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MiLoPYP: self-supervised molecular pattern 
mining and particle localization in situ

Qinwen Huang    1,4, Ye Zhou    1,4 & Alberto Bartesaghi    1,2,3 

Cryo-electron tomography allows the routine visualization of cellular 
landscapes in three dimensions at nanometer-range resolutions. When 
combined with single-particle tomography, it is possible to obtain 
near-atomic resolution structures of frequently occurring macromolecules 
within their native environment. Two outstanding challenges associated 
with cryo-electron tomography/single-particle tomography are the 
automatic identification and localization of proteins, tasks that are hindered 
by the molecular crowding inside cells, imaging distortions characteristic 
of cryo-electron tomography tomograms and the sheer size of tomographic 
datasets. Current methods suffer from low accuracy, demand extensive and 
time-consuming manual labeling or are limited to the detection of specific 
types of proteins. Here, we present MiLoPYP, a two-step dataset-specific 
contrastive learning-based framework that enables fast molecular pattern 
mining followed by accurate protein localization. MiLoPYP’s ability to 
effectively detect and localize a wide range of targets including globular and 
tubular complexes as well as large membrane proteins, will contribute to 
streamline and broaden the applicability of high-resolution workflows for 
in situ structure determination.
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Cryo-electron tomography (CET) has recently emerged as the lead-
ing imaging technology for visualizing intricate cellular landscapes 
at nanometer resolution1–6. By taking a sequence of tilted projections 
of the sample, CET allows structural studies of macromolecular com-
plexes imaged within their native context providing valuable insights 
into their organization and interactions with partner molecules. To 
analyze these complexes effectively, it is crucial to determine the com-
position of the cellular environment and to precisely localize molecu-
lar species within the cellular milieu. This is needed for subsequent 
single-particle tomography (SPT) analysis, which allows the determi-
nation of higher-resolution structures from repeating or frequently 
occurring targets within the sample7,8. The complexity and crowded-
ness of cellular environments compounded with the low signal-to-noise 
ratios and the image distortions caused by the missing wedge, however, 
pose substantial technical challenges2,9. Moreover, these problems are 
exacerbated by the large volumes of data that are routinely produced 

using high-throughput strategies for sample preparation10–12, autono-
mous grid navigation13,14 and multi-shot tomography15–17.

Current solutions to the problem of cellular pattern mining include 
template matching18–21 and manual or semiautomatic approaches that 
require substantial amounts of user intervention22,23. Template-based 
methods are prone to model bias and are computationally intensive, 
especially when dealing with large datasets and multiple protein 
species. Inspired by the success of methods based on convolutional 
neural networks (CNNs) to pick particles from two-dimensional (2D) 
micrographs24–29, CNN-based approaches were introduced to pick 
particles from 3D tomograms28,30–32. These fully supervised methods, 
however, require extensive data annotation and generalize poorly to 
previously unseen datasets. More recently, DISCA, an unsupervised 
clustering-based approach was introduced33 that learns to classify 
subtomograms by modeling data distributions using expectation–
maximization. However, DISCA suffers from training instability, 
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Fig. 1 | Overview of MiLoPYP modules for self-supervised cellular content 
exploration and semi-supervised particle localization. a, The cellular 
content exploration module learns an embedding for each subtomogram and 
corresponding patches from the aligned tilt series. The embeddings can be 
visualized in three different ways: (1) the 2D grid visualization displays patches 
in a 0–1 grid based on the learned embedding coordinates using a rainbow color 
scheme (top, middle); (2) the 3D tomogram visualization maps patches back 
to the 3D tomogram coloring the corresponding center coordinates based on 
the embedding coordinates (top, right); and (3) an interactive session displays 

embeddings in 3D space allowing the user to perform interactive selection, 
visualization and export of training coordinates for specific protein species 
(bottom). b, MiLoPYP's refinement module performs protein localization 
using few-shot learning followed by a protein-specific post-processing step 
that determines particle locations based on their shape. Training is done using 
partially annotated tomograms produced by the cellular content exploration 
module. The final output consists of 3D tomogram coordinates for each particle 
species that can be used for downstream SPT.
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assumes a discrete number of clusters and requires that large con-
tinuous structures such as membranes be separately annotated, thus 
increasing the amount of user intervention. To partially mitigate these 
problems, a representation learning-based approach called TomoTwin 
was proposed34. TomoTwin learns to map each voxel and its surround-
ing content into high-dimensional subspace and the relative location 
of macromolecules is determined by measuring similarities between 
the embeddings. Still, this fully supervised approach requires extensive 
training using tens of thousands of simulated tomograms of known 
proteins obtained from the Protein Data Bank (PDB)35, and has been 
shown to have limited success on non-globular and unseen proteins. 
In addition, the use of three-dimensional (3D) subtomograms during 
training and evaluation makes existing approaches computationally 
intensive and prone to distortions caused by the missing wedge.

To overcome these challenges, we present MiLoPYP, a dataset- 
specific cellular pattern Mining (Mi) and particle Localization (Lo) 
PYthon (PY) Pipeline (P). MiLoPYP operates in two phases: a cellular 
content exploration step followed by protein-specific particle locali-
zation. During the first step, the framework learns to embed subto-
mograms into a high-dimensional representation in a self-supervised 
fashion using contrastive representation learning36–40. MiLoPYP effec-
tively maps subtomograms into an embedding space where similar 
data points are positioned close to each other while dissimilar ones are 
pushed apart, thus improving separability and allowing users to iden-
tify frequently occurring proteins. During the second step, MiLoPYP 
learns to identify specific proteins across entire datasets using few-shot 
particle detection that only requires sparse labels for training and is 
computationally efficient41. Training data for the protein localization 
step are obtained by interactively selecting a subset of points from the 
output of the cellular content exploration step, thus eliminating the 
need for time-consuming manual labeling. To minimize the effects of 
the missing wedge and reduce computational costs, we use averages 
of 2D projections from the raw tilt series and averages of consecutive 
tomographic slices (instead of 3D subtomograms)42. In addition to 
detecting globular-shaped targets, MiLoPYP can accurately identify 
membrane-attached proteins and fiber-like proteins, providing a ver-
satile tool for comprehensive cellular content exploration and protein 
localization that runs fast and requires minimal human intervention.

Results
Overview of MiLoPYP’s workflow
MiLoPYP is a deep-learning framework comprising a cellular content 
mining and exploration module followed by protein-specific particle 
localization (Fig. 1). Both modules require minimal supervision, thereby 
enhancing their practicality. In the cellular content exploration module, 
instead of using a naive sliding-window approach centered around 
each voxel, MiLoPYP utilizes a difference of Gaussian (DoG) pyramid to  
identify crucial coordinates of interest43, thus resulting in improved 
computational efficiency (Extended Data Fig. 1). Sub-volumes centered 
at these coordinates are then extracted from the tomogram and fed into 
a Siamese network used for representation learning40. By leveraging 
pairs of augmented sub-volumes as inputs, the network maximizes the 
similarity between each sub-volume and its augmented counterpart, 
eliminating the need for ground-truth labels. Once trained, the network 
effectively learns to group together proteins with similar shapes while 
assigning proteins with different shapes to distant representations. 
MiLoPYP offers three methods to visualize the learned embeddings: 
2D grid visualization, 3D tomogram visualization and 3D embedding 
interactive session (Fig. 1a). For 2D grid visualization, 2D feature vectors 
are assigned to individual xy slices of subtomograms and positioned 
on a 2D grid colored according to normalized feature-coordinate val-
ues. For 3D tomogram visualization, MiLoPYP allows mapping the 
structural diversity present in a dataset by assigning a distinct color 
to each voxel in the tomogram based on its normalized 2D representa-
tion, with similar color voxels representing structurally homogeneous 

features. For the 3D embedding interactive session, embeddings are 
first assigned discrete labels using an over-clustering algorithm and 
colored according to their embedding coordinates (Methods). Users 
can then interactively select specific regions of the embedding space 
and conveniently visualize patches by mapping them to their original 
tomogram positions. MiLoPYP’s visualization tools allow users to con-
veniently explore and select subsets of frequently occurring particles 
across large sets of tomograms and use them as input to the protein 
localization module (Fig. 1b). Since the original DoG-based coordi-
nates typically have low precision, a refinement step is necessary to 
improve the accuracy of protein localization. MiLoPYP’s refinement 
step is trained in a semi-supervised manner and generates a probability 
heat map that represents the likelihood of a given protein being present 
at each voxel in the tomogram. Non-maximum suppression (NMS) is 
then applied to this probability heat map, followed by post-processing 
and thresholding using a user-defined probability value (Extended 
Data Fig. 2). The positions resulting from the refinement step consti-
tute the final 3D coordinate outputs that are used for subsequent SPT 
refinement.

Accurate detection and localization of proteins imaged 
in vitro
We first assessed the performance of MiLoPYP on tilt series from puri-
fied Escherichia coli 70S ribosomes (EMPIAR-10304)44. The feature 
mapping obtained using the exploration module served as confirma-
tion of the inherent species homogeneity in this dataset. The 2D grid 
visualization reveals distinct clusters representing 70S ribosomes, gold 
fiducials and the presence of background elements and contamination 
(Fig. 2a). The 3D tomogram visualization provides a visual perspec-
tive, showing the location of different structural elements within each 
tomogram. The distance between representations for ribosomes and 
gold beads is closer in comparison to distances observed between rep-
resentations for ribosomes and background (or gold fiducials and back-
ground), highlighting the discriminatory capacity of MiLoPYP. Using 
the 3D interactive session, we obtained a subset of particles that shared 
the same label (assigned through over-clustering). Within this subset, 
a cluster comprising 230 particles was selected by visual inspection of 
the cluster centroids (Methods). The particles and their corresponding 
coordinates from this cluster were used to train the refinement module 
(Fig. 2b). Following 3D refinement and reconstruction in nextPYP45, 
we obtained a 5.0 Å resolution map of the 70S ribosome (Fig. 2c). To 
assess the robustness of MiLoPYP to the number of annotations, we 
measured the quality of particle picking using F1 scores as a function 
of the number of labels (Extended Data Fig. 3a). While having more 
annotations always improved performance, using only 55 annotations 
produced a high detection F1 score of 0.73, demonstrating MiLoPYP’s 
ability to locate targets at progressively lower concentrations. We also 
benchmarked MiLoPYP against conventional template matching18,46,47 
and deep-learning-based approaches crYOLO-3D28, DeepFinder31, 
DeePiCt32 and TomoTwin34 (Methods). Our experiments show that 
MiLoPYP consistently outperforms existing algorithms on challenging 
Electron Microscopy Public Image Archive (EMPIAR) datasets both in 
terms of speed and precision/recall scores while requiring minimal 
user input.

Detection of molecular patterns and particle identification 
in situ
Next, we assessed MiLoPYP’s ability to map proteins within crowded 
cellular environments using tomograms from Mycoplasma pneumo-
niae bacterial cells (EMPIAR-10499)48. The 2D grid visualization plots 
revealed the presence of cell membranes as well as 70S ribosomes 
(Fig. 3a). They also uncovered the presence of smaller-sized particles 
and vesicles, which we are currently unable to identify due to their 
limited copy number in the dataset (Extended Data Fig. 4). Using the 
interactive 3D embedding session, we selected a cluster corresponding 
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to 70S ribosomes (Methods), resulting in 195 positions that were used to 
train the detection module, which was then applied to all 65 tomograms 
in the dataset (Fig. 3b). A total of 23,285 particles were picked and sub-
jected to 3D refinement and reconstruction in nextPYP, producing a 5.4 Å  
resolution reconstruction of the 70S ribosome (Fig. 3c). We also quanti-
fied the quality of particle picking by measuring F1 scores, evaluating 
changes in picking accuracy with respect to the number of annotations, 
and comparing detection performance against traditional template 
matching and crYOLO-3D (Extended Data Fig. 3b). To further assess 
MiLoPYP’s performance on crowded samples, we analyzed tomograms 
from Chlamydomonas reinhardtii cells containing high concentrations 

of the ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo) 
enzyme (available from EMPIAR-10694)49. 2D grid visualization of the 
learned embeddings from the exploration module revealed that the 
dataset is relatively homogeneous (Extended Data Fig. 5a). A total of 
86 annotations were selected from the interactive session and used to 
train the particle localization module. After training, MiLoPYP identi-
fied a total of 36,345 particles, which were used to produce an 11.0 Å 
resolution structure of RuBisCo (Extended Data Fig. 5b). These results 
show MiLoPYP’s ability to accurately detect targets in situ with minimal 
user intervention, addressing an important challenge in the CET/SPT 
structure determination pipeline.

a

Ribosomes

cb

2D grid visualization 3D tomogram visualization

Partially annotated input tomogram Output from particle mode detection

90°

U
M

AP
2

1

1

0 2,000 Å

2,000 Å2,000 Å

UMAP1

Fig. 2 | Accurate detection of purified 70S ribosomes from densely populated 
tomograms. We analyzed tilt series from the EMPIAR-10304 dataset using our 
content exploration and particle localization modules. a, 2D grid visualization of 
the embedding space (top, left) showing ribosomes (red), gold fiducials (purple), 
as well as other patches corresponding to contamination and background 
areas. A selection of patches containing gold fiducials (purple outline) and 70S 
ribosomes (red outline) is shown below. 3D tomogram visualization view (top, 
right) with voxels colored according to the embedding coordinates shown in 

the 2D grid visualization representation. The exploration module is able to 
successfully differentiate gold fiducials from ribosomes despite their similar 
size and shape. b, A partially annotated input tomogram showing 70S ribosomes 
(blue circles) used for training the refinement model (left). The trained model 
accurately identifies ribosomes (red circles) while ignoring gold beads and 
contamination/background areas (right). c, 5.0 Å resolution reconstruction of 
the 70S ribosome obtained from a total of 6,051 particles using SPT.
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Identification of native membrane proteins attached to viral 
particles
To test the ability of MiLoPYP to detect particles of more diverse shapes, 
we analyzed a dataset of severe acute respiratory syndrome coronavirus 2  
(SARS-CoV-2) virus particles (EMPIAR-10453)50. 2D grid visualization of 
the learned embeddings showed two distinct populations of spikes pre-
sent: membrane-attached spikes and free-floating spikes (Fig. 4a). To 
evaluate MiLoPYP’s ability to focus on a specific structural pattern, we 
selected a total of 144 membrane-attached spikes from the interactive 
3D session and used them to train the detection module. Running infer-
ence on the entire dataset yielded a total of 23,388 membrane-bound 
spikes (Fig. 4b). 3D refinement and classification in nextPYP revealed 
two conformations of membrane-attached spikes (open and closed) 
that were resolved to resolutions of 5.6 Å and 9.3 Å, from 9,194 and 
3,740 particles, respectively (Fig. 4c). These results are consistent 
with findings reported in the original study where approximately 

1,000 virions were manually selected followed by a labor-intensive 
geometry-based picking procedure50. These experiments demonstrate 
MiLoPYP’s ability to accurately map and detect membrane-bound 
viral proteins in their native environment while requiring minimal 
user input.

Simultaneous detection of multiple protein species from 
cellular lamellae
In addition to evaluating the discriminatory and localization capa-
bilities of MiLoPYP on globular-shaped and native viral proteins, 
we further examined its ability to detect tubular-shaped complexes 
imaged by cryo-ET from focused ion beam/scanning electron micros-
copy (FIB/SEM)-milled samples. To do this, we analyzed a dataset of 
tomograms collected from thinned lamellae of mouse mammary 
gland epithelial EpH4 cells (EMPIAR-10987)16. As expected, the 
representation learned using the exploration module revealed the 
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Fig. 3 | Structural mapping and accurate identification of native ribosomes 
inside bacterial cells. a, 2D grid visualization of embeddings obtained from tilt 
series downloaded from EMPIAR-10499 (top, left) showing ribosomes (blue), 
cellular membranes (purple/red) and other smaller-sized proteins (dark green). 
3D tomogram visualization view (top, right) with voxels colored according to 
the embedding coordinates. A selection of patches containing 70S ribosomes 

is shown below (purple outline). b, A partially annotated input tomogram 
corresponding to 70S ribosomes (blue circles) used for training the refinement 
module (left). The trained model accurately identifies ribosomes (red circles) 
while ignoring membrane and background areas (right). c, 5.4 Å resolution SPT 
reconstruction of the 70S ribosome obtained from a total of 17,381 particles 
detected from 65 tomograms.
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presence of membranes, fibers, microtubules and 80S ribosomes 
(Fig. 5a and Extended Data Fig. 6). We obtained coordinates for ribo-
somes and microtubules to train the refinement module by selecting 
corresponding subregions from the interactive 3D session, resulting 
in a total of 137 coordinates for ribosomes and 102 coordinates for 
microtubules (Fig. 5b). After training the refinement module using 
the ribosome positions, we obtained a total of 6,068 particles that 
resulted in a 8.6 Å resolution map of the 80S ribosome (Fig. 5c). We 
followed a similar procedure for the tubular-shaped particles, where 
coordinates for each microtubule were defined as the centers of their 

cross-sections, such that the number of points in a single microtubule 
was associated with its length (Extended Data Fig. 7). From 40 micro-
tubules present across 21 tomograms, we successfully identified and 
traced 38 of them (Fig. 5b). Overlapping particles corresponding to 
microtubule segments were extracted and utilized for 3D refine-
ment and reconstruction in nextPYP. From a total of 1,761 particles, 
we obtained a 37.0 Å resolution structure (Fig. 5d), demonstrating 
MiLoPYP’s ability to detect protein species from a range of sizes and 
shapes from tomograms collected from FIB/SEM-milled lamellae 
samples.
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Fig. 4 | Parsing of complex native environments and accurate identification 
of membrane-bound complexes. We analyzed tilt series from EMPIAR-10453 
containing SARS-CoV-2 viruses with spike protein attached to their surfaces.  
a, 2D grid visualization of SARS-CoV-2 sample showing patches corresponding to 
free-floating and membrane-bound spikes (top, left). 3D tomogram visualization 
with voxels colored according to the embedding coordinate values (top, 
right). Selections of patches containing free-floating spikes (purple outline) 

and membrane-attached spikes are shown below (pink outline). b, Membrane-
attached SARS-CoV-2 spike localization after running the refinement module 
(pink circles). c, 5.6 Å and 9.3 Å resolution structures for the open and closed 
states determined by SPT from a total of 13,047 spikes extracted from 266 
tomograms: open state reconstructed from 9,194 particles (left), and closed state 
from 3,740 particles (right). PDB coordinates 6VYB and 6VXX were fitted into the 
maps using rigid body fitting, respectively.
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Accurate detection and localization of large membrane 
proteins in cells
We further examined MiLoPYP’s ability to detect large membrane pro-
teins from tomograms of FIB/SEM-milled Saccharomyces cerevisiae 
cells available from EMPIAR-11658. In addition to ribosomes, mem-
branes and other cellular features, the representation learned using 
the exploration module revealed the presence of complexes bound 
to mitochondrial cristae consistent with the shape and dimensions 

of ATP synthase (Fig. 6a). Corresponding coordinates selected using 
the interactive 3D session (Fig. 6b) were manually edited to ensure the 
quality of the training coordinates and used to train the refinement 
module. Compared to other datasets, this one required more particles 
to be selected (247) to achieve sufficient picking accuracy. A total of 
4,105 particles were picked from 48 tomograms and subjected to 3D 
refinement and classification in nextPYP resulting in a 13.0 Å resolu-
tion map of ATP synthase from 2,577 particles (Fig. 6c), demonstrating 
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Fig. 5 | Simultaneous identification and structure determination of multiple 
protein species from in situ lamellae. a, 2D grid visualization of in situ 
tomograms from EMPIAR-10987 (top, left). The embedding space shows a variety 
of features and proteins including 80S ribosomes (purple) and microtubules 
(green). 3D tomogram visualization with voxels colored according to the 
embedding coordinates in the 2D grid visualization (top, right). A selection of 
patches containing microtubules (bottom, left) and 80S ribosomes (bottom, 

right) are shown. b, After training and inference of the refinement module, 
MiLoPYP accurately localizes 80S ribosomes (purple) and microtubules 
(green). c, 8.6 Å resolution reconstruction of 80S ribosomes obtained from 
4,570 particles. d, 37.0 Å resolution reconstruction of microtubules from 1,761 
particles. PDB coordinates 6MTB and 6RZB were fitted into the maps using rigid 
body fitting, respectively.

http://www.nature.com/naturemethods
https://www.ebi.ac.uk/empiar/EMPIAR-11658/
https://www.ebi.ac.uk/empiar/EMPIAR-10987/
https://doi.org/10.2210/pdb6MTB/pdb
https://doi.org/10.2210/pdb6RZB/pdb


Nature Methods

Article https://doi.org/10.1038/s41592-024-02403-6

MiLoPYP’s ability to detect large membrane proteins present at low 
concentration in cellular tomograms.

Discussion
Recent advances in cellular sample preparation10–12, tomographic data 
collection13–17 and image processing45,48 have established CET/SPT as the 
technique of choice for determining protein structures in their native 
state at high-resolution. One remaining technical challenge, however, 
has been the lack of computational tools to effectively sort through 
the intrinsic complexity of crowded cellular environments captured by 
CET. To address these challenges, we developed MiLoPYP, a robust and 
dataset-specific framework for molecular pattern mining that facilitates 
cellular content exploration and allows detection of a wide range of 
targets including globular-shaped, membrane-attached and fiber-like 
proteins. The framework is computationally efficient and requires 
minimal user intervention, making it suitable for processing large data-
sets that are required to determine high-resolution structures by SPT.

While MiLoPYP offers unique features and substantial advantages 
over existing approaches, it is also important to acknowledge some of its 
limitations. First, the representation learning module may struggle to 
distinguish proteins of similar shape or size, as exemplified in the detec-
tion of gold fiducials and ribosomes on EMPIAR-10304. Second, while 
self-supervised representation learning does not require a minimum 
number of exemplars to represent a single class, the 2D visualization 
step in MiLoPYP is prone to the class imbalance problem as dimension-
ality reduction techniques such as uniform manifold approximation 
(UMAP) and t-distributed stochastic neighbor embedding (t-SNE) are 
inevitably influenced by the number-of-neighbors parameter. Conse-
quently, rare proteins present at lower concentrations may have their 2D 
representations blended with more abundant proteins of similar shape, 
preventing their correct identification. Provided that enough particles 
from each state or species are present, however, these problems can 
be dealt with during downstream SPT analysis using 3D classification 
techniques designed to characterize conformational variability.
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Fig. 6 | Detection and structure determination of ATP synthase from in situ 
lamellae. a, 2D grid visualization of tomograms from EMPIAR-11658 (left). The 
embedding space shows a variety of features and proteins including ATP synthase 
(green). Over-clustering with labels shows a group of patches corresponding 
to ATP synthase complexes (top, right). A selection of patches containing ATP 

synthase (bottom, left). b, Selected tomogram reconstruction with segmentation 
and the ATP synthase structure mapped back into the original positions. c, 13.0 
Å resolution structure of ATP synthase obtained from 2,577 particles with PDB 
coordinates 8FL8 fitted into the map using rigid body fitting.
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Going forward, strategies for molecular pattern mining such as 
those implemented in MiLoPYP could be combined with emerging 
tools for 3D segmentation based on deep-learning that can accurately 
detect the position of subcellular features within tomograms such 
as membranes, filaments and organelles. Focusing the attention of 
MiLoPYP’s exploration module on biologically relevant regions of the 
cell will result in improved pattern mining performance and higher 
detection accuracy, for example, allowing the routine localization of 
membrane proteins and other important targets attached to cytoskel-
eton components. Ultimately, the combination of deep-learning-based 
tools for image analysis with powerful strategies for SPT will facilitate 
the visualization of biomolecules in situ at high resolution.

In summary, MiLoPYP offers a convenient tool to map the interior 
of cells and find the location of multiple protein species within their 
native environment, as required for high-resolution analysis by SPT. 
Bypassing the need for laborious manual labeling, MiLoPYP can effec-
tively map entire sets of tomograms, thus facilitating the interpreta-
tion, discovery and selection of target macromolecules. In addition 
to the precise identification of globular-shaped macromolecules, 
MiLoPYP can accurately detect membrane-bound and tubular-shaped 
complexes, converting it into a versatile tool for in situ molecular 
pattern mining. Importantly, the framework is computationally effi-
cient and enables processing hundreds of tomograms, as needed for 
high-resolution SPT analysis. The code for MiLoPYP is distributed as 
open-source software, and the program has been incorporated into 
the user-friendly software package nextPYP.

Online content
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
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Methods
Self-supervised pattern mining and exploration module
The goal of the exploration module is to learn an embedding from the 
input set of tomograms and facilitate the identification of abundant 
protein species that could be used for high-resolution SPT analysis. 
This module is composed of three main steps: (1) 3D tomogram pre-
processing, candidate coordinate generation, corresponding tilt series 
averaging and subtomogram slice extraction; (2) 2D CNN feature rep-
resentation learning based on self-supervised contrastive learning; 
and (3) visualization of learned features.

Preprocessing, coordinate generation and filtering. A typical CET 
dataset, denoted as 𝒟𝒟, consists of a collection of tomograms repre-
sented as Ti ∈ RW×H×D, where i ranges from 1 to j (j typically ranging from 
tens to a few hundred tomograms) and W, H and D are the tomogram 
dimensions. The preprocessing stage involves applying Gaussian 
denoising and histogram equalization techniques to enhance image 
contrast. 3D candidate coordinates are generated for each preproc-
essed tomogram Ti using a DoG pyramid approach. To obtain these 
coordinates, the input tomogram Ti is Gaussian filtered using progres-
sively higher standard deviations σi with i = 1, …, n. This results in  
n Gaussian smoothed tomograms, denoted as ̃Ti. A DoG represen-
tation is then obtained by calculating the difference between two 
Gaussian smoothed tomograms with different standard deviations: 
DoGi = ̃Ti − ̃Ti+1. The final DoG representation is obtained by selecting 
the maximum voxel value across all levels of the pyramid followed by 
3D NMS. Following this step, 3D coordinates are extracted based on 
voxel values that exceed a specified threshold determined automati-
cally using 0.5 standard deviations above the mean voxel intensity. For 
each 3D coordinate (x, y, z), its corresponding 2D coordinate (xθ, yθ) in 
the tilted projection at angle θ is calculated as shown in equation (1):

(xθ, yθ) = ((x − ⌊W2 ⌋) cos(θ) + (z − ⌊D2 ⌋) sin(θ) + ⌊W2 ⌋ , y) . (1)

Since tilted images within a −15∘ to +15∘ range contain higher contrast 
information, we calculate the projected 2D coordinates (xθ, yθ) only for 
images in this angular range. Subsequently, patches centered at the 
calculated coordinates (xθ, yθ) are extracted and averaged to obtain the 
final 2D tilt series input, denoted as Pt. In addition, we also extract Ps, 
consisting of the central tomographic slice at coordinates (x, y, z). The 
pair Pt, Ps serves as input to the neural network (Extended Data Fig. 1a). 
For datasets containing low-quality tilt series or substantial overlap 
in the z-direction due to crowding, only Ps is used as input, rather than 
feeding the pair Pt, Ps.

NMS is an essential step aimed at selecting the most prominent 
locations based on nearby voxel values. This operation is performed 
in a greedy manner, starting from coordinates having the highest voxel 
values. To prevent the selection of neighboring voxels, a user-defined 
radius is used during NMS. Any voxel within this distance from an 
already selected coordinate is excluded from further consideration. 
The choice of radius is determined by the user and should be adjusted 
according to the expected particle density. For densely populated 
tomograms, a smaller radius is recommended to ensure accurate 
identification of individual particles and to minimize the risk of select-
ing nearby voxels.

Overall architecture and contrastive learning loss function. 
MiLoPYP uses 2D CNNs for feature representation learning. The overall 
architecture follows the Siamese neural network design, which contains 
two identical subnetworks with the same configuration and parame-
ters40,51. During training, MiLoPYP takes as input two randomly aug-
mented views Pt1, Ps1 and Pt2, Ps2 based on the original pair Pt, Ps. The two 
views are processed by an encoder network, f, consisting of a 
ResNet18-based backbone and a projection multilayer perceptron 

(MLP) head, h. The encoder f shares weights between the two views. A 
prediction MLP head h is applied to the output of one view, and a 
stop-gradient operation is applied on the other side. The ResNet18 
backbone consists of 18 layers52, including one convolution layer with 
kernel size 7 × 7 and four residual blocks with kernel size 3 × 3, one 
average pooling layer and one fully connected layer. The projection 
MLP head is composed of three fully connected layers with 
one-dimensional (1D) batch normalization and rectified linear unit 
(ReLU) activation. The prediction MLP head is composed of two fully 
connected layers with 1D batch normalization and ReLU activation. 
The output vector from the encoder network of dimension 128 is 
denoted as yi ≜ h( f(Pti ,Psi )) and the output vector from the prediction 
head h of dimension 128 is denoted as zi ≜ f(Pti ,Psi ). CNNs are trained 
by maximizing the cosine similarity between the learned representa-
tions of positive pairs. Through this training process, MiLoPYP learns 
to embed macromolecules with shared structural similarities close to 
each other while placing dissimilar macromolecules farther apart in 
feature space.

Following ref. 40, we define the negative cosine similarity as in 
equation (2):

𝒟𝒟( y1, z2) = − y1
∥ y1∥2

⋅ z2
∥ z2∥2

, (2)

where ∥ ⋅ ∥2 represents the L2 norm. The final symmetrized loss function 
has the form shown in equation (3):

ℒ = 1
2𝒟𝒟( y1, stopgradz2) +

1
2𝒟𝒟( y2, stopgradz1), (3)

with a minimum possible value of −1. Here, ‘stopgrad’ refers to the 
stop-gradient operation where the model parameter-dependent vari-
able z is treated as a constant during back-propagation. By applying the 
stop gradient, the encoder function f operating on the input pairs Pt1, Ps1 
does not receive gradients from z2 in the first term, but it does receive 
gradients from y1 in the second term. The same principle applies to the 
input pairs Pt2, Ps2, where f receives gradients from y2 but not from z1. 
This stop-gradient operation is crucial for preventing model degenera-
tion when training models with only positive pairs.

Model training, inference and data augmentation. Training of the 
2D CNN was performed for 300 epochs using stochastic gradient 
descent53. We initialize the network using pretrained ResNet18 weights 
on ImageNet from PyTorch. We use a batch size of 256 and a learning 
rate of 0.02. The learning rate has a cosine decay schedule. The weight 
decay is 0.0001 and the stochastic gradient descent momentum is 0.9. 
During training, a subset of the dataset 𝒟𝒟 is used, which typically 
includes 5 to 10 tomograms. Training is performed on a single NVIDIA 
V100 GPU with 32 GB of RAM. Training for 300 epochs typically takes 
less than 2 h. After training, evaluation can be performed on the same 
subset of tomograms or on the entire dataset.

In self-supervised contrastive learning, the goal is to train the net-
work in such a way that the representation of different augmented views 
of the same instance are maximally similar. To achieve this, careful 
selection of data augmentation techniques is essential to preserve the 
identity of each instance. In our approach, we apply several random 
augmentations during training. These include horizontal and vertical 
flipping, intensity jittering, random resize crop, corner dropout and rota-
tions (multiples of 90°). Each of these augmentations serves a specific 
purpose in maintaining instance identities and promoting effective 
learning. Intensity jittering is used to vary the brightness and contrast 
of the input instances. Brightness is jittered from 0 to 0.5 and contrast is 
jittered from 0 to 0.2. By jittering these values within certain ranges, we 
enable the model to learn the shapes of instances irrespective of their 
gray value characteristics. Random resize crop is used to randomly crop a 
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portion of the input instances within a range of 0.7 to 1 times the original 
size, which is then resized back to the original size. This augmentation 
helps the model focus on learning the shapes of instances while mini-
mizing sensitivity to their size variations. The choice of a larger lower 
bound (0.7) in the crop range allows the model to capture important 
shape information without completely disregarding size differences, 
which can be substantial in distinguishing macromolecules. Corner 
dropout involves randomly setting the voxel values to 0 within a subarea 
located at the corner of each input instance. This operation encourages 
the model to concentrate more on the central region (where particles 
are), enhancing the model’s ability to capture important features. Rather 
than applying random rotations, we restrict rotation to multiples of 90°. 
This decision is based on experimental findings that random rotation, 
particularly with interpolation, can introduce distortions that may 
hinder shape learning. Using rotations that are multiples of 90° avoids 
interpolation artifacts and simplifies the resampling of voxel values.

Dimensionality reduction, visualization and module output. For 2D 
grid visualization, the 128-dimension learned representation is reduced 
to 2D using UMAP54. 2D embeddings were computed using version 
0.5.0 of the Python implementation (https://github.com/lmcinnes/
umap/) with k = 40 for the k-nearest-neighbors graph and a minimum 
distance parameter of 0.1. Using fewer neighbors may help reveal finer 
local structure, while the use of more neighbors will capture the overall 
structure with some loss of fine local structure (Extended Data Fig. 8). 
Grid visualization and 3D mapping tools are included with MiLoPYP, 
through the nextPYP and Phoenix (https://github.com/Arize-ai/phoe-
nix/) applications.

To assign each learned embedding with a class label without 
knowing the actual number of classes c in the dataset, we perform 
over-clustering and label reassignment. As the main objective is to 
explore protein variability within the dataset, instead of identifying the 
correct number of classes, grouping similar proteins into the same class 
is more important, which makes over-clustering a reasonable approach. 
For a set of embeddings, we first perform vanilla k-means using FAISS55 
with k substantially larger than the actual potential number of clusters 
for the dataset, that is, k ≫ c. Then, spectral clustering56 is applied to k 
cluster centers, and we further recluster these k initial centers into h 
classes, where h is a user-defined value. Typically, h is smaller than k but 
still greater than the potential actual number of classes. Following the 
over-clustering and label reassignment step, the learned embeddings 
are classified into h labels. Each class of embeddings is assigned a dif-
ferent color and users can select specific classes or individual patches 
to view in the 3D interactive session (Extended Data Figs. 4 and 6).

Through an interactive session, users can effectively identify tar-
gets of interest for further investigation. By selecting specific patches 
and their neighbors within a user-defined subregion or user-specified 
labels, the corresponding 3D coordinates can be obtained. It is impor-
tant to note that as the subregions become bigger, the accuracy of 
selection diminishes due to the unsupervised nature of feature repre-
sentation learning. To obtain a precise set of candidate coordinates, a 
refinement stage is necessary. The training process for the refinement 
model requires a small number of annotated examples. These examples 
can be derived by selecting candidate patches from the interactive 
session, eliminating the need for manual annotation.

Few-shot particle localization module
Similarly to the exploration module, the particle localization module 
is composed of the following main steps (Fig. 1b and Extended Data 
Fig. 2): (1) 3D tomogram preprocessing with Gaussian denoising and 
voxel intensity rescaling using histogram equalization; (2) few-shot 
learning-based neural-network training; and (3) extraction of particle 
coordinates using NMS (for globular-shaped particles) or extraction of 
particle coordinates using polynomial fitting (for fiber-like proteins or 
microtubules; Extended Data Fig. 6). The particle localization module 

offers the flexibility to be trained using partially annotated tomograms, 
which only need a limited number of labeled particles. These labels 
can be obtained either through the previous exploration module or 
by manual annotation. This approach enables efficient training and 
facilitates the accurate localization of particles with minimal require-
ments for labeled data.

Framework for particle detection. The objective of semi-supervised 
protein localization is to develop a model capable of detecting the 
locations of proteins in 3D tomograms, while learning from only a few 
annotated examples. Each tomogram Ti contains a varying number of 
proteins, typically ranging from a few hundreds to a few thousands. In 
the semi-supervised protein identification scenario, the training set 
𝒟𝒟tr consists of a single tomogram Ttr with a few annotated proteins, 
while the remaining tomograms serve as the testing set 𝒟𝒟te. Unlike 
standard object detection algorithms that aim to localize objects of 
interest using bounding box locations and sizes, in cryogenic electron 
microscopy applications, the desired output for the particle detection 
task are the center coordinates of proteins. Hence, inspired by ref. 57, 
we train the particle detector using 𝒟𝒟tr to generate a center point heat 

map ̂Y ∈ [0, 1]C×
W
R1
× H
R1
× D
R2 , where Ri represents the output stride and C is 

the number of protein species. The output stride downsamples the 
prediction by a factor of Ri on each dimension. In our case, we consider 
monodisperse samples, so we set C = 1 and we use Ri = 1. In subsequent 
sections, we omit the dimension for simplicity. We extend the approach 

used in ref. 58 to generate the ground-truth heat map Y ∈ [−1, 1]
W
R1
× H
R1
× D
R2  

using the partially annotated tomogram. For each annotated center 
coordinate position p = (x, y, z), we compute its downsampled equiva-
lent as ̃p = (⌊ x

R1
⌋, ⌊ y

R1
⌋, ⌊ z

R2
⌋). For each ̃p in Y, in the case of globular particle 

detection, we apply a Gaussian kernel Kxyz = exp (−
(x− ̃px)

2+(y− ̃py)
2+(z− ̃pz)

2

2σ2k
), 

where σk is determined by the particle size58. For the detection of 
tubular-shaped macromolecules, we set all voxels within a radius of 3 
from ̃p to 1. The remaining unlabeled coordinates in Y are assigned a 
value of −1.

Feature extraction and center localization modules. MiLoPYP’s par-
ticle localization framework has three essential components (Extended 
Data Fig. 2): (1) an encoder–decoder feature extraction backbone, (2) a 
protein center localization module, and (3) a debiased voxel-level con-
trastive feature regularization module. Notably, although the network’s 
input is a 3D tomogram, the feature extraction backbone primarily 
consists of 2D convolutional layers. Only the final two layers utilize 
3D convolutional layers. This design is inspired by the manual particle 
picking process, where xy slices contain the most useful information, 
while the xz and yz views provide limited information due to the miss-
ing wedge distortions. The extracted features are then directed to both 
the center localization module and the contrastive feature regulariza-
tion module. The center localization module is trained using a novel 
objective function called positive unlabeled focal loss59, which reduces 
overfitting when training with only positive data. On the other hand, 
the contrastive feature regularization module is trained using a debi-
ased infoNCE loss60, enabling it to learn the maximization of feature 
representation similarities for voxels belonging to the same protein 
class while minimizing the similarity between voxels corresponding 
to proteins versus non-protein regions. The combination of these two 
modules enables the accurate training of the protein localization model 
while minimizing annotations. Additionally, the contrastive regulari-
zation helps mitigate overfitting concerns commonly associated with 
positive unlabeled learning methods. By identifying particle centers 
on a voxel level, the trained model can precisely locate proteins even 
in crowded environments.

The feature extraction backbone of the model consists of a 2D 
UNet-based per-slice feature extraction backbone and a 3D convolu-
tional layer for fusing the per-slice features into a single 3D representa-
tion. The number of encode blocks and decode blocks can be adjusted 
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by the user as hyper-parameters. For smaller-sized particles, it is recom-
mended to use a maximum of four encode blocks. For larger-sized 
particles, five encode blocks are suggested. Each encode downsampling 
block includes two convolutional layers with a kernel size of 3 × 3, ReLU 
activation and max pooling with a kernel size of 2 × 2. Each decode 
upsampling block consists of one transpose convolutional layer with 
a kernel size of 2 × 2, two convolutional layers with a kernel size of 3 × 3, 
and ReLU activations. The 3D fusion layer is a convolutional layer with 
a kernel size of 3 × 3 × 3, and ReLU activation. The overall architecture 
follows a Siamese network such that the input to the network is the 
tomogram T and its augmented pair ̃T . For the input tomogram 
T ∈ ℝW×H×D and its augmented pair ̃T , we denote the output from the 
feature extraction backbone as M ∈ ℝCh×

W
R
× H

R
× D

R  and the augmented pair 
M̃ . M and M̃  are used to generate: (1) the output heat map ̂Y  and its 
augmented pair ̃Y , and (2) the projected feature maps F and ̃F .

The center localization module is a 3D convolutional layer with 
kernel size 1 × 1 × 1. Output of the center localization module is the heat 
map ̂Y . For the input tomogram T and its output heat map ̂Y , protein 
localization can be viewed as a per-voxel classification problem such 
that each voxel vi,j,k at position (i, j, k) is the input and the corresponding 
̂yi, j,k ∈ [0, 1]  is the classification output. If we denote p(v) as the underly-

ing data distribution from which vi,j,k is sampled, p(v) can be decom-
posed as in equation (4):

p(v) = πppp(v| y = 1) + πnpn(v| y = 0), (4)

where pp(v∣y = 1) is the positive class conditional probability of protein 
voxels, pn(v∣y = 0) is the negative class conditional probability of back-
ground voxels, and πp and πn are the class prior probabilities. Subscripts 
n, p and u denote negative, positive and unlabeled, respectively. Denote 
g ∶ ℝd → ℝ, an arbitrary classifier that can be parameterized by a neural 
network, with l( g(v) = ̂y, y) being the loss between model outputs ̂y  and 
ground truth y. When all the voxels are labeled, this is a binary classifica-
tion problem that can be optimized using a standard positive-negative 
(PN) learning approach with the following risk minimization given by 
equation (5):

̃Rpn = πp ̃R+p (g) + πn ̃R−n (g), (5)

where ̃R+p (g) is the mean positive loss 𝔼𝔼v∼pp(v)[l( g(vp), y = 1)] and can be 
estimated as 1/np∑

np
i=1 l( ̂yip, 1) , ̃R−n ( g)  is the mean negative loss 

𝔼𝔼v∼pn(v)[l(g(vn), y = 0)] and can be estimated as 1/nn∑
nn
i=1 l( ̂yin,0), and np 

and nn are the number of positive and negative voxels. When only a  
few positive voxels are labeled and the remainder of the data are unla-
beled, we reformulate the problem into the PU setting: the positively 
labeled voxels are sampled from pp(v∣y = 1), and the remaining 
unlabeled voxels are sampled from p(v). As shown in ref. 61, by rear-
ranging equations (4) and (5), we obtain πnpn(v) = p(v) − πppp(v) and 
πn ̃R−n ( g) = ̃R−u ( g) − πp ̃R−p ( g ). Therefore, we rewrite the risk minimization 
as in equation (6):

Rpu = πp ̃R+p ( g) − πp ̃R−p ( g) + ̃R−u ( g), (6)

with ̃R−u ( g) = 𝔼𝔼v∼p(v)[l( g(v), y = 0)]  and ̃R−p ( g) = 𝔼𝔼v∼pp(v)[l( g(v), y = 0)] . To 
prevent overfitting in equation (6), we used non-negative risk estima-
tion as in equation (7)59:

̃Rpu = πp ̃R+p (g) +max{0, ̃R−u (g) − πp ̃R−p (g)}. (7)

For globular-shaped particle detection, as the ground-truth heat 
map is splatted with Gaussian kernels, the labels are not strictly binary. 
Positive labels are split into two groups: true positives (tp) where yi,j,k = 1, 
which is the center of each Gaussian kernel (protein center), and soft 
positives (sp) where 0 < yi,j,k < 1 (voxels that are close to the center). 
Unlabeled voxels are labeled as −1. With this, the positive distribution 

pp(v) and positive-associated losses ̃R+p ( g), ̃R−p ( g) are decomposed into 
the following equation (8):

pp(v) = πtpptp(v| y = 1) + πsppsp(v|0 < y < 1),

̃R+p ( g) = πtp ̃R+tp( g) + πsp ̃R+sp( g), ̃R−p ( g) = πtp ̃R−tp( g) + πsp ̃R−sp( g).
(8)

We adopt voxel-wise logistic regression with focal loss for l(g(v), y). 
Specifically, according to the following equation (9), we have:

̃R+tp( g) = (1 − ̂yijk)
α log( ̂yijk), ̃R+sp( g) = (1 − yijk)

β( ̂yijk)
α log(1 − ̂yijk),

̃R−tp( g) = ̂yαijk log(1 − ̂yijk), ̃R−sp(g) = ( yijk)
β(1 − ̂yijk)

α log( ̂yijk),

̃R−u ( g) = ( ̂yijk)
α log(1 − ̂yijk).

(9)

By combining equations (7), (8) and (9), we obtain the final minimiza-
tion objective as shown in equation (10):

̃Rpu = πp(πtp ̃R+tp( g) + πsp ̃R+sp( g))+

max{0, ̃R−u ( g) − πp(πtp ̃R−tp( g) + πsp ̃R−sp( g))}.
(10)

For tubular-shaped macromolecule detection, there are only positive 
voxels and unlabeled voxels. Therefore, the only remaining terms are 
̃R+tp( g), ̃R−tp( g), ̃R−u ( g), and the final loss is equivalent to equation (7).

Debiased contrastive regularization and final training loss. As sug-
gested in ref. 37, instead of using M, it is beneficial to map the represen-
tations to a new space through a projection head composed of a 1 × 1 × 1 
convolutional layer where a contrastive loss is applied. The contrastive 
regularization head is composed of a 3D convolutional layer with kernel 
size 1 × 1 × 1. Output from the projection head is the projected feature 
map F and ̃F . Denote fi, j,k ∈ ℝCh  and ̃fi, j,k  as the feature vector at the  
(i, j, k) position of the feature map F and its augmented counterpart. 
There exists a total of 

W
R
× H

R
× D

R
= N  such vectors. Each of these feature 

vectors is responsible for predicting ̂yi, j,k. If yi,j,k = 1, mi,j,k and its projec-
tion fi,j,k should encode particle-related features. For a partially anno-
tated T, the voxel-level feature vector set f can be separated into positive 
and unlabeled classes. Therefore, the voxel-level contrastive regulariza-
tion loss is composed of positive supervised and unlabeled 
self-supervised debiased contrastive terms. For positive supervised 
debiased contrastive regularization, denote ℱp = { f pi, j,k ∶ yi, j,k = 1} as the 
set of positive feature vectors obtained from np annotated proteins and 
its augmented counterpart ̃ℱ p = { ̃f

p
i, j,k ∶ ̃yi, j,k = 1}, ℱ u = {fui, j,k ∶ yi, j,k < 1} 

as the set of unlabeled (including the soft positives) feature vectors 
with a total of nn. Because each tomogram contains up to a few hundred 
sub-volumes of the protein of interest, and each of these sub-volumes 
are the same protein with different relative orientations and are  
distorted in different ways, for a feature vector f pi ∈ ℱp, the remain-
ing 2np − 1 feature vectors f pj , j = 1,… , 2np − 1  in ℱ p  and ̃ℱ p

 can be 
treated as naturally augmented pairs. Unlabeled feature vectors 
f uk ∈ ℱu, k = 1,… , 2nn, which include the augmented unlabeled features, 

are treated as negatives. However, because the unlabeled set ℱu can 
contain positive feature vectors, the naive supervised contrastive loss 
as proposed in ref. 62 will be biased. Therefore, we adopt a modified 
debiased supervised contrastive loss based on equation (11)63:

ℒdbsup = 𝔼𝔼
⎡
⎢
⎢
⎣
− log

⎡
⎢
⎢
⎣

1/(2np − 1)∑
2np−1
j=1 e f

pT
i f pj

1/(2np − 1)∑
2np−1
j=1 e f

pT
i f pj + gsup( f pi , { f

p
j }
2np−1

j=1
, { f uk }

2nn
k=1

)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦
,

(11)
where the second term in the denominator is given by equation (12):

gsup(⋅) = max {
1
πn

( 1
2nn

2nn
∑
k=1
e f

pT
i f uk − πp

1
2np − 1

2np−1
∑
j=1

e f
pT
i f pj ) , e−1/t} , (12)

with πn and πp being the class prior probabilities and t the temperature.
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Regarding the unlabeled self-supervised debiased contrastive reg-
ularization, for the unlabeled feature vector f uk , the only known posi-
tive is its augmented pair ̃f

u
k , and the remaining vectors are treated  

as negatives. Denote { f rl }
2N−2
l=1

 as the set of remaining vectors. The 
resulting contrastive loss for an unlabeled feature vector is given by 
equation (13):

ℒunsup = 𝔼𝔼[− log[ e fuTk ̃f
u
k

e fuTk ̃f
u
k + gunsup( f uk , ̃f

u
k , { f rl }

2N−2
l=1

)
]] . (13)

Similarly to equation (12), gunsup( ⋅ ) involves class prior probabili-
ties. However, the actual class of the unlabeled feature vectors is 
unknown. Therefore, we divide the unlabeled voxels into three groups: 
pseudo-positive, pseudo-negative and neutral. Pseudo-positives are 
voxels with predicted particle probability greater than 0.9. Pseudo- 
negatives are voxels with predicted particle probability smaller than 
0.3. The remaining voxels are neutral. For the pseudo-positives loss 
ℒpunsup, gpunsup in the denominator is expressed as shown in equation (14):

gpunsup(⋅) = max {
1
πn

( 1
2N − 2

2N−2
∑
l=1

e fuTk f rl − πne f
uT
k

̃f
u
k ) , e−1/t} , (14)

which uses the negative class prior probability πn. For the 
pseudo-negatives loss ℒnunsup, gnunsup in the denominator is expressed as 
shown in equation (15):

gnunsup(⋅) = max {
1
πp

( 1
2N − 2

2N−2
∑
l=1

e fuTk f rl − πpe f
uT
k

̃f
u
k ) , e−1/t} , (15)

which uses the positive class prior probability πp. The loss for neutrals 
is calculated as the weighted average based on the probabilities of the 
feature vector belonging to the positive class as given by equation (16):

ℒdbunsup = ̂Yℒpunsup + (1 − ̂Y)ℒnunsup. (16)

We added a consistency regularization loss using the mean-squared 
error (MSE) between the output heat map ̂Y  and its augmented version 
̃Y  such that the probability of a voxel containing a protein should be 

invariant to augmentations as shown in equation (17):

ℒcons = MSE( ̂Y, ̃Y). (17)

The final training objective is shown in equation (18):

ℒ = ̃Rpu + λ1(ℒdbsup + λ2ℒdbunsup) + λ3ℒcons, (18)

where λ1 is the weight of the total contrastive module, λ2 is the weight of 
the unsupervised contrastive loss, and λ3 is the weight of consistency 
regularization. The resulting loss serves two purposes: (1) the contras-
tive term maximizes similarities for encoded features belonging to the 
same group (particle and background) and minimizes such similarities 
if features are from different groups; and (2) the heat map loss term 
forces predicted particle probabilities to be higher when they are 
closer to the true center location. To remove duplicate predictions, 
NMS is applied to the predicted heat map using 3D maximum pooling 
with a user-defined kernel size. For tubular-shaped macromolecules, 
we fixed the kernel size to 3 as we need to extract more coordinates for 
the polynomial fitting step.

Post-processing for tubular-shaped macromolecules. We apply a 
post-processing step specifically designed to detect tubular-shaped 
macromolecules. The workflow consists of three main stages: (1) group-
ing of extracted coordinates, (2) second-order polynomial fitting, and 
(3) resampling based on the fitted polynomial. In the grouping stage, 

we construct an undirected graph using the extracted coordinates, 
where each vertex represents a coordinate and an edge exists between 
two vertices if their Euclidean distance falls within a user-defined 
cutoff distance. Connected components in the graph correspond to 
groups of coordinates. For each connected component, we perform 
second-order polynomial fitting separately for the xy and yz dimen-
sions as given by equation (19):

̂x = a0 + b0y + c0y2,

̂z = a1 + b1y + c1y2.
(19)

The quality of the fit is assessed by measuring the residual between 
the fitted points and the actual values. Additionally, we calculate the 
maximum curvature of the fitted polynomial using equation (20):

k = max (2a /((1 + 2ay + b)2)
2
3 . (20)

If the fitted residual and maximum curvature are both below user- 
defined cutoff values, we consider the set of coordinates as potential 
candidates for being tubular-shaped macromolecules. Finally, we 
resample the coordinates based on the fitted polynomial. This involves 
determining the minimum and maximum values of y among the 
extracted coordinates and performing uniform sampling of ̂y  values 
with a step size of 2. The corresponding ̂x  and ̂z  values are then calcu-
lated using the fitted polynomial in equation (19). The resulting resa-
mpled 3D coordinates ( ̂x, ̂y, ̂z)  are used as the final coordinates 
identifying the position of tubular-shaped macromolecules.

Comparison with state-of-the-art approaches. For comparing the 
performance of MiLoPYP against template matching and crYOLO-3D, 
we used tomograms from EMPIAR-10304 and EMPIAR-10499. For 
EMPIAR-10304, we used EMAN2’s implementation of template match-
ing (e2spt_tempmatch.py)18. For EMPIAR-10499, we manually picked 
particles and used them to generate an initial reference (pixel size = 10 
Å, box size = 34). This reference was low-pass filtered to 40.0 Å and 
used for template matching as implemented in Warp64. Particles 
were selected at positions that had _rlnAutopickFigureOfMerit val-
ues greater than 13. For crYOLO-3D, we retrained the model on each 
dataset using manually picked particles across ten consecutive slices 
(selecting 20–30% of particles) and using tomograms with different 
defocus values. Our results show what MiLoPYP has higher accuracy 
(F1 scores) when compared to template matching and crYOLO-3D 
(Extended Data Fig. 3).

We also compared the performance of MiLoPYP against three 
other deep-learning-based approaches: DeepFinder31, DeePiCt32 and 
TomoTwin34. To ensure a thorough and meaningful comparison, we 
used tomograms from four different datasets representing synthetic 
datasets (SHREC-21) and real datasets (EMPIAR-10304, EMPIAR-10453 
and EMPIAR-10987; Supplementary Table 1 and Extended Data Figs. 9 
and 10). When running TomoTwin, we used the latest pretrained model 
weights and followed the instructions from the reference-based parti-
cle picking tutorial. For DeepFinder, F1 numbers for the SHREC-21 data-
set were obtained from the SHREC-21 challenge results; for the EMPIAR 
datasets, we used the pretrained model weights (as the model was 
trained to detect four classes, we only report F1 numbers correspond-
ing to the ribosome class). For DeePiCt, we used the pretrained model to 
detect ribosomes from EMPIAR-10304 and EMPIAR-10987. As DeePiCt 
was only trained to detect ribosomes, membranes, microtubules and 
fatty acid synthase, we could not apply this method to the SHREC-21 
dataset (F1 scores reported as ‘not applicable’). Also, because nei-
ther DeepFinder nor DeePiCt was trained to detect native viral spikes, 
we did not obtain meaningful results when analyzing tomograms 
from EMPIAR-10453 using these methods (F1 scores reported as ‘not 
applicable’). As expected, our experiments show that on the synthetic 
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SHREC-21 dataset the fully supervised method DeepFinder performs 
best on average (as more data are available for training compared to 
semi-supervised methods), while MiLoPYP and TomoTwin outperform 
DeepFinder and DeePiCt on the three EMPIAR datasets, with MiLoPYP 
outperforming TomoTwin by 7% (F1 scores).

Model training, inference, evaluation and ablation studies. During 
training, instead of using the whole tomogram, we cropped subtomo-
grams of size 64 × 64 × 5 as input to the network in batches of 2. Train-
ing time is thus independent of the input size. Inference is performed 
on the entire tomogram. The proposed framework is trained in an 
end-to-end manner using Adam optimizer with default parameter 
values and an initial learning rate of 0.001. We decrease the learn-
ing rate by a factor of 10 every 5 epochs. Training takes around 3 to 5 
minutes for 10 epochs, and inference on each full tomogram takes less 
than a second on an NVIDIA Tesla V100 GPU. We used experimentally 
determined values: λ1 = 0.1, λ2 = 0.5 and λ3 = 0.1.

For datasets where manual labels were available, we evaluated 
the quality of detection in terms of precision and recall scores. We 
followed the same definition of these metrics as in ref. 27. To account 
for small variations in the detected particle centers, instead of looking 
at a single pixel, we also look at pixels located within a certain radius 
from the center. If the detected particle position is within a certain 
radius of a ground-truth particle position, we considered it as a true 
positive match. Let TP(k) be the number of true positives in the top k 
predictions. Precision is defined as the fraction of predictions that are 
correct and recall is defined as the fraction of labeled particles that are 
retrieved in the top k predictions. With this, precision and recall are 
calculated as shown in equation (21):

TP(k) =
k
∑
i
yi,

Pr(k) = TP(k)
k

,

Re(k) = TP(k)
∑n

i yi
.

(21)

To assess the effectiveness of the proposed contrastive learning 
regularization and positive unlabeled formulation, we conducted 
ablation studies on the voxel-level contrastive learning module and 
the positive unlabeled learning component, using the EMPIAR-10304 
(Extended Data Fig. 3a) and EMPIAR-10499 (Extended Data Fig. 3b) 
datasets. In the first ablation study, we removed the voxel-level contras-
tive module and the corresponding term in the loss function. As a result, 
we observed a degradation in performance for both datasets, with a 
more substantial drop in performance observed in the more complex 
in situ dataset EMPIAR-10499. This demonstrates that inclusion of 
contrastive regularization enhances the feature learning process and 
facilitates the detection of particles even when limited training samples 
are available. For the second ablation study, we removed the positive 
unlabeled module by treating all unlabeled regions as negatives and 
utilized a standard focal loss while maintaining the contrastive mod-
ule unchanged. Similarly, we observed a substantial deterioration in 
performance (Extended Data Fig. 3). This highlights the importance of 
debiasing in scenarios where annotated data are scarce. Together, these 
experiments establish the substantial contributions of the voxel-level 
contrastive learning and the positive unlabeled learning components, 
emphasizing their effectiveness in enhancing feature learning, mitigat-
ing biases and enabling robust particle detection, particularly when 
confronted with limited annotated data.

Contribution of localization module to detection accuracy. To assess 
the performance improvement enabled by the protein-specific particle 
localization module, we compared the precision, recall and F1 scores 
of particles detected using the exploration module alone and particles 

detected after training of the localization module. Results on tilt series 
and tomograms from EMPIAR-10304, EMPIAR-10499, EMPIAR-10453 
and EMPIAR-10987 show substantial gains in all accuracy metrics when 
adding the localization module (Supplementary Table 2).

Dataset description and SPT details
Tilt series from EMPIAR-10304 were downloaded from the EMPIAR 
database and used to reconstruct tomograms at a pixel size of 25.2 Å in 
nextPYP45. These tomograms were used as input to MiLoPYP’s explora-
tion and refinement modules. Evaluation of the refinement module on 
11 tomograms produced a total of 8,965 particles that were subjected 
to SPT analysis in nextPYP. Particles were extracted using a binning 
factor of 4 and subjected to reference-based alignment using a map 
downloaded from EMD-23358 and a maximum resolution for refine-
ment of 22 Å, followed by particle filtering according to the particle 
score distribution. A subset of 6,051 good-quality particles was kept for 
further processing. Particles were re-extracted without binning, and 
constrained particle and micrograph alignment using a shape mask was 
performed until no further improvements in resolution were observed. 
After per-particle contrast transfer function (CTF) refinement and an 
additional round of constrained particle and micrograph refinement, 
we obtained a final reconstruction of the 70S ribosome at 5.0 Å resolu-
tion (Fig. 2c and Supplementary Fig. 1a).

For EMPIAR-11694, a total of 36,345 particles corresponding 
to RuBisCo enzymes were identified using a pixel size of 13.68 Å. 
Reference-based refinement in nextPYP gave an 11.0 Å resolution 
map from 35,352 particles (Extended Data Fig. 5b and Supplementary 
Fig. 1b). D4 symmetry was applied to the final reconstruction.

For EMPIAR-10499, a total of 23,285 particles were identified from 
65 tomograms reconstructed using a pixel size of 13.6 Å. A similar pro-
cedure to the one used for EMPIAR-10304 was conducted in nextPYP 
using a map downloaded from EMD-11650 as a reference, resulting 
in a 5.4 Å resolution reconstruction of the 70S ribosome from 17,381 
particles (Fig. 3c and Supplementary Fig. 1c).

For EMPIAR-10453, a total of 23,388 particles were identified from 
266 tomograms reconstructed using a pixel size of 15.95 Å. All particles 
were used for reference-based refinement in nextPYP using a map down-
loaded from EMD-11347 and a maximum resolution during refinement 
of 20 Å. Constrained 3D classification without alignment was performed 
to remove particles containing projections that were either too close to 
each other or too close to gold beads. A total of 13,047 particles were kept 
and further refined using constrained refinement with a shape mask. 3D 
classification without alignment using three classes and a focus mask 
covering the receptor-binding domain (RBD) was performed. Class 1 
only had a few particles resembling gold beads and was discarded. Class 
2 had 9,194 particles showing an open spike conformation with one 
RBD pointed upwards, and class 3 containing 3,740 particles showed a 
closed spike with the three RBDs pointing down. Further constrained 
refinement was performed on these two classes yielding a final recon-
struction for the open state of the SARS-CoV-2 spike of 5.6 Å resolution 
(no symmetry was applied) and 9.3 Å resolution for the closed state (C3 
symmetry was applied; Fig. 4c and Supplementary Fig. 1d,e).

For EMPIAR-10987, a total of 6,068 particles corresponding to 80S 
ribosomes were identified from 21 tomograms reconstructed using a 
pixel size of 15.95 Å. A similar processing procedure as that used for 
EMPIAR-10304 was followed in nextPYP using a map downloaded from 
EMD-33118 as a reference, yielding a 8.6 Å resolution map from 4,570 
particles (Fig. 5c and Supplementary Fig. 1f). From the same set of 21 
tomograms, a total of 1,761 particles corresponding to microtubules 
were identified and subjected to 3D refinement in nextPYP. All particles 
were used for reference-based refinement using a map downloaded 
from EMD-10061 as a reference, resulting in a 37.0 Å map (Fig. 5d and 
Supplementary Fig. 1g). No constrained 3D classification was con-
ducted because of the limited number of particles. Helical symmetry 
was applied to the final map.
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For EMPIAR-11658, a total of 4,105 particles corresponding to ATP 
synthase were identified from 48 tomograms reconstructed using a 
pixel size of 15.68 Å that contained mitochondrial membranes. A similar 
processing procedure as that used for EMPIAR-10987 was followed in 
nextPYP using a map downloaded from EMD-28809 as a reference, 
yielding a 13.0 Å resolution map from 2,577 particles (Fig. 6c and Sup-
plementary Fig. 1h).

In all cases, map resolution was measured using the 0.143 cutoff 
of Fourier shell correlation curves between half-maps. Additional data 
processing statistics and timing information are included in Supple-
mentary Table 3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study utilized raw tilt series data available from the EMPIAR 
database under accession numbers EMPIAR-10304, EMPIAR-10453, 
EMPIAR-10499, EMPIAR-10694, EMPIAR-10987 and EMPIAR-11658. 
Cryogenic electron microscopy density maps produced in this study 
were deposited in the Electron Microscopy Data Bank under accession 
numbers EMD-45261 for EMPIAR-10304, EMD-45266 for EMPIAR-10499, 
EMD-45267 and EMD-45268 for EMPIAR-10453, EMD-45269 for 
EMPIAR-10694, EMD-45270 and EMD-45271 for EMPIAR-10987 and 
EMD-45272 for EMPIAR-11658.

Code availability
The open-source code for MiLoPYP is available at https://github.com/
nextpyp/cet_pick/. The documentation and a user guide are available 
at https://nextpyp.app/milopyp/.
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Extended Data Fig. 1 | Overall architecture of self-supervised cellular 
content exploration module. a) Preprocessing step which involves initial 
coordinate calculation based on Difference of Gaussians (DoG) and patch 
extraction from corresponding locations in 3D tomogram and 2D tilt series. 2D 
patches obtained by averaging tilt series projections centered on each position 
in 3D and corresponding sub-tomogram projections in the Z-direction are 
concatenated and serve as input to train the model. A non-maximum suppression 

(NMS) module is used to identify the final candidate positions. b) MiLoPYP’s 
contrastive representation learning network follows a simple Siamese ‘SimSiam’ 
architecture. The input and its augmented version are used as inputs and the 
network learns to maximize the similarity between the pairs. The network is 
composed of an ResNet-based encoder, a multi-layer perceptron (MLP) projector 
and a MLP predictor. Stop-gradient is used to avoid model collapse.
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Extended Data Fig. 2 | Overall architecture of semi-supervised particle 
localization module. a) Partially annotated tomograms and their augmented 
versions are used as input to a network that uses a combination of 2D and 3D 
convolutional layers. The 2D CNN-based feature extractor follows a standard 
encoder-decoder architecture. The feature extractor is applied to each slice 
of the tomogram. The extracted features are then fused together through 3D 
convolutional layers. The fused 3D features are used for center coordinate 
heatmap prediction and voxel-level contrastive learning. During inference, only 

the heatmaps are used for particle identification. b) Schematic of contrastive 
learning module. Stars represent 3D particles and their naturally augmented 
positive pairs (particles belonging to the same class). Feature vectors at the star 
locations encode information about the location of the objects and the feature 
vectors serve as input to the contrastive learning module which includes: 1) 
supervised contrastive learning for annotated positions, and 2) self-supervised 
debiased contrastive learning for unlabeled regions.
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Extended Data Fig. 3 | Detection performance and ablation studies on 
contrastive learning and positive unlabeled components. Detection accuracy 
metrics were evaluated for in vitro and in situ datasets EMPIAR-10304 (a) and 
EMPIAR-10499 (b), respectively. Precision, recall and F1 scores were compared 
against crYOLO-3D and template matching (top row). We also measured 
detection performance using F1-scores when using increasing numbers of 
annotations during training (middle row). On the bottom row, we present mean, 

minimum and maximum average F1 scores for the ‘complete model’ including 
the contrastive (CR) and positive unlabeled (PU) learning components (blue), 
without the CR component (orange), and without the PU component (green), 
demonstrating the efficacy of the model. The upper bars represent the maximum 
minus the mean, and the lower bars represent the mean minus the minimum 
(sample size is 10 for EMPIAR-10304 and 5 for EMPIAR-10499).
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Extended Data Fig. 4 | Interactive 3D visualization of tomogram embeddings 
from EMPIAR-10499. a) 3D UMAP representation of protein embeddings 
colored according to labels assigned using over-clustering. Patches 
corresponding to clusters representing different species were isolated and 

selected using the ‘select’ button shown in a), including 70S ribosomes (b), 
membrane-like features (c), unidentified small-sized proteins (d), and circularly 
shaped vesicles (e). f) Low-resolution 3D reconstruction obtained from patches 
containing circularly shaped objects representing a hollow vesicle.
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Extended Data Fig. 5 | Detection and structure determination of RuBisCo 
enzymes from cellular tomograms. a) 2D grid visualization of embeddings 
obtained from tilt series downloaded from EMPIAR-10694 (top, left). RuBisCo 
particles are seen as the most prominent feature (yellow/green). Membrane-like 
features (magenta) are also observed. Tomographic slice colored according to 
the embedding coordinates (top, right). A zoomed-in view highlighted in white 

is also provided. A selection of patches containing membrane (magenta) and 
RuBisCo particles (lime) are shown below. b) Annotated tomogram with detected 
RuBisCo particles colored in red (left). Zoomed-in view showing the accurate 
localization of RuBisCo particles (top, right). 11.0 Å resolution reconstruction of 
RuBisCo obtained from 35,352 particles with PDB coordinates 1GK8 fit into the 
map (bottom, right).
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Extended Data Fig. 6 | Interactive 3D visualization of tomogram embeddings 
from EMPIAR-10987. a) 3D UMAP representation of protein embeddings 
colored according to labels assigned using over-clustering. Patches 
corresponding to clusters representing different species were isolated and 
selected using the ‘select’ button shown in a), including microtubules  
(b), 80S ribosomes (c), membrane-like features (d), and other small proteins 

(e). f) Detection performance of ribosomes and microtubules measured using 
F1-scores. Each box extends from the first (Q1) to the third quartile (Q3). The 
median is marked by a line inside the box. Whisker lines correspond to box edges 
+/1.5 times the interquartile range (sample size is 10 for microtubules and 2 for 
ribosomes).
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Extended Data Fig. 7 | Post-processing pipeline for tubular-shaped protein 
detection. a) Tomographic slice showing tubular structures observed in tilt 
series from EMPIAR-10987 obtained from in situ lamellae (left). Output heatmap 
from the particle localization module with bright areas representing detected 
microtubules (middle). Output coordinates (green circles) for detected particles 
prior to post-processing (right). False positive regions are highlighted in red. b) 

The post-processing stage is composed of three steps: 1) convert 3D coordinates 
into a graph representation and identify connected components within the 
graph (left), 2) polynomial curve fitting for each connected component and 
evaluation of the quality of fit (middle), and 3) curves with fitting values above 
a user-defined threshold and with curvature smaller than a preset threshold are 
extracted as the final coordinates representing microtubules (right).
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Extended Data Fig. 8 | Comparison of picking performance between MiLoPYP and other deep-learning-based approaches on EMPIAR-10304. Tomographic 
slices showing particles picked by DeePiCt, DeepFinder, TomoTwin, MiLoPYP, and corresponding ground truth positions on a tomogram with purified E. coli 70S 
ribosomes downloaded from EMPIAR-10304.
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Extended Data Fig. 9 | Comparison of picking performance between MiLoPYP 
and other deep-learning-based approaches on EMPIAR-10987. Tomographic 
slices showing particles picked by DeePiCt, DeepFinder, TomoTwin, MiLoPYP and 

corresponding ground truth positions on a tomogram collected from thinned 
lamellae of mouse mammary gland epithelial EpH4 cells downloaded from 
EMPIAR-10987.
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Extended Data Fig. 10 | Effect of the number of neighbors used in the UMAP 
representation during the exploration phase. Panels show changes in the 
UMAP representation as a function of the number of neighbors (10, 40 and 80). 
Results are shown for EMPIAR-10304, EMPIAR-10453 and EMPIAR-10987. The use 
of fewer neighbors reveals finer local structure while the use of more neighbors 

captures the overall structure with some loss of fine local structure. However, 
the full vector representation for each sub-volume remains unchanged, as UMAP 
only serves as a post-processing dimensionality reduction technique for the 
purpose of visualization.
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