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Global humid tropics forest 
structural condition and forest 
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Susana Rodríguez-Buritica   8, Jamison Ervin7, Anne Virnig7, Christina Supples7 & 
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Remotely sensed maps of global forest extent are widely used for conservation assessment and 
planning. Yet, there is increasing recognition that these efforts must now include elements of forest 
quality for biodiversity and ecosystem services. Such data are not yet available globally. Here we 
introduce two data products, the Forest Structural Condition Index (SCI) and the Forest Structural 
Integrity Index (FSII), to meet this need for the humid tropics. The SCI integrates canopy height, tree 
cover, and time since disturbance to distinguish short, open-canopy, or recently deforested stands from 
tall, closed-canopy, older stands typical of primary forest. The SCI was validated against estimates of 
foliage height diversity derived from airborne lidar. The FSII overlays a global index of human pressure 
on SCI to identify structurally complex forests with low human pressure, likely the most valuable 
for maintaining biodiversity and ecosystem services. These products represent an important step in 
maturation from conservation focus on forest extent to forest stands that should be considered “best of 
the last” in international policy settings.

Background & Summary
The value of forests for biodiversity, ecosystem services, and human well-being is well established1,2. Consequently, 
much effort has focused on mapping forests globally and assessing changes in their extent. Remotely sensed forest 
metrics are continually evolving from forest presence, to measures of forest loss and gain, height, and landscape 
pattern (Table 1). The global earth observation community has called for the integration of such metrics into 
Essential Biodiversity Variables (EBVs) that distinguish the ecological quality of forests with regards to ecosystem 
structure, function, and composition3. We introduce two forest indices as candidate EBVs that quantify forest 
structure and human pressure.

The Forest Structural Condition Index (SCI) quantifies canopy stature, cover and disturbance history across 
the humid tropics. The SCI is derived from canopy cover, canopy height, and time since forest loss (Table 1). The 
index spans from short, open-canopy, recently disturbed forests to tall, closed canopy stands that have not been 
disturbed since 2000. Forest stature and canopy cover are products of both the biophysical potential of a local 
site and of disturbance history4,5. The tallest, most dense forests are found in settings with favorable climate and 
soils but with low levels of natural or human disturbance. Our maps of SCI are the first to identify locations in the 
humid tropics of tall, dense forests resulting from high biophysical potential and low disturbance rates. The SCI 
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was validated against estimates of foliage height diversity derived from airborne lidar across gradients in forest 
structure from recently disturbed forests, plantations, older secondary forest, and primary forest.

We overlay the updated human footprint6 on the SCI to derive the Forest Structural Integrity Index (FSII). 
The name is consistent with the concept of ecological integrity defined as a “system’s capacity to maintain struc-
ture and ecosystem functions using processes and elements characteristic for its ecoregion7” or “a measure of 
the composition, structure, and function of an ecosystem in relation to the system’s natural or historical range of 
variation, as well as perturbations caused by natural or anthropogenic agents of change8”. Accordingly, the FSII is 
based on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human 
pressure. Forests of high structural integrity are relatively tall, high in canopy cover, older, and with relatively low 
human pressure.

We developed the SCI and the FSII to aid signatory countries of the Convention on Biodiversity in quantifying 
success towards meeting the Aichi Biodiversity Targets (ABTs) of the 2011–2020 Strategic Plan for Biodiversity 
for reducing forest loss and fragmentation and for increasing connectivity among protected areas. We anticipate 
broader applications of these indices as predictors of or surrogates for biodiversity and ecosystem services given 
that forest structure is a key determinant of niche diversity and species diversity9–11. Thus, the SCI is expected 
to better predict habitat suitability for forest-structure dependent species and community richness than forest 
presence or forest intactness. Similarly, carbon storage is known to increase with forest height, stem density, and 
stand age12,13, and forests with high SCI are likley to be especially important for studies of carbon accounting. 
Hydrological flows from watersheds are influenced by forest structucture in complex ways relating to soil infil-
tration, groundwater recharge, and subsurface and groundwater flows14. The SCI can therefore be used to test 
hypotheses on relationships between forest structure and water yield.

The FSII has high potential for applications in conservation assessment and planning. An increasing number 
of studies have shown that human pressure in various forms can have negative effects on native species15–21. High 
integrity forests may be uniquely important for conservation because they support species and processes that 
require well-developed forests and are sensitive to human activities22. By intersecting structural condition with 
human pressure, the FSII identifies the subset of forests that are likely high in quality for biodiversity and produc-
tion of ecosystem services. Thus, stands of high FSII represent “the best of the last” and represent an important 
subset of remaining forests that are especially important for conservation planning.

Methods
Study area.  The project area (Fig. 1) focuses on the humid tropical forests of South America, Africa, and 
Asia. SCI and FSII were mapped within the Resolve 2017 Tropical & Subtropical Moist Broadleaf Biome23. The 
project area includes the Landsat scenes within 10°N and 20°S in South America, 10°N and 10°S in Africa, and 
30°N and 10°S in Southeast Asia. These forests tend to have relatively rapid rates of succession and rapid canopy 
recovery following disturbance24. Thus, the 17-year record of time since disturbance is meaningful for distin-
guishing recently disturbed from recovering forests in this region.

The project area includes complex gradients in climates, landform, and soils that influence natural and human 
disturbance regimes, forest growth rates, and forest structure. In South America, the project spans from Pacific 
coastal rain forests eastward across the Andes montane forests, and across the Amazon lowland humid forests. 
In Africa, the humid forests lie between the drier biomes of the Sahel to the north and savanna biomes to the 

Forest Characteristic Input forest metrics Data source Extent, resolution Reference

Forest extent Forest presence
AVHRR Africa, 1 km Tucker et al.40

AVHRR Global, 1 km Loveland et al. 41

Forest Intactness
Forest presence AVHRR

Global, 1 km
Bryant et al.42

Human footprint Various Wade et al.43

Forest loss/gain
Forest presence threshold

NOAA 7 Amazonia, 1 km Woodwell et al.44

Landsat Amazonia, 30 m Skole and Tucker45

Forest presence threshold
Canopy cover (%) Landsat Global, 30 m Hansen et al.25

Forest stature Canopy height
GLAS NW US, 15 km samples Lefsky46

GLAS
Landsat Sub-Saharan Africa, 30 m Tyukavina et al.27

Hansen et al.26

Large intact landscape Canopy cover (%),
Canopy change threshold MODIS Global, 30 m Potapov et al.47

Hinterland forest
Human pressure
Edge distance
Patch size

Landsat Global, 30 m Potapov et al.48

Tyukavina et al.49

Forest Structural 
Condition Index

Tree cover (%),
Loss Year
Canopy height

Landsat
GLAS Humid tropics, 30 m This paper

Forest Structural 
Integrity Index

Structural Condition Index
Human Footprint

Landsat
GLAS
Various

Humid tropics, 30 m This paper

Table 1.  Forest metrics developed for various conservation applications in previous studies and those presented 
in this paper (lower two rows).
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south. Southeast Asia has sharp coastal to mountain gradients that support lowland, wetland, and montane moist 
forests.

Input data sets.  The SCI was derived from three data sets: (1) global tree cover in 201025, (2) forest loss 
between 2000–201725, and (3) canopy height in 201226 (Table 2). Tree cover and forest loss were derived from 
growing-season Landsat 7 and 8 Enhanced Thematic Mapper Plus (ETM+) data processed in Google Earth 
Engine (GEE)24. Training data to relate to the Landsat metrics were derived from image interpretation meth-
ods, including mapping of crown/no crown categories using very high spatial resolution data such as Quickbird 
imagery, lidar canopy heights derived from spaceborne Geoscience Laser Altimetry System (GLAS) and airborne 
lidar data, existing percent tree cover layers derived from Landsat data, and global MODIS percent tree cover, 
rescaled using the higher spatial resolution percent tree cover data sets. On-screen image interpretation was used 
to delineate change and no change training data for forest cover loss and gain. Percent tree cover, forest loss and 
forest gain training data were related to the Landsat time-series metrics using a decision tree classifier. Outputs 

Fig. 1  Maps of SCI and FSII across the global moist broadleaf biome. (a–c) Distribution of forest structural 
condition and forest structural integrity for the South America, Africa, and southeast Asian project areas.
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include percent tree cover, forest loss, and forest gain from 2000 to 2017 at a 30 m spatial resolution. Trees were 
defined as all vegetation taller than 5 m in height. Forest loss was defined as a stand-replacement disturbance 
or the complete removal of tree cover canopy at the Landsat pixel scale. More specifically, pixels changing from 
>50% crown cover to 0% crown cover were defined as loss plots. Selective removals from within forested stands 
that did not lead to a non-forest state, however, were not included in the change characterization. In this applica-
tion we use the forest loss metric but not the forest gain product.

The validation exercise for the global forest change metrics was performed independently of the mapping 
exercise24. Areas of forest loss and gain were validated using a probability-based stratified random sample of 
1,500 blocks of 120 m per biome using image interpretation of time-series Landsat, MODIS and very high spatial 
imagery from GoogleEarth. Forest loss estimated from the validation reference data set totaled 2.2 M km2 (SE 
of 0.3 M km2) compared to the map total of 2.3 M km2. Forest gain estimated from the validation sample totaled 
0.9 M km2 (SE of 0.2 M km2) compared to the map total of 0.8 M km2. The mapped data validated especially well 
against the reference data for tropical forests24.

Canopy height in 2012 was derived by the Global Land Analysis & Discovery Lab (GLAD) at the University of 
Maryland26. Mapping tree heights with multi-spectral imagery is a relatively new application and is dependent on 
integrating synoptic coverage optical data with samples of height data. Optical data are considered to be sensitive 
to land cover properties in the horizontal plane and relatively insensitive to vertical structure. However, exploit-
ing both the temporal and spectral information domains has advanced the use of Landsat in the characterization 
of vertical vegetation structure. The key to doing so is the availability of suitable calibration and validation data. 
For example, GLAS data has been used by Tyukavina et al. (2015) to train Landsat 7 data to derive tree height27. 
Similarly, Hansen et al. (2016) regressed GLAS height data on Landsat time-series multi-spectral data to estimate 
tree height from a set of multi-temporal metrics from Landsat 7 and 8 for the 2013 and 2014 calendar years in 
Sub-Saharan Africa26. The regression model was validated by using reserved calibration data to determine the 
ability of the Landsat inputs to recreate the GLAS height calibration data, including height distributions across 
the study area. The regression tree algorithm accurately reproduced the GLAS-derived height training data with 
an overall mean absolute error (MAE) for tree height estimation of 2.45 m. Significant underestimations were 
quantified for tall tree cover (MAE of 4.65 m for >20 m heights) and overestimations for low/no tree cover (MAE 
1.61 for <5 m heights).

We integrated a recently updated global terrestrial human footprint map for 20136. Remotely-sensed and 
survey information were compiled for built environments, population density, electric infrastructure, crop lands, 
pasture lands, roads, railways, and navigable waterways. To facilitate comparison across these forms of human 
pressure, each was transformed to a 0–10 scale and weighted within that range according to estimates of their 
relative levels of human pressure following Sanderson et al.28. The resulting standardized pressures were then 
summed together to create the human footprint map. The results were validated by comparison with data from 
visual interpretation of human pressure from high resolution images in 3460 × 1 km2 sample plots randomly 
located across the Earth’s non-Antarctic land areas6. Strong agreement was found between the human footprint 
measure of pressure and pressures scored by visual interpretation of the high-resolution imagery. A root mean 
squared error analysis found an average error of approximately 13%. An analysis using the Cohen kappa statistic 
of agreement found that 88.5% of the sample plots were within 20% agreement of the predicted human footprint 
score.

SCI classification.  Tree cover, loss year, and canopy height were combined to create the SCI (Table 3). The 
reference year is 2013, with canopy cover from 2010, forest loss expressed as year of loss prior to 2017, and can-
opy height for 2012. The index ranges from 1 to 18, with the lowest value assigned to stands less than 5 m tall, 
disturbed since 2012 or with canopy cover less than 25%. The highest value is for stands not undergoing loss since 
2000 that are tall in stature and closed canopy.

The SCI is designed to be consistent with successional stages of forest development (Table 4). Following can-
opy replacement disturbance, new stems establish and undergo rapid growth due to abundant resources. Some 
stems are outcompeted and die as canopy closure is reached and resources become limiting. As some canopy trees 
reach maturation and die, understory redevelopment occurs in canopy gaps. Gap dynamics become the primary 
process in the final Old-Growth stage. In tropical rain forests, these stages are often referred to as pioneer, young 
secondary, old secondary, and primary29. In most moist tropical forests, the stem exclusion stage is reached in 
5–10 years and the understory re-initiation stage in 20–40 years23. Thus, the <6 years since forest loss class in our 

Name Derived from Resolution Validation Reference

Tree cover Landsat 30 m
2010 Image interpretation of 1500 

samples per biome globally Hansen et al.25

Loss year Landsat 30 m
2000–2017

Canopy height GLAS/Landsat 30 m
2012

Product comparison to GLAS 
training data in Sub-Saharan Africa Hansen et al.26

Human footprint
Built environments, Population density,
Electric infrastructure, Croplands/pasture, 
Railways/roadways,
Navigable waterways

1 km
2013

3114 × 1 km2 random sample plots 
globally Venter et al.6

Table 2.  Characteristics of the input data layers used to derive the SCI and FSII Index.
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structural condition index is likely the stand re-initiation stage. The 6–16 years since forest loss class is likely in 
the stem exclusion stage. The >16 years since forest loss class has an unknown disturbance history prior to 2000 
and these stands may be in the late stem exclusion, understory re-initiation, or old growth stages. The canopy 
height and canopy cover classes give additional insight into the seral stages with older forests generally being of 
higher stature and with high canopy closure. Intense forest management may alter the rate and trajectories of 
successional development, thus gradients in SCI are likely to relate to different forest processes in tree plantations 
compared to natural forests.

Forest structural integrity index classification.  The FSII is derived from overlaying the Human 
Footprint Index of human pressure on the SCI. Human activities can influence forests in several ways in addition 
to altering forest structure. Hunting and poaching alters wildlife populations without direct effects on habitat30,31. 
Human settlements, roads, and deforested areas create edge effects that can extend hundreds of meters into adja-
cent forests32. These edge effects include invasive species, livestock and pet effects, altered ecological processes, 
noise and light19. The effects of anthropogenic disturbance on biodiversity may exceed that of deforestation15. 
Integrating human footprint with forest structural condition reveals forests that may be of the highest value for 
biodiversity and various ecosystem services.

For the FSII (Table 5), human pressure classes and weights were: Low (1), HFP < 4; Medium (5), HFP >= 4 
and <=15; and High (10), HFP > 15. These threshold values of HFP are consistent with those identified as being 
highly relevant to responses of vertebrate species endangerment trends to human pressure4. FSII was calculated 
as:

= ∗FSII SCI
Human Pressure Weight

1

Resulting values of the FSII range from 0.1 to 18 with the higher values representing forests high in structural 
complexity and low in human pressure. Forests high in SCI and in FSII represent a small subset forest extent in 
many ecoregions and sometimes are not present in protected areas (Fig. 2).

Data Records
The SCI and FSII data sets are distributed as GeoTIFF files through figshare33. Each individual input layer (i.e., 
canopy cover, loss year, canopy height, and human footprint) are also provided in the data record should users 
wish to alter the weights assigned to derive SCI and FSII in accordance with their particular needs or region. All 
data are clipped to the moist broadleaf biome of the humid tropics. In addition, the United Nations Development 
Programme will also make these data available through the UN Biodiversity Lab (www.unbiodiversitylab.org) to 
enable governments from nearly 140 countries to visualize them in a web-based platform.

Technical Validation
We performed a quantitative assessment of the extent to which the SCI represents a gradient in forest structure 
by comparing the SCI values with foliage height diversity (FHD) estimates derived from airborne lidar meas-
urements. Lidar data were acquired by the Sustainable Landscapes Brazil project supported by the Brazilian 
Agricultural Research Corporation, the US Forest Service, USAID, and the US Department of State.

The geographic area of the validation was limited to Brazil Sustainable Landscapes lidar transects (Fig. 3) 
because they are consistent, high quality, and publicly available. As similar lidar datasets become available else-
where, the geographic scope of the validation will be extended. Patterns of forest structural development in the 
humid tropics are closely related to disturbance history and seral stage28. Thus, the gradient of forest structure in 
Brazil is representative of that across the humid tropics. Evidence in support of this comes from the patterns of the 
SCI input data sets across the study area. The range of tree cover, canopy height, and time since disturbance were 
similar in South America, Africa, and Asia.

We downloaded 72 transect boundaries from the Sustainable Landscapes website (http://www.paisagenslidar.
cnptia.embrapa.br/webgis/) and calculated the number of pixels of each SCI class in each transect. For each SCI 
class, we selected between 5 and 10 transects, with replacement, in which that class was represented. Some classes 
were rare in the dataset and were only represented by one or two transects.

Only transects that were sampled by airborne lidar since 2010 were included in the validation to best match 
the sampling period for the SCI. The 72 transects were generally 2–7 km wide by 2–7 km long, although one was 

Loss Year

Forest height (m)

Canopy 
cover (%)

0–5

>5–15 >15–20 >20

Canopy cover (%) Canopy cover (%) Canopy cover (%)

<25 25–75 >75–95 >95 25–75 >75–95 >95 25–75 >75–95 >95

2013–2017 1 1 1 1 1 1 1 1 1 1 1

2001–2012 1 1 2 3 4 5 6 7 8 9 10

<=2000 1 1 10 11 12 13 14 15 16 17 18

Table 3.  Forest structural condition index (SCI) classification scheme. Forest height is from 2012, canopy cover 
is from 2010, and loss year is for 2001 to 2017. Table values are SCI weights which range from 1 (low SCI) to 18 
(high SCI).
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as long as 50 km (300 m wide). Lidar points came from the vendor pre-labeled as either ground or vegetation. We 
used ground points to normalize each vegetation point to height above ground using a k-nearest neighbor, inverse 
distance weighting algorithm with k = 6 and inverse distance squared as the weighting. Vegetation heights >70 m 
were filtered out as these are likely caused by clouds or sensor noise. We then calculated point density (points/m2) 
for each 30 m cell. Cells where the lidar point density was relatively sparse (<10 points/m2) were omitted from 
the analysis. For the remaining cells, we calculated FHD using the Shannon index at 1-meter vertical intervals:

∑= −FHD p plog ( )i i

where, for each 30 m cell, pi = proportional of vegetation points in the i-th vertical interval.
The FHD data set was then reprojected using bilinear interpolation to align with the SCI grids. The SCI layer 

was filtered to omit cells with a loss year greater than the year of lidar acquisition. Cell alignment between FHD 
grids in their native projections and SCI grids varied by transect. We corrected for alignment issues by selecting 
cells within unique homogenous patches of SCI using a minimum patch size of 3 × 3 cells and removing cells 
within 90 m of the patch perimeter. The result is that validations samples are core areas of homogeneous SCI 
patches. All point cloud processing was performed with the lidR package in R, v.3.5.2.

We estimated a baseline Ordinary Least Squares (OLS) model and subsequent linear mixed effects models to 
determine the strength of relationship between SCI and FHD. All models were estimated using the full sample of 
114,253 observations. For the mixed effects models, both lidar transect and SCI patch were included as random 
effects. Lidar transect and SCI patch were identified as random effects due to the hierarchical structure and asso-
ciated spatial dependencies of the validation data – observations were nested within patches which were grouped 
into transects. We estimated separate linear mixed effects models to evaluate how imposing alternative random 
effect structures affected predictive capability. One model included only a random intercept for transect, while 
the second included a nested random intercept of SCI patch within transect. We report the Akaike Information 
Criterion (AIC) and R2 valuesa as measures of goodness-of-fit across model specifications.

The ability of the estimated models to predict forest structure was strong across all specifications (Table 6 and 
Fig. 4). Inclusion of a transect-level random effect significantly decreased AIC relative to the baseline OLS model. 
Model performance was maximized by including a nested random effect of SCI patch within transect, with SCI 
explaining 93% of the variation in airborne lidar-derived FHD. Predicted FHD increased with increasing SCI, 
although variability in predictive capability is evident for particular SCI classes (Fig. 5). This relationship asymp-
totes at class 14, indicating that SCI is not sensitive to increases in FHD above that level. These findings indicate 
that SCI is a strong indicator of foliage height diversity, which is known to be an indicator of forest structural 
complexity8.

We additionally evaluated the extent to which the SCI differed among forests of known or inferred stand 
history. Classes of forest include tree plantations, older secondary forest, and primary forest. Tree plantations 
have been mapped in Brazil34. Defined as “the biophysical presence of trees that are clearly planted and managed 

Successional Stage Key Processes Key Structures

Stand Initiation

Stand initiating disturbance(s)
Establishment of new cohort
    Colonization by new seed
    Germination from seed bank
Minimal or no nutrient limitations
Rapid growth

Live trees
100% live crown rations
Debris or slash
Legacy trees (live or dead)

Stem Exclusion

Canopy closure
Density dependent mortality
Competitive exclusion of understory
Crown differentiation
Lower canopy tree loss
Self pruning
Nutrient limitations develop

Less than 100% life crown ratios
Vertically differentiated canopy
Heavily shaded understory

Understory Reinitiation

Density independent mortality
Canopy gap initiation
Understory redevelopment
Establishment of shade tolerant species
Maturation of pioneer cohort
Canopy elaboration
Nutrient limitations persist but lessen

Understory herbaceous layer
Shade tolerant cohort
Few smaller canopy gaps
Standing dead trees
Some large woody debris
Some uprooted or snapped trees

Old Growth

Canopy gap expansion
Uprooting and snapping of large trees
Live tree decadence (poor form and disease)
Development of large branches
Pioneer cohort loss
Nutrient limitations decline as organic matter accumulates

Large diameter live trees
Large branches
Rich epiphyte community
Continuous vertical foliar profile
More standing dead trees
More large woody debris
More uprooted or snapped trees
Horizontally patchy forest
Large gaps
Densely regenerating old gaps

Table 4.  Processes and structures associated with stages of forest succession. Based on Oliver and Larson50 and 
Franklin et al.51.

aA pseudo-R2 for the linear mixed effects models using the r2GLMM package in R v.3.5.2.
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by humans”, plantations were located largely based on forest loss and gain data24 and confirmed with 2013–14 
Landsat imagery and high-resolution imagery. Primary forests were mapped35 based on texture analyses of 2001 
Landsat data. Primary forest was defined as “mature natural humid tropical forest cover that has not been com-
pletely cleared and regrown in recent history”. These forests may include locations that had been selectively logged 
or had other disturbances that may have altered forest composition and structure but have regrown the canopy 
texture typical of primary forests. We defined older secondary forest as areas with tree cover >25%, tree height 
>5 m, not undergoing forest loss after 2000, and not labeled primary forest35. Such forests may not have the 
canopy texture typical of primary forest either because of biophysical factors limiting structural development or 

SCI Value

HFP Class

Low (1) Med (5) High (10)

1 0.2 0.2 0.1

2 2 0.4 0.2

3 3 0.6 0.3

4 4 0.8 0.4

5 5 1 0.5

6 6 1.2 0.6

7 7 1.4 0.7

8 8 1.6 0.8

9 9 1.8 0.9

10 10 2 1

11 11 2.2 1.1

12 12 2.4 1.2

13 13 2.6 1.3

14 14 2.8 1.4

15 15 3 1.5

16 16 3.2 1.6

17 17 3.4 1.7

18 18 3.6 1.8

Table 5.  Weights of the Forest Structural Integrity Index derived from SCI and the Human Footprint.

Fig. 2  Extent of forests (>25% tree cover), high SCI forests (>=14), and high FSII forests (>=14) relative to 
protected areas across Colombia.
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because they underwent natural or human disturbance prior to 2000 and have not yet regrown complex structure. 
We generally expect forest structure to differ among these forest types with canopy cover and height increasing 
from tree plantations, older secondary forest and primary forest.

Among the validation plots described above, 95% were labeled primary forests, and 2.8% as older secondary 
forests; none were in tree plantations. We plotted FHD against SCI for these primary forests and older secondary 
forests. In order to evaluate SCI in tree plantations relative to the other two classes, we plotted frequency distri-
butions of SCI for tree plantations, older secondary forest, and primary forest across the full ecoregions that the 
validation plots fell within.

Within the validation plots, older secondary forests included a similar range of FHD to primary forests, 
although maximum FHD in primary forests was slightly higher than in older secondary forests (Fig. 6). These 
results indicate that some secondary forests can regain over time similar structural complexity to primary forests 
and may confer many of the ecological functions and ecological services of primary forests36. SCI varied with 
FHD similarly for older secondary forests and primary forests, indicating that SCI is able to distinguish gradients 
in structural condition equally well in these two forest classes. It is important to note that the highest SCI class 
(18) includes both primary forest and secondary forest with high FHD. Such secondary forests are likely to have 
high ecological values similar to primary forest and are important to identify for conservation planning.

The histograms of SCI show a skew towards higher SCI from tree plantations to older secondary forest to pri-
mary forest (Fig. 7). This indicates that the SCI is sensitive to differences in structural condition from the shorter 

Fig. 3  Spatial distribution of the validation procedure. (a) Location of lidar transects in Brazil. (b) Selected 
subset of lidar transect footprints. (c,d) Validation points within homogeneous patches of the SCI and FHD.

Model name Model formula AIC R2

Baseline OLS FHD = SCI + ε 47650.92 0.86

Random effect – transect FHD = SCI + (1|transect) + ε −11772.14 0.91

Random effect – patch nested in transect FHD = SCI + (1|transect/patch) + ε −59424.04 0.93

Table 6.  Results of model selection for the effects of SCI on FHD.
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and lower canopy cover tree plantations to the intermediate older secondary forest, to the taller, higher canopy 
cover primary forests.

Usage Notes
Mapping structural condition and human pressure on forests represents measures of forest quality that are rel-
evant for studies of species and communities that are habitat specialists1. As such, the SCI and FSII maps can be 
used to inform assessment of remaining forest pattern and conservation planning. These data may be particularly 
useful for countries that are assessing forest condition with regards to the ABTs under the CBD’s 2020 Strategic 
Plan for Biodiversity. They are also potentially useful for studies of carbon budgets and hydrology because it is 
thought that forests with high integrity hold an exceptional confluence of globally significant carbon and hydro-
logical values relative to forests that have experienced damaging human actions. More generally, our approach 
for quantifying forest integrity based on stand structure may motivate integration of global spatial data layers to 
represent forest functional integrity and forest compositional integrity37–39.

Readers should note that the University of Maryland canopy height data used to develop the SCI and FSII has 
only been validated in the African tropics as reported in the primary publication26. Validation of canopy height 

Fig. 4  Aerial imagery across a heterogeneous landscape in Brazil. (a,b) Distribution of SCI and FHD.

Fig. 5  Distribution of predicted FHD for each SCI class.
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for multiple years in 2000–2016 is underway for the three continental tropical areas and is expected to be available 
in the coming year.

Another important caveat about SCI is that it has an unknown but likely higher level of error at forest/non-
forest edges than in patch interiors. This is likely both because of edge effects reducing the classification accuracy 
of the input data layers and because of error in georegistration of the lidar data set and the SCI data set in the 
validation. We restricted the validation to non-edge plots to avoid these errors.

A current limitation of the SCI and FSII data sets is that they are static in time (centered on 2013) and cannot 
currently be used to assess change over time. Efforts are in progress, however, to update the input data layers to 
allow change analysis for the 2000–2017 period. A second limitation is that FSII has a coarser 1 km resolution 
compared with the 30 m SCI. This is because of the resolution of the global human footprint data set used to 
generate FSII. Some countries, such as Colombia, are now using the human footprint methodology to generate 
national 30 m maps of human pressure and include them in their reports to the CBD on national progress towards 
the ABTs. When completed, these data could be used to generate FSII at this finer spatial resolution for use in 
national conservation planning and policy development. A third limitation is that the accuracy of the height data 
used to generate SCI necessitates height classes being resolved in 5 m height intervals. Canopy metrics resulting 

Fig. 6  Relationship between SCI and FHD for validation plots labeled as primary and older secondary forest.

Fig. 7  Histograms of SCI for primary forest, older secondary forest, and tree plantations for the ecoregions 
containing the validation points.
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from the space-station based GEDI Lidar Mission (which will be available in the coming year) are expected to be 
much more accurate, ultimately allowing after two more years of data collection a more accurate and useful SCI.

Code availability
The SCI and FSII were generated in GEE. The Hansen Global Forest Change v1.5 (2000–2017) data set used to 
obtain loss year is served by GEE. Tree cover for 2010 was uploaded as a GEE asset from GLAD at the University 
of Maryland. This was done for each continental portion of the study area using the Python API Earth Engine 
shell on a parallel processor computer at Northern Arizona University. The same procedure was used for the 
canopy height data set. Human footprint data were uploaded using the GEE Asset Upload procedure.

The SCI weights were generated in GEE by assigning a mask of 0 where conditions are not met and 1 when they 
are met. An example conditional statement is:

var sciImage1 = lossYear.gte(13).and(lossYear.lte(17)).or(forest.lt(25)).or(height.lte(5)).

This formulation was then used to multiply the cells with mask = 1 times the appropriate SCI weight. This 
was done for each combination of input data values for each SCI weight. The resulting maps for each category of 
SCI weight were combined into a single map using the GEE add command. Similar coding was used for the FSII 
classification. The resulting SCI and FSII maps for each continent were exported from GEE to Google Drive. GEE 
code for the classifications are available at

Africa: https://code.earthengine.google.com/f46e40ba74164a595f9be5067a7b26cf
SE Asia: https://code.earthengine.google.com/e6595f8040af90a7b30a9b89e42c12f6
South America: https://code.earthengine.google.com/285ecd4784d7d4e0bc9a6e6aa966b54c
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