for all data that do not meet these criteria.

Code availability
The code used to extract and process the OSM data is publicly available through the Figshare repository35. The 
code consists of four R programming language scripts (R version 3.6.2) numbered 1-4: the first extracts the latest 
OSM data; the second processes the data into wind and solar farms; the third contains the power models, and 
the fourth conducts the technical validation. Each script includes text that guides the user through the process 
and details the functions being performed. The README file, included with the scripts, provides more detail on 
rerunning the analyses.

We regret that we cannot provide the full, geospatial Wiki Solar dataset as it was provided on the condition 
of confidentiality. We have provided a copy of the spatial join between the Wiki Solar dataset and the processed 
OSM data, with all geospatial data stripped out. This can be used as an input to the power estimations on its own. 
However, the power estimation can be rerun omitting these data if users require models trained on truly open-ac-
cess data. Alternatively, users can contact the Wiki Solar data provider. When we ran this analysis, the accuracy of 

minPts 
parameter ε (m) RMSE R2 MAE n

2 800 11.22133 0.7308343 6.233574 3574

3 800 10.80424 0.7516774 6.134675 3571

5 1000 11.68232 0.7308547 6.776778 2678

10 2000 19.71299 0.6271118 11.54724 848

Table 5.  Performance measures for 5-repeat 10-fold cross validation models fitted to predict the power capacity 
of wind installations. Here, n is the sample size for the spatial join with independent datasets (Methods) after 
processing the raw OSM data with the presented values of minPts and ε.

minPts 
parameter ε (m) RMSE R2 MAE n

2 400 18.42949 0.6482381 5.367391 3280

3 400 17.90751 0.6519353 5.263504 3396

5 400 17.60908 0.6473003 5.254524 3558

10 400 17.55904 0.6446935 5.211948 3621

Table 6.  Performance measures for 5-repeat 10-fold cross validation models fitted to predict the power capacity 
of solar installations. Here, n is the sample size for the spatial join with independent datasets (Methods) after 
processing the raw OSM data with the presented values of minPts and ε.
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the solar model to predict unseen data in the two remaining independent datasets increased (RMSE = 3.153742, 
R2 = 0.7442277, MAE = 1.386226, n = 1889). However, the input data for this model only managed to capture 
96.8% of the variation in panel area in the wider OSM dataset and subsequently predicted 253 occurrences of 
power capacities outside of the model range. For this reason, we elected to keep the Wiki Solar data in the final 
model.
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