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Changes in the human microbiome have been associated with 
many disease and health states1. However, reporting the 
results of human microbiome research is challenging, as it 

often involves approaches from microbiology, genomics, biomedi-
cine, bioinformatics, statistics, epidemiology and other fields, which 

results in a lack of consistent recommendations for the reporting of 
methods and results. Inconsistent reporting can have consequences 
for the field by affecting the reproducibility of study results2. 
Although researchers have called for better reporting standards3, 
such as the Genomic Standards Consortium’s MIxS checklist4, to 
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provide a means for reporting sampling, processing and data gen-
eration, no comprehensive standardized guidelines spanning labo-
ratory and epidemiological reporting of microbiome studies have 
been proposed.

Standard reporting guidelines promote research consistency 
and, as a consequence, encourage reproducibility and improved 
study design. Editorial adoption of the CONSORT (Consolidated 
Standards of Reporting Trials) guidelines, for example, has been 
associated with an increase in the quality of trial reporting5,6. Other 
epidemiological reporting guidelines have seen broad adoption, such 
as STROBE (Strengthening the Reporting of Observational studies 
in Epidemiology)7 and STREGA (Strengthening the Reporting of 
Genetic Association Studies)8. STROBE-metagenomics9 proposes 
an extension to the STROBE checklist for metagenomics stud-
ies. Subsequent to the MIAME (Minimum Information About a 
Microarray Experiment) checklist9, the MIMARKS (Minimum 
Information about a MARKer gene Sequence) and MIxS (Minimum 
Information about any (x) Sequence) checklists provide detailed 
guidance on the reporting of sequencing studies in general. These 
are focused on the technical aspects of data generation, however, as 
are projects such as the MBQC (Microbiome Quality Control) proj-
ect10 and IHMS (International Human Microbiome Standards)11,12. 
Together, these serve as useful foundations, but they do not span 
the full range of reporting of human microbiome studies or include 
items intended for other types of studies, and they provide limited 
guidance on manuscript preparation.

Studies of the human microbiome share many features with 
studies of other types of molecular epidemiology, but they also 
require unique considerations with their own methodological best 
practices and reporting standards. In addition to standard elements 
of epidemiological study design, culture-independent microbiome 
studies involve the collection, handling and preservation of biologi-
cal specimens; evolving approaches to laboratory processing with 
elevated potential for batch effects; bioinformatics processing; sta-
tistical analysis of sparse, unusually distributed, high-dimensional 
data; and reporting of results on potentially thousands of micro-
bial features13–15. Because there is no agreed-upon gold-standard 
method for microbiome research and the field has not reached 
consensus on many of these aspects, inconsistencies in reporting 
inhibit reproducibility and hamper efforts to draw conclusions 
across similar studies.

For these reasons, we convened a multi-disciplinary working 
group to develop guidelines tailored to microbiome study reporting. 
Members of this group include epidemiologists, biostatisticians, 
bioinformaticians, physician-scientists, genomicists and micro-
biologists. The checklist is designed to balance completeness with 
burden of use and is applicable to a broad range of human micro-
biome study designs and analysis. The STORMS (Strengthening 
The Organizing and Reporting of Microbiome Studies) checklist 
(Supplementary Table 1) draws relevant items from related guide-
lines and adds new tailored guidelines to serve as a tool to organize 
study planning and manuscript preparation, to improve the clarity 
of manuscripts and to facilitate reviewers and readers in assessing 
these studies.

Methodology
STORMS was the result of a collaborative development process. 
In this section we discuss the methodology used to prepare the 
STORMS guidelines.

Origin and development. The origins of these guidelines are 
rooted in a project to create a standardized database of published 
literature reporting relationships between the microbiome and 
disease (https://bugsigdb.org/; website in preparation). The goal 
of that project is to create a publicly available, standardized data-
base of microbiome study findings indexed by condition of interest 

(for example, disease, health status, diet or environmental factor), 
microbiome site (for example, gut, mouth or skin) and microbial 
taxonomy to aid comparative analysis. As of August 2021, 31 cura-
tors (Supplementary Table 2) had extracted findings from 513 
unique published studies (Supplementary Table 3). Included studies 
must have examined the relationship between the microbiome and 
a condition of interest and must have included findings on a taxo-
nomic level (even if all findings were null).

This review revealed substantial reporting heterogeneity, par-
ticularly for epidemiology, such as study design, confounding fac-
tors and sources of bias. It also revealed microbiome-specific issues, 
including statistical analysis of compositional relative abundance 
data and handling of ‘batch’ effects16. This heterogeneity highlighted 
the need for standardized reporting guidelines, similar to those used 
in other fields of study. The curators determined that standardized 
reporting guidelines would streamline the review process but would 
also, more importantly, help researchers throughout the field of 
microbiome research communicate their findings effectively.

The resulting multidisciplinary group of bioinformaticians, 
epidemiologists, biostatisticians and microbiologists was thus 
convened to discuss microbiome reporting standards. The group 
began by reviewing existing reporting standards, including 
STROBE17, STROBE-ME18, STREGA8, MICRO17, MIMARKS4 and 
STROGAR19. The group also reviewed existing articles containing 
recommendations for microbiome reporting20,21. The STROBE and 
STREGA guidelines were used as a starting point for the STORMS 
checklist, although aspects were incorporated from the other 
reporting standards.

Following the guidelines on the development of reporting stan-
dards recommended by EQUATOR, the group created a comprehen-
sive list of potential guideline items. From this list, group members 
added, modified and removed items on the basis of their expertise. 
After the first round of edits, the checklist was then applied to a 
recent microbiome study22 by group members. Comments, remov-
als and additions were harmonized after each round. On the basis 
of this process, additional changes, simplifications and clarifications 
were made. This process was repeated until there was a group con-
sensus that the checklist was ready for use.

In addition to the core working group, outside subject-matter 
experts identified by members of the working group were then 
invited to review the guidelines and provide feedback as members of 
the STORMS Consortium. Substantive feedback (that is, not gram-
mar, spelling or other small changes) from 46 authors was organized 
by topic and compiled into a feedback document, and this was 
responded to as in a response to reviewer’s letter. After this round of 
revisions, consortium members were once again invited to review 
the checklist before submission for publication.

Elaboration and explanation of checklist items
This section describes the items in the STORMS checklist.

Checklist. The latest version of the checklist and a summary of 
items at the time of publication are presented in Supplementary 
Table 1; updated versions will be posted online (https://stormsmi-
crobiome.org). Of the items in the latest version in the STORMS 
checklist, nine items or sub-items were unchanged from STROBE, 
three were modified from STROBE, one was modified from 
STREGA, and fifty-seven new guidelines were developed. Nine 
items that overlap MIxS are specified. Rationales for new and 
modified items are presented below. Documentation of items 
unmodified from STROBE and STREGA were presented in the 
publications of those checklists.

Abstract (1.0–1.3). Along with commonly included abstract mate-
rials, such as a basic description of the participants and results, 
authors should report the study design23 — such as a cross-sectional, 
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case-control, cohort or randomized controlled trial — in the abstract 
of their article (item 1.1), as required by other reporting guidelines. 
Communication of the study design in the abstract allows read-
ers to quickly categorize the type of evidence provided. As part of  
this basic description, sequencing methods should be mentioned 
(item 1.2). Body site(s) sampled should also be included (item 1.3).

Introduction (2.0–2.1). The introduction should clearly describe 
the underlying background, evidence or theory that motivated 
the current study (item 2.0). Among other possibilities, this could 
include pilot study data, previous findings from a similar study 
or topic or a biologically plausible mechanism that has been pro-
posed. This clarifies for the reader the motivations for the present 
study. If the study is exploratory in nature, the introduction should 
explain what motivated the current exploration and the goals of 
the exploratory study. The hypothesis developed on the basis of the 
background should be included. If the study was exploratory and 
did not define a hypothesis, pre-specified study objectives should 
be included (item 2.1).

Methods (3.0–8.5). Methods constitute a majority of the checklist, 
as outlined below.

Participants (3.0–3.9). The methods section should contain sufficient 
information for study replicability. Because study design is essential 
to understanding a study, this should be stated in the methods (item 
3.0). In the description of the participants in the study, the popula-
tion of interest should be described, as well as how participants were 
sampled from the source population (item 3.1). Because participant 
characteristics such as environment24, lifestyle behaviors, diet, bio-
medical interventions, demographics25 and geography26 (item 3.2) 
can correspond with substantial differences in the microbiome, it 
is essential to include this description. Temporal context can be 
important as well, so start and end dates for recruitment, follow-up 
and data collection should be stated (item 3.3).

Specific criteria used to assess potential participants for eligibility 
in the study should also be reported, with details of both inclusion 
criteria and exclusion criteria (item 3.4). Inclusion and exclusion 
criteria are pre-established characteristics used for the selection of 
participants into a study, and describing these criteria is essential for 
understanding a study’s target population27. This is expanded from 
STROBE, which requires eligibility criteria but does not specify that 
both inclusion criteria and exclusion criteria should be reported in 
detail. Any information collected about antibiotics or other treat-
ments that could affect the microbiome should be described (item 
3.5), as well as if any exclusion criteria included recent use of antibi-
otics or other medications.

The final analytic sample sizes should be stated, as well as the 
reason for any exclusion of participants at any step of the recruit-
ment, follow-up or laboratory processes (item 3.6). STROBE sug-
gests using a flowchart to show when and why participants were 
removed from the study. A template for such flowcharts is presented 
here (Fig. 1), and a public-domain version is available for re-use 
online (https://stormsmicrobiome.org/figures). If participants were 
lost to follow-up or did not complete all assessments in a longitu-
dinal study, details on how follow-ups were conducted should be 
stated and time-point-specific sample sizes should also be reported 
(item 3.7). Additionally, studies that matched cases to controls 
should describe what variables were used in matching (item 3.8).

Laboratory methods (4.0–4.17). Since STROBE does not cover labo-
ratory methods, new items were developed for the STORMS check-
list. Laboratory methods should be described in sufficient detail to 
allow replication. The handling of lab samples should be described, 
including procedures for sample collection (item 4.1), shipping 
(item 4.2) and storage (item 4.3).

Because DNA extraction can be a major source of technical 
differences across studies10, DNA extraction methods should be 
described (item 4.4). Description of the removal of human DNA 
and enrichment for microbial DNA, if performed, should also  
be included (item 4.5). Likewise, if positive controls (item 4.7),  
negative controls (item 4.8) or contaminant-mitigation methods 
(item 4.9) were used, they should be identified and described.

Sequencing-related methods should be reported. This includes 
primer selection and DNA amplification (including the variable 
region of the 16 S rRNA gene, if applicable) (item 4.6). Major divi-
sions of sequencing strategy, such as shotgun or amplicon sequenc-
ing, should be identified (item 4.11). Finally, the methods used to 
determine relative abundances should be explained (item 4.12), and 
the read numbers that serve as denominators should be recorded.

Batch effects should be discussed as a potential source of con-
founding, including steps taken to ensure batch effects do not 
overlap exposures or outcomes of interest (item 4.13)28. If meta-
transcriptomics, metaproteomics or metabolomics are conducted, 
details of those methods should be provided (items 4.14–4.16).

Data sources/measurement (5.0). For non-microbiome data (for 
example, health outcomes, participant socioeconomic, behavioral, 
dietary and biomedical characteristics, including disease location 
and activity, and environmental variables), the measurement and 
definition of each variable should be described (item 5.0). For exam-
ple, a participant’s sex and age could be obtained from electronic 
medical records or from a questionnaire distributed to participants; 
this data source should be described. Limitations of measurements 
may also be discussed, including potential bias due to misclassifica-
tion or missing data, as well as any attempts made to address these 
measurement issues.

Research design considerations for causal inference (6.0–6.1). 
Observational data are often used to test associations that aim 
toward causal inference in situations in which the hypothesized 
causal relationship is not directly observed. Methods include, for 
example, the use of multivariable analysis or matching to adjust for 
confounding variables between a hypothesized exposure (such as 
abundance of a microbial taxon) and the disease or condition under 
study29. Confounders can be thought of as common causes of the 
exposure and the outcome under study that can induce a spurious 
association between the exposure and the outcome30,31. For exam-
ple, age could be a common confounder due to its influence on the 
microbiome and on the risk of most health outcomes32. Laboratory 
batch effects could also confound relationships between the micro-
biome and a condition of interest if steps are not taken to avoid 
imbalance of the condition across batches33. A common method 
for attempting to control for measured confounding is to adjust for 
or stratify on the confounder30. Justification should be provided for 
variables included or excluded in regression models for causal infer-
ence (item 6.0), as adjusting for or stratifying on a non-confounding 
variable can introduce bias34. As part of this theoretical justification, 
authors should consider including a directed acyclic graph showing 
the hypothesized causal relationships of interest35,36.

In addition to consideration of the theoretical motivations for 
the present study, the potential for selection or survival bias that can 
distort the observed relationship between the microbiome and vari-
able of interest should be discussed (item 6.1). For example, such 
bias may occur due to loss to follow-up (in longitudinal studies) 
or due to lack of inclusion of participants in the study due to the 
condition itself (for example, participants who have died of aggres-
sive forms of colorectal cancer and have not survived to be in a 
hypothetical study of colorectal cancer microbiomes)37. Other items 
elsewhere in the checklist may be directly relevant to questions 
of causal inference, including hypotheses (item 2.1), study design 
(item 3.0), matching (item 3.8), bias (item 13.1) and generalizability 
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(item 13.2). Authors investigating causal questions are encouraged 
to consider their reporting on these items in the context of causal 
inference as well.

Bioinformatics and Statistical Methods (7.0–7.9). Adequate descrip-
tion of bioinformatics and statistical methods is essential to the 
production of a rigorous and reproducible research report. Data 
transformations (such as normalization, rarefaction and percent-
ages) should be described (item 7.0). Quality-control methods 
should be fully disclosed, including criteria for filtering or removing 
reads or samples (item 7.1). All statistical methods used to analyze 
the data should be stated (item 7.3), including how results of interest 
were selected (for example, use of a P value, q value or other thresh-
old) (item 7.8). Taxonomic, functional profiling or other sequence 
analysis methods should be described in detail (item 7.2). In the 
interest of reproducibility, all software, packages, databases and 
libraries used for the pre-processing and analysis of the data should 
be described and cited, including version numbers (item 7.9).

Reproducible research (8.0–8.5). Reproducible research practices 
serve as quality checks in the process of publication and further 
transparency and knowledge sharing, as detailed in the rubric 
proposed by Schloss38. Journals are increasingly implementing 
reproducible research standards that include the publishing of 
data and code, and those guidelines should be followed when pos-
sible39,40. STORMS itemizes the accessibility of data, methods and 
code (items 8.0–8.5). If possible, raw data (item 8.1) and processed 
data (item 8.2) should be deposited into independently maintained 
public repositories that provide long-term availability, such those 
maintained by NCBI or EMBL-EBI. Repositories such as Zenodo 
(https://zenodo.org/) or Publisso (https://www.publisso.de/en/) can 
be used to provide a DOI for processed datasets. If data or code are 
not or cannot be made publicly available, even in a repository that 
provides restricted-access options, a description of how interested 
readers can access the data should be provided. As stated in item 
8.0, any protected information should be described, along with how 
such data can be accessed.

Results (9.0–10.4). The results should be reported as outlined 
below.

Descriptive data (9.0). Descriptive statistics about the study popu-
lation should be reported (item 9.0). At a minimum, the age and 
sex of the study population should be described, and age and sex 
should be included for each participant in shared data files, but 
other important participant characteristics should be reported 
when possible, including medication use or lifestyle factors such as 
diet. Authors should consider reporting these data in a descriptive 
statistics table. Packages such as the table1 package in R software 
make the creation of such a table straightforward41.

Outcome data (10.0–10.4). The main outcomes of the study should 
be detailed, including descriptive information, findings of interest 
and the results of any additional analyses. Descriptive microbiome 
analysis (for example, dimension reduction, such as principal coor-
dinates analysis, measures of diversity and gross taxonomic com-
position) should be reported for each group and each time point 
(item 10.0). This contextualizes the results of differential abundance 
analysis for readers. When differential abundance test results are 
reported, the magnitude and direction of differential abundance 
should be clearly stated (item 10.2) for each identifiable standard-
ized taxonomic unit (item 10.1). Results from other types of analy-
ses, such as metabolic function, functional potential, MAG assembly 
and RNAseq, should be described in the results as well (items 10.3 
and 10.4). Additional results (for example, non-significant results or 
full differential abundance results) can be included in supplements 
and should not be excluded entirely. Although the problem has been 
known for decades39, journals across many fields are recognizing the 
issue of publication bias and therefore the issue of non-reporting 
of null results40. Including such results in publications will help 
to reduce the severity of this bias and improve future systematic 
reviews and meta-analyses.

Discussion (11.0–14.0). Most recommendations for the discussion 
section are similar to those of STROBE, including a discussion of 
the limitations of the present study and associated methods (item 
13.0). One additional recommendation is made in the STORMS 
guidelines: the potential for biases and how they would influence the 
study findings (item 13.1) should be discussed. Many forms of bias, 
such as residual/unmeasured confounding, bias related to compo-
sitional analysis42, measurement bias or selection bias43, could affect 

Expression of interest
n = xx

Assessment for eligibility:
xxxx n = xx

Observational

STORMS analytic sample size flowcharts (item 3.6)

Excluded: 
xxxx n = xx

Drop out:
xxxx n = xx

Excluded:
Lack of sequencing n = xx
Low number of reads n = xx

Screened 
n = xx

Recruited 
n = xx

Data available for 
analysis n = xx

Total samples included 
in the analysis n = xx

Expression of interest
n = xx

Assessment for eligibility:
xxxx n = xx

Experimental

Excluded: 
xxxx n = xx

Drop out:
xxxx n = xx

Excluded:
Lack of sequencing n = xx
Low number of reads n = xx

Screened 
n = xx

Recruited and randomised
 n = xx

Completed trial
n = xx

n = xx Group 1 n = xx Group 2

Total samples included 
in the analysis n = xx

Fig. 1 | Examples of flowcharts for item 3.6. Although they are not required by the STORMS guidelines, flowcharts can help in the visualization of how the final 
analytic sample was calculated.
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the interpretation of the results of the study, and it is important to 
acknowledge potential sources of bias in discussion of the results44. 
As described in STROBE, authors should also consider the general-
izability of their findings and if these findings could be applicable to 
the target population or other populations (item 13.2). If different 
forms of bias were not assessed or assumed to be negligible, this 
should be stated. Finally, authors should discuss potential future or 
ongoing research based on findings of the present study (item 14.0).

Other information (15.0–17.0). In addition to including a state-
ment of funding (item 15.0), authors should also include acknowl-
edgements and a conflicts of interest statement (items 15.1 and 
15.2, respectively). Conflicts of interest statements should be writ-
ten according to the criteria established by the journal. Finally, the 
paper should state where supplementary materials and data can be 
accessed (items 16.0 and 17.0).

Implementation
The STORMS checklist can streamline peer review by providing 
both a checklist for assessing for completeness and a roadmap with 
pointers to the manuscript. We recommend that before submission, 
authors use the ‘Comments’ field to provide explanations where war-
ranted and to refer to relevant sections of the manuscript, to make 
the work of peer reviewers more straightforward and more accu-
rate. We provide two examples of pre-publication use of STORMS: 
(i) a multi-site study of associations between essential hypertension 
and gut microbial metabolic pathways45; and (ii) an observational 
study of the stool microbiota of multiple host species46. Additional 
post-publication examples are also available47,48 that highlight the 
fact that references to line numbers must be updated during pro-
duction or they will continue to refer to the pre-print version.

Discussion
The STORMS checklist for reporting on human microbiome studies 
was developed with the following priorities: the checklist should (1) 
be easy to understand and use by researchers from various fields, 
through straightforward use of language and pruning of items rarely 
relevant to the current literature; (2) be organized in the outline 
of a manuscript, so it can serve as a tool for authors and for peer 
reviewers, particularly when included in manuscript submission 
as a supplemental table with comments; (3) assist in the complete 
and organized reporting of a study, not in enforcing any particular 
methods; (4) reuse or modify items from related checklists where 
relevant; and (5) represent consensus across a broad cross-section 
of the human microbiome research community. The checklist 
facilitates manuscript authors in providing a complete, concise and 
organized description of their study and its findings. Included as a 
supplemental table to a manuscript, it also supports efficient peer 
review and post-publication interpretation.

Although other efforts to extend STROBE for microbiome and 
metagenomics studies have been proposed9 and laboratory-focused 
reporting checklists have been released4,49, to our knowledge, 
STORMS is the first comprehensive reporting checklist for human 
microbiome research. We aim for the STORMS guidelines to 
improve the quality and transparency of microbiome epidemiol-
ogy studies by introducing a shared grammar of study reporting in 
a structured checklist format. Reporting checklists introduced in 
other disciplines have been shown to improve the quality of journal 
articles5,6.

A major strength of the STORMS checklist is the rigor and trans-
parency of its development by a diverse, multidisciplinary consor-
tium of subject-matter experts. The development of the STORMS 
checklist is an ongoing process, and new versions of the checklist 
will be released to reflect evolving standards and technological 
processes. A version-control system with a change log has been 
implemented, and annual reviews of the checklist are planned. 

Additionally, the working group plans to evaluate the impact of the 
STORMS checklist on microbiome reporting by examining how 
many articles fulfill checklist items before and after its release. We 
invite interested readers to join the STORMS Consortium by con-
tacting the corresponding author or by visiting the consortium web-
site for more information (https://www.stormsmicrobiome.org/). 
We also encourage journals to include the STORMS checklist in 
their instructions to authors and to advise peer reviewers to consult 
the checklist when reviewing submissions.

There are some limitations to the STORMS checklist. The check-
list was not created to assess study or methodological rigor. It is 
meant to aid authors’ organization and ease the process of reader 
assessment of how studies are conducted and analyzed. Conclusions 
about the quality of studies should not be made on the basis of their 
adherence to STORMS guidelines, although we expect the reporting 
guidelines to help readers review studies critically. The STORMS 
checklist does not encourage, discourage or assume the use of null 
hypothesis significance testing50 or methods of compositional data 
analysis51, topics of some controversy in the field. In general, the 
checklist avoids reference to or guidance on specific statistical 
methodological decisions.

Through the efforts of the STORMS Consortium working in 
an iterative, transparent and collaborative process, the STORMS 
checklist provides a roadmap for researchers in reporting the results 
of a human microbiome study. The STORMS Consortium believes 
that the checklist is sufficiently flexible and user-friendly to support 
widespread adoption and contribution to microbiome study stan-
dards. Its adoption will ideally encourage thoughtful study design, 
reproducibility, collaboration and open knowledge sharing between 
research groups as they explore the human microbiome.

Data availability
The STORMS checklist as a versioned spreadsheet and the analyti-
cal sample size flowchart as editable PPTX and PDF files are avail-
able for adaptation and inclusion in manuscripts at https://www.
stormsmicrobiome.org/.
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