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We introduce the TRUST4 open-source algorithm for recon-
struction of immune receptor repertoires in αβ/γδ T cells and 
B cells from RNA-sequencing (RNA-seq) data. Compared with 
competing methods, TRUST4 supports both FASTQ and BAM 
format and is faster and more sensitive in assembling longer—
even full-length—receptor repertoires. TRUST4 can also call 
repertoire sequences from single-cell RNA-seq (scRNA-seq) 
data without V(D)J enrichment, and is compatible with both 
SMART-seq and 5′ 10x Genomics platforms.

Both T and B cells can generate diverse receptor (TCR and 
BCR, respectively) repertoires, through somatic V(D)J recombi-
nation, to recognize various external antigens or tumor neoanti-
gens. Following antigen recognition, BCRs also undergo somatic  
hypermutations (SHMs) to further improve antigen-binding  
affinity. Repertoire sequencing has been increasingly adopted in 
infectious disease1, allergy2, autoimmune3, tumor immuology4  
and cancer immunotherapy5 studies, but it is an expensive assay 
and consumes valuable tissue samples. Alternatively, RNA-seq  
data contain expressed TCR and BCR sequences in tissues or peri
pheral blood mononuclear cells (PBMC). However, because reper-
toire sequences from V(D)J recombination and SHM are different 
from the germline, they are often eliminated in the read-mapping 
step.

Previously we developed the TRUST algorithm6–8, utilized to 
de novo assemble immune receptor repertories directly from tis-
sue or blood RNA-seq data. When applied to The Cancer Genome 
Atlas (TCGA) tumor RNA-seq data, TRUST revealed profound 
biological insights into the repertoires of tumor-infiltrating T cells6 
and B cells8, as well as their associated tumor immunity. Although 
less sensitive than TCR-seq and BCR-seq, TRUST is able to iden-
tify the abundantly expressed and potentially more clonally 
expanded TCRs/BCRs in the RNA-seq data that are more likely 
to be involved in antigen binding9. Recent years have also seen 
other computational methods introduced for immune repertoire 
construction from RNA-seq data, including V’DJer10, MiXCR11, 
CATT12 and ImRep13. These methods focus on reconstruction of 
complementary-determining region 3 (CDR3), with limited ability 
to assemble full-length V(D)J receptor sequences, although CDR1 
and CDR2 on the V sequence still contribute considerably to anti-
gen recognition and binding. For example, five out of six mutations 
predicted in a recent study to influence antibody affinity in the 
acidic tumor environment are located in CDR1 and CDR2 (ref. 14), 
and four out of nine positions contributing most to 4A8 antibody 
binding to the SARS-CoV-2 spike protein are in CDR1 and CDR2 
(ref. 15). Therefore, algorithms that can infer full-length immune 
receptor repertoires can facilitate better receptor–antigen interac-
tion modeling.

With the advance of scRNA-seq technologies, researchers 
can study immune cell gene expression and receptor repertoire 
sequences simultaneously. Several algorithms, including MiXCR11, 
BALDR16, BASIC17 and VDJPuzzle18, have been developed to con-
struct full-length paired TCRs or BCRs from the SMART-seq 
scRNA-seq platform19. In contrast to SMART-seq, droplet-based 
scRNA-seq platforms such as 10x Genomics20, while yielding 
sparser transcript coverage per cell, can process orders of magni-
tude more cells at lower cost. To analyze immune repertoires using 
the 10x Genomics platform, researchers currently need to prepare 
extra libraries to amplify TCR/BCR sequences.

In this study, we redesigned the TRUST algorithm to TRUST4 
with substantially enhanced features and improved performance 
for immune repertoire reconstruction (Fig. 1a). First, TRUST4 
supports fast extraction of TCR/BCR candidate reads from either 
FASTQ or BAM files. Second, TRUST4 prioritizes candidate read 
assembly by abundance and assembles all candidate reads with par-
tial overlaps against contigs, thus increasing algorithm speed. Third, 
TRUST4 explicitly represents highly similar reads in the contig con-
sensus, thus accommodating somatic hypermutations and improv-
ing memory efficiency (Methods). Fourth, TRUST4 can assemble 
full-length V(D)J sequences on TCRs and BCRs. Finally, TRUST4 
supports repertoire reconstruction from scRNA-seq platforms 
without requiring the extra 10x V(D)J amplification steps.

We evaluated the performance of TRUST4 on TCR/BCR recon-
struction from bulk RNA-seq using three different approaches. 
First, for TCR evaluation we used in silico RNA-seq datasets with 
known TRB sequences from an earlier study11. On average, TRUST4 
called 281% more CDR3s than MiXCR, 22.9% more than CATT, 
57.8% more than TRUST3 and maintained a zero false-positive 
rate across different read lengths (Fig. 1b; further parameter set-
tings are given in Supplementary Fig. 1a). Second, for BCR evalu-
ation, we used six tumor RNA-seq samples of ~100 million pairs 
of 150 base pair (bp) reads with corresponding immunoglobulin 
heavy-chain (IGH) BCR-seq as the gold standard8. Since BCRs also 
have somatic hypermutation and isotype switching during clonal 
expansion, we required the algorithm call to match CDR3 and V, 
J and C (isotype) gene assignments as BCR-seq. TRUST4 showed 
better precision (>18%) and sensitivity (>74%) than MiXCR in five 
out of six samples (Fig. 1c; further parameter settings are given in 
Supplementary Fig. 2a). On the sixth sample, TRUST4 lost only 
6% precision with twice the sensitivity compared to MiXCR (FZ-
97). We note that BCR-seq and RNA-seq were conducted on dif-
ferent slices of the same tumor. Even two technical replicates of 
repertoire sequencing on the same DNA/RNA could not achieve 
100% precision and sensitivity, so the performance metrics are 
likely to be underestimations. TRUST4 consistently assembled 
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more IGHs across different abundance ranges reported in BCR-seq 
(Supplementary Fig. 2b), and found twice as many IGHs with a 
single RNA copy than MiXCR. In addition, TRUST4 required only 
20–25% of the time, on average, needed by MiXCR to process these 
samples (Supplementary Table 1), at <6 GB of memory usage on 
an eight-thread processor. Furthermore, TRUST4 run directly on 
FASTQ files was notably faster than read mapping used to gener-
ate BAM files, followed by TRUST4 run on BAM files. Third, for 
base-level, full-length assembly evaluation, we created pseudobulk 
RNA-seq data by randomly selecting 25 million read pairs from 
137 SMART-seq B cells as a test case. To establish a gold standard 
for BCR calls, we used the 128 IGH assemblies consistently called by 
BALDR and BASIC at the single-cell level (Supplementary Fig. 3a).  
TRUST4 and MiXCR correctly identified all 128 CDR3s and 
TRUST4 reconstructed 93 full-length IGH sequences, while MiXCR 
found only 39 (Fig. 1d). TRUST4 was able to call some BCRs with 
only 5,000 randomly sampled read pairs in the SMART-seq data-
set (18 read pairs per chain), and showed higher sensitivity than 
MiXCR across all abundance ranges (Supplementary Fig. 3b). The 
high efficiency of TRUST4 allowed us to characterize the immune 
repertoire in tumor samples, and we identified an association of 
IgA1 B-cell clonal expansion with poor prognosis in colon adeno-
carcinoma (COAD) from TCGA RNA-seq samples (Methods and 
Supplementary Fig. 4). We note that IGHA1 overexpression is not 
associated with survival, suggesting that immune repertoire analysis 
provides additional insights into tumor immunity.

Next, we evaluated TRUST4 performance on 5′ 10x Genomics 
scRNA-seq data on PBMC. For this dataset, the two separately pro-
cessed T- and B-cell 10x V(D)J libraries served as the gold standard. 
When considering single cells that passed the Seurat21 cell-level 
quality control, TRUST4 made 5,091 T- and 1,318 B-cell calls (Fig. 2a  
and Supplementary Fig. 5a). Among the CDR3s reported by 10x 
V(D)J, TRUST4 recovered 48.1% (6,035/12,558) of TCR CDR3s 
and 78.0% (1,946/2,494) of BCR CDR3s. The higher sensitivity of 
TRUST4 on BCR is due to the higher expression level of BCR in 

B cells (Supplementary Fig. 5b). For precision, 94.6% of TCR CDR3s 
and 98.2% of BCR CDR3s from TRUST4 were identical to 10x V(D)
J (Fig. 2b). Although CellRanger_VDJ was designed for 10x V(D)
J data, we tested it on 5′ 10x scRNA-seq data, which have the same 
format. TRUST4 found 78% more TCR CDR3s and 16% more 
BCR CDR3s in cells that passed quality control (Supplementary 
Fig. 5c). In addition, TRUST4 was over ten times faster and over 
twice more memory efficient than CellRanger_VDJ. Furthermore, 
TRUST4 also reported 83 γδT cells, for which 10x V(D)J currently 
does not have a kit to profile. In these data, Seurat did not anno-
tate any γδT cells but rather called 71 out of 83 TRUST4-annotated 
γδT cells as CD8 T cells. Close examination of gene expression in 
these 83 cells revealed that they had higher δV and δC gene expres-
sion but lower CD8A or CD8B expression (Supplementary Fig. 5d), 
supporting TRUST4’s annotation of these cells as γδT cells.

We further tested TRUST4 on a 10x Genomics non-small 
cell lung cancer (NSCLC) dataset. In this case, TRUST4 called 
1,241 T cells and 2,478 B cells (Supplementary Fig. 6). TRUST4 
assembled 142 IGH CDR3s out of the 144 Seurat-annotated plasma 
B cells while 10x V(D)J found only 131. For these plasma B cells, 
TRUST4 also reconstructed full-length paired BCRs for 104 cells 
in which we observed a high correlation for SHM rate between 
IGHs and IGK/IGLs (Fig. 2d; Pearson r = 0.67, P = 8 × 10–15), sug-
gesting coordinated SHMs on two chains during B-cell division. 
Furthermore, TRUST4 found more somatic hypermutations on IGH 
than on IGK/IGL (P < 1 × 10–10, two-sided Wilcoxon signed-rank 
test), supporting the more important role of antibody heavy chain 
in antigen-binding affinity.

In summary, TRUST4 is an effective method to infer TCR and 
BCR repertoires from bulk RNA-seq or scRNA-seq data. TRUST4 
not only has high efficiency, sensitivity and precision in reconstruc-
tion of CDR3s, but can also assemble full-length immune recep-
tor sequences from bulk RNA-seq data. Furthermore, TRUST4 
can reconstruct immune receptor sequences at the single-cell level, 
including γδT cells, directly from 5′ 10x Genomics scRNA-seq data 
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without specific 10x V(D)J enrichment libraries. Our results sup-
port the advantage of the 5′ 10x Genomics scRNA-seq platform, 
which not only provides gene expression information but also 
enables computational calling of immune repertoires. TRUST4 is 
available open source at https://github.com/liulab-dfci/TRUST4, 
and could be an important method for tumor immunity and immu-
notherapy studies.
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Methods
Algorithm overview. TRUST4 reconstructs the immune repertoire in three stages: 
candidate reads extraction, de novo assembly and annotation (Fig. 1a).

Candidate reads extraction. TRUST4 can find candidate TCR and BCR reads 
from either raw sequence files or the alignment file produced by aligners such as 
STAR22 and HISAT23. When input is an alignment file, if a read or its mate aligns 
on the V, J or C locus, this read is added to the candidate read set. If a read is 
unmapped and is not a candidate based on mate information, TRUST4 will test 
whether this read has a significant overlap with V, J and C genes. If so, this read 
and its mate are also candidate reads. When input is raw sequence files, TRUST4 
applies the significant overlap criterion to every read or read pair to find candidate 
reads. To identify whether a read has significant overlap with one of the V, J or C 
genes, TRUST4 first locates the receptor gene with the highest number of k-mer 
hits (default, k = 9) from the read. TRUST4 then computes the longest chain from 
these k-mers to filter incompatible hits. Last, if the union bases of the k-mers in the 
longest chain reach threshold, TRUST4 will claim that the read has a significant 
overlap with the gene. The threshold is maximum(21, read_length/5 + 1), so data 
with shorter reads have less stringent criteria. Since TRUST4 avoids alignment in 
the candidate reads extraction algorithm, this stage is fast even if input data are raw 
sequence files.

If the data have barcode information, such as 10x Genomics scRNA-seq data, 
TRUST4 also corrects the barcode, if erroneous, for each candidate read when 
given the whitelist. TRUST4 first builds barcode usage distribution from the first 
two million reads before correcting. Then, for each input barcode that is not in the 
whitelist, TRUST4 finds all the neighbor barcode within one hamming distance 
in the whitelist (at most, fourfold barcode length) and reports the one that is the 
most frequent barcode in usage distribution. If there are multiple valid neighbor 
barcodes with the same frequency in usage distribution, TRUST4 will correct on 
the base with the lowest FASTQ quality.

De novo assembly. When assembling candidate reads into immune receptor 
sequences, TRUST4 adopts the read overlap scheme. Cells such as plasma  
B cells can generate thousands of reads for each recombined receptor gene, so 
comparison of every pair of reads to construct the overlap graph, as in previous 
versions of TRUST, is inefficient. TRUST4 implements a greedy extension 
approach by aligning the candidate read to existing contigs, one by one. To  
perform alignment, TRUST4 builds an index for all k-mers in the contigs and 
applies the seed-extension paradigm to identify alignments. TRUST4 deems  
that a read overlaps with a contig if they have a highly similar (90% for BCR, 
95% for TCR) alignment block containing at least 31-bp exact matches and the 
unaligned bases of the read are outside of the contig. Based on overlaps, TRUST4 
will update contigs with the following rules. (1) If a read partially overlaps  
one contig, TRUST4 extends this contig; (2) if a read partially overlaps several 
contigs, TRUST4 merges corresponding contigs; and (3) if a read does not overlap 
any existing contigs, TRUST4 creates a new contig with this read’s sequence.  
When processing reads, TRUST4 prioritizes those derived from highly expressed 
TCRs/BCRs. To achieve this, TRUST4 first counts the frequency of k-mers 
(21-mer by default) across all candidate reads. If a read comes from a highly 
expressed receptor sequence, all of its k-mers would be of high frequency in the 
data. Therefore, the minimum frequency of a read’s k-mers is a rough indicatation 
of gene abundance. TRUST4 then sorts the read based on the minimum k-mer 
frequency rule. The ordering of reads is equivalent to picking the most frequent 
k-mer as the starting point in the de Bruijn-graph-based transcriptome assembler, 
Trinity24.

TRUST4 clusters reads with somatic hypermutations into the same contig 
by representing a contig as the consensus of assembled reads. Each position 
in the contig records four weights according to the number of reads with the 
corresponding nucleotide for that position. The consensus means that the 
nucleotide for a specific position is that with the highest weight, and the index 
for alignments stores the k-mers of the consensuses. Read alignment takes the 
weights into account to tolerate the somatic hypermutations in BCRs. For example, 
for a particular position, if nucleotides A and T on the contig have high weights, 
it is a match if the read has nucleotide A or T. Therefore, reads with different 
somatic hypermutations can align to the same contig, which avoids the creation of 
redundant contigs.

If input data are paired end, TRUST4 will use mate-pair information to 
extend the contigs. In the first round of contig assembly, due to read sorting and 
greedy extension, a contig for the abundant recombined gene attracts all reads 
from the same V, J and C genes even though these reads come from different 
recombinations. The mate-pair information fixes this issue by reassigning reads to 
the appropriate contigs. Reassignment will extend the contigs and update position 
weights in the affected consensus. When input data are SMART-seq, since there is 
no need to perfect assemblies for low-abundant sequences in a cell, TRUST4 can 
skip the extension to reduce running time.

When input contains barcode information, TRUST4 will assign the read 
barcode to the contig when creating a new contig, and a read can align to the 
contigs only with that read’s barcode. As a result, two identical reads with different 
barcodes will change different sets of contigs. Furthermore, the read–contig 

overlap criterion is relaxed and requires 17- rather than 31-bp exact matches in the 
alignment.

Annotation. TRUST4 aligns the assembled contigs to sequences from the 
international ImmunoGeneTics (IMGT) database25 to identify V, J and C genes. 
The IMGT database curates the sequences for V, D, J and constant genes and is 
widely used to annotate BCR and TCR sequences, such as in previous TRUST 
versions and MiXCR. Besides the sequences, IMGT also annotates the start 
position of CDR3 in the V gene (104th amino acids of the V gene in IMGT 
coordination). IMGT also defines the end position of CDR3 as amino acid W/F 
in the amino acid motif W/FGxG in the J gene. TRUST4 determines the CDR3 
coordinate based on these IMGT conventions after identification of V and J genes. 
If the contig is too short to identify the V gene, TRUST4 locates the CDR3 start 
position as amino acid C in the motif YYC by testing all open reading frames.

In the final step of annotation, TRUST4 retrieves somatic hypermutated CDR3s 
and estimates CDR3 abundances. If a read fully covers the CDR3 on a contig and 
the CDR3 sequence from the read is different from the consensus, TRUST4 will 
report the CDR3 from the read. If there is no such read, TRUST4 directly reports 
the consensus CDR3 sequence. In abundance estimation, if reads partially overlap 
with CDR3, each could be compatible with several different complete CDR3 
sequences. Therefore, TRUST4 applies the expectation-maximization algorithm26, 
similar to that in RSEM27, to distribute read counts iteratively to their compatible 
CDR3s. For TCR, TRUST4 filters CDR3s with abundance <5% of the most 
abundant CDR3 from the same contig, to avoid sequencing errors.

For CDR3s that have only start or end positions determined in the contigs, 
TRUST4 reports these as partial CDR3s and tries to extend partial TCR CDR3s 
as in MiXCR. As an example of a missing start position, the extendable partial 
CDR3 must overlap with the identified V gene in the contig but cannot reach the 
start position. This scenario could happen when the V gene is identified through 
mate-pair information. TRUST4 then fills the missing sequences with germline 
sequences of the V gene to complete the partial CDR3. In scRNA-seq, TRUST4 
also utilizes information across all cells to extend partial TCR CDR3s. For two 
cells, A and B with the same V and J genes on both chains, cell B can extend its 
partial CDR3 if B has a complete CDR3 identical to A’s corresponding complete 
CDR3, and B’s partial CDR3 is a substring of A’s corresponding complete CDR3.

Sequence data. We tested TRUST4 on both in silico and real data. In silico bulk 
RNA-seq data for evaluation of TCRs were generated using scripts from MiXCR11, 
where repseqio (https://github.com/repseqio/repseqio) and ART28 generated the 
simulated TRB and RNA-seq data. As a result, each of the in silico RNA-seq samples 
contained 1,000 read fragments randomly derived from 1,000 recombined TRBs. To 
evaluate BCR reconstruction, we used six sets of lung cancer RNA-seq data and their 
pairing BCR-seq data from our previous study8. iRepertoire processed the BCR-seq 
data, and results were the gold standard for evaluation. For SMART-seq evaluation 
we used three SMART-seq datasets from BALDR: AW1, 1620PV (AW2-AW3) and 
VH_CD19pos. For pseudobulk RNA-seq data we first added a pseudomate for 
1620PV single-end data with a sequence of one nucleotide N. We then randomly 
selected 25 million read pairs across all the cells of these three samples to create 
the pseudobulk RNA-seq. Finally, 56, 33 and 11% of the pseudobulk RNA-seq data 
were derived from AW1, 1620PV and VH_CD19pos, respectively. We applied the 
same procedure to generate psuedobulk samples with fewer read pairs (12 million, 
6 million, …, 2,500, 1,000). The 10x Genomics scRNA-seq data and 10x V(D)J data 
were downloaded from the 10x Genomics website.

Performance evaluation. All methods utilized were tested with their default 
parameters without explicit clarification. BAM files as input for TRUST4 were 
generated by STAR v.2.5.3a. In this study we used MiXCR v.3.0.12, CATT with 
GitHub commit ID 0e7b462, TRUST3 v.3.0.3, BALDR with GitHub commit ID 
e865b45 and BASIC v.1.5.1. All evaluations in this work were at the nucleotide level: 
for example, the match of CDR3s of TRUST4 and BCR-seq gold standard meant 
that their nucleotide sequences were identical. TRUST4 can report both partial and 
complete CDR3s, but we considered only complete CDR3s in evaluations.

In the TCR evaluation with in silico RNA-seq data, evaluation criteria were 
based on scripts from MiXCR’s manuscript11. We added read length 150 bp and 
ran MiXCR with default parameters. In MiXCR’s original manuscript, the authors 
used the option ‘--badQualityThreshold 0' for higher sensitivity (MiXCR_0), 
and TRUST4 still found about 8% more CDR3s than MiXCR_0 on average 
(Supplementary Fig. 1a). Furthermore, TRUST4 with input from FASTQ and 
BAM files showed almost identical results, which demonstrated the efficiency of 
the candidate extraction method. TRUST4 was also the most, or among the most, 
sensitive method in assembly of CDR3s for TRB chains with varying numbers of 
reads (Supplementary Fig. 1b).

For bulk RNA-seq data we mainly evaluated the performance of reconstructing 
BCR heavy chains, including V, J and C gene assignments and CDR3 sequences. 
We considered gene assignments in addition to CDR3 sequences in the evaluation 
because IGHs had different C genes as isotypes, such as IgM, IgG1 and IgA1, and 
were critical in determining antibody functions. Since CATT could not report 
the C gene and TRUST3 focused only on CDR3 assembly, we omitted CATT 
and TRUST3 in this evaluation. For the match of V and J genes we ignored allele 
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ID. For example, if the V gene was annotated as IGHV1-18*01 we regarded it as 
IGHV1-18. In the evaluation, we excluded assemblies missing the V, J or C gene 
from TRUST4 and MiXCR. The IGH abundances reported by TRUST4 had a 
better correlation with the corresponding abundances in BCR-seq than MiXCR 
(Pearson r = 0.57 versus 0.53 on average; Supplementary Fig. 2a). We further 
checked the precision–recall curve by ranking inferred IGHs by abundance (top 
100, 500, 1,000, …), and TRUST4 consistently outperformed MiXCR across 
different thresholds (Supplementary Fig. 2a). On these real data, MiXCR_0 did not 
outperform MiXCR as in the in silico data, suggesting that the parameter is not 
effective with real data. TRUST4 with FASTQ and BAM input still showed identical 
performance across six samples in this real-data evaluation. We further evaluated 
the performance on CDR3 sequences only, which included results from TRUST3 
and CATT. TRUST4 showed the highest sensitivity consistently across all six 
samples, and reported 11% more correct CDR3s than MiXCR_0, the second most 
sensitive method, with similar precision on average.

The evaluations with SMART-seq data focused on whether the methods 
could reconstruct all nucleotides in the variable domain. If the assembled V and J 
sequences were shorter than gene lengths in the IMGT database, we regarded that 
as unreconstructed. The match of V or J sequences means that nucleotide bases 
were the same for regions annotated as V or J genes. In other words, we ignored 
bases before the V or after the J gene. In addition to the pseudobulk RNA-seq data 
from the three samples, we ran TRUST4 on original cell-level data and compared it 
with BALDR and BASIC on all three samples. We selected the top abundant heavy 
chain and light chain from TRUST4, and these were identical to either BALDR and 
BASIC on 272 out of 274 chains (Supplementary Fig. 3). The comparison result 
indicated that TRUST4 can effectively reconstruct the immune repertoire from 
SMART-seq scRNA-seq data.

For evaluation with 10x Genomics data, we used TCR library and IG library 
results from 10x Genomics Immune profiling (10x V(D)J) as the gold standard. 
Since the computational software CellRanger_VDJ can report multiple CDR3s for 
a cell, we regarded the most abundant CDR3 as the true CDR3 for a chain, and 
the less abundant CDR3s as secondary. TRUST4 took the BAM file generated by 
CellRanger as input, which included the barcode information in the field “CB”. 
TRUST4 also took FASTQ files as input, and corrected the erroneous barcodes 
based on the whitelist provided in the CellRanger package. TRUST4 with FASTQ 
input reported almost identical results to that with BAM input (Supplementary 
Fig. 5c). Even though CellRanger_VDJ (v.3.1.0) was designed for 10x V(D)J data, 
we ran it on the 10x 5′ scRNA-seq data using IMGT sequences as reference with 
eight cores. In our analysis of full-length assemblies, somatic hypermutation rate 
was represented by the proportion of matched bases (similarity) between the 
assembled V genes and germline sequences (Fig. 2c). When there are many somatic 
hypermutations, the similarity will be low. Besides the 5′ scRNA-seq data, we also 
evaluated TRUST4 on the 3′ 10x Genomics PBMC data, with only 335 cells having 
reconstructed CDR3s (Supplementary Fig. 7). We used LM22 marker genes from 
CIBERSORT29 to determine cell types.

Application of TRUST4 on TCGA COAD RNA-seq samples. We explored immune 
repertoire features on 466 COAD RNA-seq samples in TCGA cohorts. To reduce 
the effects of somatic hypermutated CDR3s, we first clustered highly similar CDR3 
nucleotide sequences of the same length and with the same V and J gene assignments 
reported from TRUST4. We selected the similarity cutoff as 0.8 by comparison of 
similarity distribution among pairs of CDR3s within (intra-patient) and between 
(inter-patient) samples, where inter-patient distribution can be regarded as 
background random CDR3 pair similarity (Supplementary Fig. 4a). Therefore, we 
defined the clonotype for TCR as the CDR3 sequence and that for BCR as the cluster 
with the same V and J gene assignments and similar CDR3 sequences. Although 
TRB and IGH clonalities were positively correlated with their respective expression 
(Spearman r = 0.346 for TRB, r = 0.085 for IGH), they contained additional 
information on TCR and BCR clonal expansion (Supplementary Fig. 4b). The 
expression for a chain is computed by the sum of transcripts per million (TPM) 
obtained from TCGA cohorts on the constant genes of a chain. We defined clonality 
as 1 – (normalized Shannon entropy) based on the clonotype definition above.

We identified that IgA1 antibody clonal expansion was related to patient 
survival in COAD. Unlike in melanoma, where IgG1 and IgA expression and 
abundance fractions were respectively positively and negatively associated with 
survival time11, we did not observe such association of survival time in COAD 
(Supplementary Fig. 4c). However, higher clonality of IgA1 B cells was correlated 
with significantly shorter survival time (P = 8.1 × 10–5, hazard ratio = 9.14 
by Cox proportional hazards regression corrected by age), supporting the 
immunosuppressive property of IgA antibodies30. We hypothesize that the clonal 
expansion of IgA1 B cells could be related to gut microbiota31, and future work is 
needed to elucidate the mechanisms involved.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The original scripts for generation and evaluation of in silico RNA-seq data are 
available at https://github.com/milaboratory/mixcr-rna-seq-paper.
The six bulk RNA-seq samples for BCR evaluation are available in the SRA 
repository, accession code PRJNA492301, and their matched iRepertoire data 
are available at https://bitbucket.org/liulab/ng-bcr-validate/src/master/iRep. 
SMART-seq data are available in the SRA repository, accession code SRP126429. 
10x Genomics scRNA-seq data are available at https://support.10xgenomics. 
com/single-cell-vdj/datasets/3.1.0/vdj_nextgem_hs_pbmc3, https://support. 
10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex 
and https://support.10xgenomics.com/single-cell-gene-expression/
datasets/3.1.0/5k_pbmc_protein_v3_nextgem.

Code availability
TRUST4 source code is available at https://github.com/liulab-dfci/TRUST4. 
Evaluation code for this work is available at https://github.com/liulab-dfci/
TRUST4_manuscript_evaluation.

References
	22.	Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 

15–21 (2013).
	23.	Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with 

low memory requirements. Nat. Methods 12, 357–360 (2015).
	24.	Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data 

without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
	25.	Lefranc, M.-P. IMGT, the international ImMunoGeneTics information 

system. Cold Spring Harb. Protoc. 2011, 595–603 (2011).
	26.	Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from 

incomplete data via the EM algorithm. J. R. Stat. Soc. Series B Stat. Methodol. 
39, 1–22 (1977).

	27.	Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from 
RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 
323 (2011).

	28.	Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation 
sequencing read simulator. Bioinformatics 28, 593–594 (2012).

	29.	Newman, A. M. et al. Robust enumeration of cell subsets from tissue 
expression profiles. Nat. Methods 12, 453–457 (2015).

	30.	Sharonov, G. V., Serebrovskaya, E. O., Yuzhakova, D. V., Britanova, O. V. & 
Chudakov, D. M. B cells, plasma cells and antibody repertoires in the tumour 
microenvironment. Nat. Rev. Immunol. 20, 294–307 (2020).

	31.	Bunker, J. J. & Bendelac, A. IgA responses to microbiota. Immunity 49, 
211–224 (2018).

Acknowledgements
We thank B. Li and C. Wang for the helpful discussions. We also acknowledge funding 
from NIH (grant U01CA226196) and China Scholarship Council (Z.O. and Y.C.) to 
support this work. The study used data generated by the TCGA Research Network that 
are not otherwise cited: https://www.cancer.gov/tcga

Author contributions
L.S., X.H. and X.S.L conceived the project. L.S. designed and implemented the methods. 
L.S., D.C., Z.O., Y.C., X.H. and X.S.L. evaluated the methods and wrote the manuscript. 
All authors read and approved the final manuscript.

Competing interests
X.S.L. is a cofounder, scientific advisory board (SAB) member and consultant of 
GV20 Oncotherapy and its subsidiaries, SAB memner of 3DMedCare, consultant for 
Genentech, stockholder of AMGN, JNJ, MRK and PFE and receives sponsored research 
funding from Takeda and Sanofi. X.H. conducted the work while a postdoctorate fellow 
at DFCI, and is currently a full-time employee of GV20 Oncotherapy.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41592-021-01142-2.

Correspondence and requests for materials should be addressed to X.S.L.

Peer review information Nature Methods thanks Aly Azeem Khan, Gur Yaari and the 
other, anonymous reviewer(s) for their contribution to the peer review of this work. Lin 
Tang was the primary editor on this article and managed its editorial process and peer 
review in collaboration with the rest of the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods

https://github.com/milaboratory/mixcr-rna-seq-paper
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA492301
https://bitbucket.org/liulab/ng-bcr-validate/src/master/iRep
https://www.ncbi.nlm.nih.gov/sra/?term=SRP126429
https://support.10xgenomics.com/single-cell-vdj/datasets/3.1.0/vdj_nextgem_hs_pbmc3
https://support.10xgenomics.com/single-cell-vdj/datasets/3.1.0/vdj_nextgem_hs_pbmc3
https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex
https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_nsclc_5gex
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_protein_v3_nextgem
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_protein_v3_nextgem
https://github.com/liulab-dfci/TRUST4
https://github.com/liulab-dfci/TRUST4_manuscript_evaluation
https://github.com/liulab-dfci/TRUST4_manuscript_evaluation
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41592-021-01142-2
http://www.nature.com/reprints
http://www.nature.com/naturemethods





	TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data

	Online content

	Fig. 1 The performance of TRUST4 on bulk RNA-seq data.
	Fig. 2 The performance of TRUST4 on scRNA-seq data.




