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The influence of systemic factors on the central nervous system 
(CNS) has long been shown; however, the molecular under-
pinnings of these factors and their effect on brain functioning 

have only recently become appreciated. It is becoming more appar-
ent that, under certain conditions such as aging and neurodegenera-
tion, systemic inflammatory mediators can influence the brain and 
ultimately impact cognition1. For example, in stroke and traumatic 
brain injury, peripheral cells can directly enter the brain paren-
chyma and cause neuroinflammation, especially when the blood–
brain barrier (BBB) is damaged2,3.

Surgery can be lifesaving and can also vastly improve quality of 
life. Over the past decade, however, growing evidence has linked 
surgery, such as cardiac and orthopedic procedures, to brain pathol-
ogy similar to that of other neurologic diseases in which the brain 
is the primary target of injury. This scenario is particularly true in 
older adults and frail patients who already experience limited cog-
nitive reserves and are more vulnerable to cognitive deterioration 
and even dementia. Indeed, perioperative neurocognitive disorders 
(PNDs), which include acute delirium and longer-lasting cognitive 
decline, are now considered some of the most common postopera-
tive complications among older adults4. PNDs can develop follow-
ing major procedures, especially cardiac and orthopedic surgery. 
The strongest risk factors for postoperative delirium are advanced 
age and dementia; a thorough review of the relevant clinical litera-
ture is provided in ref. 5. Notably, anesthesia has been implicated in 
the pathogenesis of PNDs, but clinically evident cognitive decline 
can occur after regional or general anesthesia, suggesting that other 
factors, such as surgical trauma, play a prominent role in causing 
cognitive deficits6. Indeed, orthopedic surgery is routinely per-
formed in older adults, and as many as 50% of these patients suffer 
from postoperative delirium, an acute and fluctuating disturbance 
in awareness and attention7. Despite its acute course, typically 1–3 
days after surgery and anesthesia, delirium has devastating con-
sequences: increased 1-year postoperative mortality8,9, decreased 
quality of life10 and an increased long-term risk for Alzheimer’s 
disease (AD)11,12. Importantly, PNDs have a synergistic relationship 
with neurodegenerative diseases, making their impact even more 
concerning13. In particular, an episode of delirium can accelerate 

the trajectory of cognitive decline, which can contribute to fur-
ther dementia14. When delirium occurs in patients with underlying 
dementia, the prognosis is even worse15,16. In fact, patients who suf-
fer delirium after hip fracture surgery have a twofold increased risk 
for 1-year mortality as compared to patients who have had hip frac-
ture surgery but do not have dementia or delirium17. Furthermore, 
delirium not only occurs after surgery but is frequently observed 
in the medical intensive care unit as a result of critical illness and 
mechanical ventilation, particularly relevant in the recent context 
of COVID-19, with an ~25% incidence, which is probably under-
estimated18,19. Delirium already contributes an estimated $150 bil-
lion per year to the soaring healthcare costs in the United States20. 
These complications are generating new challenges for our aging 
society and are rapidly becoming a significant burden for families 
and healthcare providers21. Preclinical and early clinical studies con-
tinue to investigate putative mechanisms for PNDs, focusing in par-
ticular on a role for neuroinflammation. Perhaps such a role is not 
surprising; after all, surgery is a form of controlled trauma, trauma 
is an established source of tissue injury, and injury is a key driver of 
inflammation. Here, we will review key mechanisms related to post-
operative inflammation and the implications for PND development, 
focusing on neuroinflammation and key cellular targets affected by 
surgical trauma.

Systemic inflammation and DAMPs after sterile injury
The brain has long been referred to as an immune-privileged organ, 
although it is becoming more apparent that neuroimmune interac-
tions between the periphery and the CNS are not rare or restricted 
to brain neuropathology22. The presence of a physical barrier, the 
BBB, supported by different cell types, including brain endothelial 
cells, astrocytes and pericytes, prevents direct access of damaging 
molecules to the CNS23. The role of the BBB in homeostasis and 
pathology has been extensively reviewed (see ref. 23). Here, we will 
focus on the emerging role of postoperative inflammation as a trig-
ger for PND pathology.

Millions of patients worldwide undergo surgery routinely, includ-
ing more invasive procedures that involve extensive tissue damage, 
hemorrhage and ischemic damage due to clamping or tourniquets, 
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used in many cardiac and orthopedic procedures. These forms of 
sterile trauma are associated with robust systemic inflammation 
that, in some cases, can lead to significant complications and even 
death. Cellular damage after surgical trauma triggers endogenous 
factors known as damage-associated molecular patterns (DAMPs), 
which activate immune cells such as neutrophils and monocytes to 
resolve the damage and restore homeostasis (reviewed in detail in 
ref. 24). Activation of these cells contributes to systemic inflamma-
tion, which can impact multiple organs, including the brain. The 
role of the innate immune response after trauma has been recently 
reviewed in ref. 25. There is growing evidence to suggest that dys-
regulated immune functions are a driver of PNDs.

HMGB1 is a prototypical DAMP with distinct roles in trauma 
and infection. HMGB1 is both a nuclear factor and a secreted pro-
tein that actively regulates several inflammatory processes26. In the 
nucleus, it is responsible for chromatin packaging, and it can be 
rapidly released into the circulation following a mechanical injury 
such as incision of tissues or vessels27. HMGB1 is detectable in the 
circulation within 30 minutes after surgery28. Together with other 
cytokines such as tumor necrosis factor (TNF), it contributes to the 
early mobilization of immune cells after surgery and the subsequent 
engagement of bone-marrow-derived macrophages (BMDMs)29. 
Indeed, exogenous administration of HMGB1 itself recapitulates 
similar neuroimmune and cognitive deficits found in PNDs, sug-
gesting that early release of DAMPs jumpstarts the neuroinflamma-
tory and behavioral responses to trauma. Soluble HMGB1 engages 
several pattern recognition receptors (PRRs), including Toll-like 
receptor (TLR) 2 and TLR4 as well as the receptor RAGE30. Both 
TLR4 and MyD88 signaling have been implicated in PND pathol-
ogy, as evidenced by mice genetically deficient for both genes that 
remain protected from surgery-induced inflammation and CNS 
dysfunction28,31. Indeed, HMGB1 is a potent primer for CNS inflam-
mation. Administration of antibodies selective for this DAMP 
can ‘desensitize’ resident microglia to peripheral inflammation 
caused by both infective and sterile trauma, including in models 
of PND29,32,33. HMGB1 signaling can also interact with extracellu-
lar ATP, also commonly released after tissue/cellular trauma, and 
together, they can activate the inflammasome complex to release 
interleukin (IL)-1β and IL-1834. Although the role of IL-1β in PNDs 
has been established through both preclinical models and the bio-
fluids of postoperative patients35,36, the regulation and characteriza-
tion of the cellular source(s) of IL-1 remain poorly described. A 
study described a key role for P2X7 receptor signaling in postop-
erative neuroinflammation, suggesting that blocking ATP binding 
to this receptor prevents inflammasome activation and improves 
cognitive outcomes after surgery (Fig. 1)37.

Postoperative complement system activation
The complement system is another key component in the inflam-
matory response, which can be activated by the ‘DAMPs surge’ after 
surgery. For example, C-reactive protein (CRP), a biomarker that 
has been well established by studies involving multiple cohorts of 
patients with delirium, can activate and regulate the classical com-
plement pathway38–41. While CRP is commonly used clinically as a 
biomarker, less attention has been devoted to the complement cas-
cade and its potential implications for PNDs. Previous clinical inves-
tigations demonstrated that in patients who were postoperative or 
had multiple traumas, there is early complement component 3 (C3) 
activation, represented by plasma C3 depletion and upregulation of 
cleaved forms of C3 (including C3a and C3b)42–44. In a murine model 
of orthopedic surgery, C3 was upregulated in the CNS, with higher 
expression of C3 in hippocampal astrocytes and C3a receptor specif-
ically in microglia45. Although C3 and C3a concentrations were not 
measured in the plasma, the study showed that administration of a 
C3a receptor blocker improved choroidal blood–cerebrospinal fluid 
barrier integrity and hippocampal-dependent memory function,  

suggesting that complement activation may play a role in the mech-
anisms underlying PND development. Thus, interfering with the 
complement cascade, including C3, may provide promising thera-
peutic avenues for PND treatment. Indeed, aging and dementia, two 
well-established risk factors for delirium, are characterized by C3 
accumulation on synapses. C3 gene deficiency reduced both syn-
aptic loss near amyloid plaques and neurodegenerative pathology 
in an AD mouse model46. The promising protective effects of com-
plement system inhibition were also described in a stroke mouse 
model. Administration of B4Crry, a selective complement inhibi-
tor, prevents microglial phagocytosis of stressed neurons, thereby 
improving neuroinflammation and functional outcomes47. In addi-
tion to plasma C3, a study in hip fracture patients showed that the 
preoperative C3 concentration in cerebrospinal fluid (CSF) was 
significantly altered from normal levels in patients with postopera-
tive delirium. Although the findings in two cohorts of patients were 
opposing, which may be due to multiple factors, including the dura-
tion of fracture and the sample analysis methodology48, the asso-
ciation between preoperative C3 in CSF and postoperative delirium 
should be noted and requires further validation.

Coagulation cascade after surgery
Complement signaling closely interacts with the coagulation cas-
cade, which plays a critical role in the inflammatory response. 
Together with the release of DAMPs from the injury site, coagu-
lation and thrombosis are activated after trauma and are critically 
implicated in restoring tissue homeostasis49. The fibrinolytic sys-
tem, which leads to the conversion of fibrinogen to fibrin to initiate 
and resolve blood clotting, has well-established immune conse-
quences. If fibrinogen enters the CNS parenchyma through a BBB 
opening, the insoluble fibrin becomes a strong immunogenic factor, 
known to bind to the CD11b I-domain of the CD11b/CD18 integrin 
receptor (also known as complement receptor 3 (CR3)) to further 
activate macrophages/resident microglia and drive cognitive defi-
cits50–52. Notably, the CR3 can also recognize cleaved C3b (iC3b) and 
cause complement-dependent macrophage53 and microglia54 activa-
tion. We found perivascular fibrinogen deposition in the hippocam-
pus as early as 24 hours after orthopedic surgery52,55,56. Therefore, 
fibrinogen may also represent a valuable peripheral biomarker to 
identify patients at risk for PNDs. Fibrin deposition has been impli-
cated in several neurologic disorders, including multiple sclerosis, 
traumatic brain injury and AD (reviewed in ref. 57). Fibrin is also a 
well-established pathologic hallmark of BBB disruption and could 
represent a key mechanism for systemic inflammation leading to 
CNS inflammation and neuronal dysfunction after surgery. For 
example, plasma concentrations of the serine protease inhibitor 
PAI-1 are significantly associated with prolonged delirium in the 
emergency department and can be rapidly assayed in the circula-
tion58. Indeed, peripheral biomarkers of inflammation and CNS 
dysfunction are becoming valuable tools for characterizing patient 
recovery59 and further highlight the complex interactions between 
systemic inflammation and CNS pathology. Thus, plasma biomark-
ers, including coagulation factors, lipid mediators and more clas-
sical proinflammatory cytokines, may already provide valuable 
information on the likelihood of developing PNDs without needing 
to directly access the CSF.

Blood–brain barrier opening and cell infiltration after 
surgery
BBB dysfunction is becoming more appreciated in the context of 
aging and dementia, although not many studies have characterized 
it in PNDs. One study evaluated changes in the pre- to postopera-
tive serum albumin ratio in patients who had hip fracture surgery. 
Significant changes were measured in patients who developed delir-
ium, suggesting that BBB dysfunction is relevant to the occurrence 
of postoperative cognitive complications60. Systemic biomarkers  
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of BBB dysfunction and endothelial activation have also been 
described in critically ill patients with delirium61; thus, understand-
ing the impact of inflammation on barrier function is paramount.

Preclinical models of postoperative neuroinflammation and 
PNDs have demonstrated that anesthesia and surgery can reduce 
tight junction (TJ) protein expression in the brain microvascu-
lature, leading to increased BBB permeability and migration of 
CCR2+ ‘inflammatory’ macrophages into the hippocampus52,62,63. 
A simple laparotomy under isoflurane anesthesia causes cogni-
tive impairment and increases BBB permeability in aged mice in 
an IL-6-dependent manner64. This change was accompanied by 
a decrease in β-catenin and TJ proteins such as claudin, occludin 
and zonula occudens-1 (ZO-1)64. Notably, in this study, exposure to 
anesthesia alone was not sufficient to trigger BBB opening even in 
aged mice. Using our orthopedic model, we also found no signifi-
cant effects of well-balanced anesthesia alone on the CNS, includ-
ing no inflammatory changes or behavioral deficits. A recent study 
in older adults that volunteered to receive anesthesia alone (with-
out surgery) found no evidence of immune or neuronal injury as 
detected by plasma biomarkers65, suggesting that its combination 
with ensuing surgical trauma contributes to CNS impairments. 
After orthopedic surgery, blocking IL-6 receptor signaling with 
the monoclonal antibody tocilizumab effectively prevented BBB 
opening and the ensuing infiltration of CCR2+ cells into the hippo-
campus, and these effects were not observed in anesthesia-exposed 

mice66. Using the same tibial fracture surgery model in aged mice, 
T cell activation and IL-17A were implicated in BBB breakdown and 
PND behavior67. In this study, treatment with a monoclonal anti-
body reduced IL-17A expression in both the circulation and hip-
pocampal tissue and also prevented BBB opening. Activation and 
degranulation of brain mast cells has also been causally implicated 
in microglial activation via MAPK signaling, resulting in neuronal 
loss in rats after orthopedic surgery68. Thus, multiple cell types, 
including neutrophils, BMDMs, mast and T cells, have been shown 
to be involved in PND pathology and its resolution. The mecha-
nisms responsible for cell infiltration into the brain after peripheral 
surgery need further clarification.

Matrix-metalloproteinase (MMP) 2 and MMP9 are known regu-
lators of TJs in brain capillaries and the BBB69. Peripheral surgery 
can elevate MMP2 and MMP9 expression in the hippocampus of 
aged mice and rats67,70. These changes are accompanied by a reduc-
tion in occludin and ZO-1. The role of MMP9 in surgery-induced 
BBB dysfunction and cognitive decline has been further validated 
using gene-targeted MMP9-deficient mice71.

The role of BBB disruption has been highlighted during aging 
and AD. A recent study described age-dependent BBB opening in 
mice by albumin extravasation in the hippocampus, starting as early 
as 12 months old72. The extravasated albumin is primarily taken 
up by astrocytes and contributes to neural dysfunction via trans-
forming growth factor-β (TGF-β) signaling72. Notably, fibrinogen 
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is a carrier of latent TGF-β, which induces astrogliosis and inhib-
its neurite outgrowth73. Indeed, disruption of the BBB is linked to  
multiple cell types involved in maintaining the neurovascular unit and 
may contribute to the onset of cognitive disorders. Age-dependent 
BBB breakdown has been described in humans using advanced, 
dynamic contrast-enhanced magnetic resonance imaging (MRI). In 
fact, progressive loss of hippocampal BBB integrity has already been 
measured in individuals without evident cognitive impairments74. 
This pathologic change is worsened in individuals with mild cogni-
tive impairment and is associated with pericyte injury, as evidenced 
by an increase in the soluble growth factor receptor sPDGFR-β in 
CSF74. Taken together, during aging and neurodegeneration, periph-
eral inflammation can synergize with ongoing pathology, thus lead-
ing to worse outcomes in more frail individuals.

Glial activation after peripheral trauma
Microglia, the resident immune cells of the CNS, surveil the brain 
parenchyma and are rapidly activated following injury. Microglial 
ontogeny and biology have been extensively reviewed (for exam-
ple, in ref. 75). Indeed, microglia and monocytes share the expres-
sion of several PRRs and can thus induce similar inflammatory 
responses. Microglia are central players in neuroinflammation, 
including inflammaging and neurodegeneration, and are one of the 
key cell types affected by surgical trauma. Their activation has been 
described in the human brain using positron emission tomogra-
phy imaging, and it is associated with long lasting PNDs via higher 
[11C]PBR28 in patients with cognitive deficits after abdominal sur-
gery76. PBR28 is a second-generation selective radiolabeled ligand 
for the 18-kDa translocator protein (TSPO), previously known as 
the peripheral benzodiazepine receptor, which is a widely expressed 
transmembrane protein that resides in the outer mitochondrial 
membrane of microglia but is also expressed in monocyte-derived 
macrophages77. Thus, changes in TSPO may not only reflect 
microglial dysfunction but also astrocytes and vascular endothelial 
cells, as well as systemic cells78,79. In this context, peripheral factors 
can activate microglia via a permeable BBB. In fact, mice treated 
with PLX5622, a selective inhibitor of the receptor CSF1R that 
can deplete microglia, and subjected to surgery remain protected 
from monocyte infiltration and do not develop PND behavior80. 
PLX5622 treatment is frequently billed as a highly specific method 
for microglial depletion81. Recent evidence indicates that it has 
minor yet consistent effects on other immune populations, namely, 
Ly6Clo ‘patrolling’ monocytes, which are reduced by as much as 30% 
with PLX5622 treatment80,82. Ablation of BMDMs using clodronate 
also prevents microglial activation after orthopedic surgery without 
altering monocyte chemoattractant protein-1 (MCP-1) expression 
in the brain. This suggests a critical role for resident microglia in 
actively recruiting peripheral leukocytes after surgery via MCP-1 
signaling. Notably, increasing systemic concentrations of MCP-1 
correlate with cognitive aging in older adults83. Nevertheless, the 
mechanisms that drive blood–CSF–brain communication need sig-
nificant clarification in this context. MCP-1, together with a pleth-
ora of other chemokines, is upregulated in the systemic circulation 
after surgery, raising the possibility that other cellular sources, such 
as endothelial cells, can contribute to its upregulation in the CNS 
after surgery independently of BMDMs84.

With several factors able to affect microglia after surgery, a com-
mon feature described across PND models is the modification of 
cellular morphology, concomitant with the increased expression 
of molecules such as Iba-1 and CD11b on these cells. The effect 
of these changes on microglial function remains poorly defined. 
Recently, higher concentrations of the soluble receptor sTREM2 in 
CSF were detected in patients with delirium after hip fracture repair, 
confirming that microglial ‘activation’ occurs in the human brain 
due to ligands more specific than ubiquitous cytokines and chemo-
kines85. TREM2 is a critical innate immune receptor that signals via 

the adaptor protein TYROBP/DAP12 and is expressed on microg-
lia. Furthermore, TREM2 has established mutations associated  
with aging and neurodegenerative pathology75. Importantly, its 
signaling is essential to maintaining microglial homeostasis and 
overall metabolic fitness. In fact, dysregulation of TREM2 is a key 
functional signature of the disease-associated microglial profile86. 
During aging, TREM2 also contributes to microglial priming and 
inflammaging. Interestingly, several proinflammatory and oxida-
tive genes, including C1q, C3 and CD11b, are downregulated in 
aged TREM2-deficient mice87. Whether TREM2 is causally related 
to PNDs is not yet known, and whether postoperative microglia 
express a disease-associated microglial profile is the focus of cur-
rent studies using next-generation genetic sequencing approaches. 
From a histologic perspective, both microglia and astrocytes show 
distinct morphologic changes after peripheral trauma, and it is pos-
sible that proinflammatory factors released by microglia contribute 
to the subsequent activation of astrocytes, including IL-1α, TNF, 
and C1q88. Together, these mediators are both necessary and suffi-
cient to activate A1 astrocytes, a more toxic and harmful subtype of 
these cells that are able to exert a potent neurotoxic effect. A1 astro-
cytes have been described in the context of normal aging, which 
may account for the higher risk of developing neurodegenerative 
conditions such as AD. Astrocytes are well known to shape syn-
apses during development via complement signaling89. Notably, the 
aging brain expresses high levels of complement components, such 
as C1q, thus similar pathways may be engaged during aging as a 
result of microglial priming and stressors like lipopolysaccharide or 
surgery90–92. In this regard, A1 astrocytes may be responsible for the 
acute changes in neuronal plasticity and PND behavior, and studies 
are urgently needed to clarify these glial interactions (Fig. 2).

Indeed, astrocytes are also key components of the BBB and 
closely interact with the cerebrovascular endothelium to maintain 
homeostasis. Surgery impairs expression of water channel proteins, 
such as aquaporin-4, which are critical to support astrocytic end-
feet and BBB integrity55,56. The effect of astrocytic dysfunction after 
surgery is measurable in fluid biomarkers of postoperative patients, 
suggesting that CNS dysfunction is a result of peripheral trauma. For 
example, concentrations of the calcium-binding protein S100β and 
glial fibrillary acidic protein are elevated in the CSF and plasma of 
patients with cognitive impairments after cardiac and non-cardiac 
procedures93–96. Interestingly, for patients with pre-existing demen-
tia, there is an even stronger association with these biomarkers, fur-
ther demonstrating the higher vulnerability of this population to 
complications from these common procedures96. From these stud-
ies, it remains challenging to ascertain causality between different 
cell types and factors released in the brain parenchyma, especially 
with regard to astrocytic dysfunction that possibly precedes micro-
gliosis. A recent study demonstrated that microglia migrate toward 
cerebral blood vessels after systemic inflammation97. Interestingly, 
the initial contact between microglia and cerebral vessels aims at 
preserving BBB integrity. However, with prolonged inflammation, 
microglia start to develop an activated phenotype and phagocytose 
astrocytic endfeet, thus leading to BBB breakdown97. Indeed, the 
signals that trigger the initial microglial migration require further 
investigation and, in the acute postoperative setting, may indicate 
a protective response by microglia in PNDs. Therefore, trauma 
can trigger both specific and localized CNS responses, and stud-
ies aimed at characterizing the peripheral and central ‘signalome’ 
after surgery may reveal unique pathways as well as potential PND 
therapeutic targets.

Potential therapies and concluding remarks
As reviewed here, the immune response to surgical trauma involves 
multiple compartments and, overall, is triggered to protect organs 
and restore homeostasis. Targeting inflammation in this context 
presents unique challenges as well as opportunities. Challenges 
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include the heightened risk for immunosuppression and disrupted 
healing, a major concern for patients after surgery and a significant 
limitation of many biologics and immune blockers discussed here. 
Opportunities include the very acute time course of PND (as com-
pared, for example, to other neurodegenerative disorders that mani-
fest over several years) and the predictability of the outcome of a 
good portion of surgical cases in the context of elective procedures. 
This latter point is attractive because knowing the time of injury 
can ensure timely treatment and possibly prevent the CNS sequelae.

In line with these concepts, a couple of new therapeutic approaches 
are emerging in the field that desperately need attention. Resolution 
of inflammation is gaining considerable interest due to the safety pro-
file of endogenous mediators and their potent actions on immune 
cells98. Indeed, it is now appreciated that the process of resolution is 
activated as soon as trauma occurs. This process is highly regulated by 
the biosynthesis of specialized proresolving lipid mediators (SPMs) 
from omega-3 polyunsaturated fatty acids, which include resolvins, 
protectins and maresins99. SPMs act as agonists to shorten the resolu-
tion interval of acute inflammation, affecting the influx and clearance 
of polymorphonuclear neutrophils already at the site of injury100,101. 
Importantly, they are not immunosuppressive, and, in the context 
of infection, SPMs can lower antibiotic requirements for bacterial 
clearance102. We have described the protective effects of D-series 
resolvins, including RvD1 and MaR1, which prevent surgery-induced 
microgliosis and PND-like behavior62,103. Importantly, SPM profiles 
determined by targeted metabololipidomics may serve as valuable 
biomarkers for CNS pathology. For example, patients with multiple 
sclerosis have altered SPM profiles in the blood that contribute to  

the regulation of monocytic migration through the BBB via pro- 
resolvin receptors expressed on endothelial cells104.We have found 
that surgery dynamically regulates expression of MaR1, an SPM spe-
cific to macrophages, in the human CSF, and this may have implica-
tions for BBB–monocyte transendothelial migration62.

SPMs are not the only target for PNDs, and other therapies 
aimed, for example, at stabilizing the BBB may precisely disengage 
this systemic-to-central immune response. One example is the use of 
targeted nanocarriers to finely regulate the cerebral vasculature, for 
example, via vascular cell adhesion molecule 1 (VCAM-1) expres-
sion105. Notably, endothelial VCAM-1 has been described as a key 
regulator of inflammation during aging, and administration of an 
anti-VCAM1 antibody reduces neuroinflammation and improves 
cognition in these mice106. We found that a mixed-lineage kinase 
(MLK) 3 inhibitor selectively protects the BBB after surgery with-
out significantly affecting the systemic immune response or caus-
ing healing impairments at the fracture site following tibial fracture 
repair107. Finally, specific antibodies, such as 5B8, which targets 
the cryptic fibrin epitope γ377–395, thereby inhibiting fibrin-induced 
inflammation and oxidative stress without interfering with clot-
ting108, may offer attractive strategies to safely prevent memory 
impairments. To date, only a few studies have evaluated the effects 
of anti-inflammatories on PNDs, partly because inflammation is a 
necessary response to injury, and tampering with this process can 
negatively impact healing and the host response. Thus, therapies 
that target dysfunctional inflammation may offer safer and more 
focused approaches to protect the brain from overactivation of the 
immune system.
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In the Bucoliche (Egloga IX, written circa 39 bc), Virgil wrote 
“Time carries away everything, even our memory” (Omnia fert aetas, 
animum quoque). In this dialogue, Lycidas and Moeris reminisce  
on how difficult it has become to remember songs they used to 
sing in their youth and to recollect not only the actual words 
but also their intonation as they aged. This observation may be 
trivial. After all, we all have a hard time remembering things 
from the distant past. However, fast forward to the present time 
and, while forgetting remains a key manifestation of aging, it has 
also become an earlier pathologic hallmark of many debilitating 
neurologic disorders, including PNDs. If time slowly steals our 
memories, let us at least ensure that interventions like surgery do 
not accelerate the natural course of time, especially on an already 
vulnerable brain.
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