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In situ analysis of osmolyte mechanisms of 
proteome thermal stabilization
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Paola Picotti    1 

Organisms use organic molecules called osmolytes to adapt to 
environmental conditions. In vitro studies indicate that osmolytes thermally 
stabilize proteins, but mechanisms are controversial, and systematic studies 
within the cellular milieu are lacking. We analyzed Escherichia coli and human 
protein thermal stabilization by osmolytes in situ and across the proteome. 
Using structural proteomics, we probed osmolyte effects on protein thermal 
stability, structure and aggregation, revealing common mechanisms but also 
osmolyte- and protein-specific effects. All tested osmolytes (trimethylamine 
N-oxide, betaine, glycerol, proline, trehalose and glucose) stabilized many 
proteins, predominantly via a preferential exclusion mechanism, and caused 
an upward shift in temperatures at which most proteins aggregated. Thermal 
profiling of the human proteome provided evidence for intrinsic disorder 
in situ but also identified potential structure in predicted disordered regions. 
Our analysis provides mechanistic insight into osmolyte function within 
a complex biological matrix and sheds light on the in situ prevalence of 
intrinsically disordered regions.

Adaptation to acute environmental changes is crucial for organism 
survival. A key adaptation mechanism under stress conditions is the 
accumulation of osmolytes, small uncharged organic compounds 
that regulate osmotic pressure in cells1–4. In addition to their ability to 
control cell water content, osmolytes stabilize lipid membranes5 and 
protect proteins against denaturation6–11.

Much remains to be understood about osmolyte mechanisms of 
action. In vitro studies on monomeric, purified proteins have revealed 
that osmolytes stabilize proteins against thermal denaturation1–3, 
but the mechanisms of stabilization are controversial. Models of 
osmolyte-dependent thermal stabilization include the preferential 
exclusion model8,12–16, which implies that osmolytes form unfavorable 

interactions with the protein backbone and render the unfolded state 
energetically unfavorable. Other models propose effects mediated by 
an increase in medium viscosity17 or crowding18 or protein stabilization 
via direct osmolyte binding19,20. Some studies have reported that the 
native structure of a protein is not affected by osmolyte addition21,22, 
but native structure is not preserved for all osmolyte–protein combina-
tions23–25. Osmolytes have been shown to both reduce26–30 and promote 
aggregation31–36 as well as change the structure of aggregates37,38.

Importantly, because most previous studies on osmolyte mecha-
nisms were based on individual purified proteins1–3,8,15,39, they did not 
account for effects of the cellular matrix, which could profoundly affect 
protein thermal stability and osmolyte-dependent stabilization40.  
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behavior and other types of complex structural changes induced by 
an increase in temperature, including protein aggregation. Third, 
we ensured that PK activities stayed constant under different condi-
tions, for example, at different temperatures or after the addition of 
osmolytes. We found that temperature in the tested range (37–76 °C) 
and osmolytes at a concentration of 1 M had only small effects on 
PK activity (6.6% and 3.2% of peptides, respectively; Supplementary  
Fig. 1c,d and Methods), which could be further reduced by scaling pep-
tide intensities (Supplementary Fig. 1e and Methods). We concluded 
that the LiP-based approach can be applied to study osmolyte effects 
on thermal stability.

We applied our optimized approach to an E. coli lysate, clustered 
the resulting peptide thermal profiles and observed that the resulting 
20 clusters could be visually grouped into peptides with increasing 
intensity (purple; 40% of peptides), decreasing intensity (green; 42% 
of peptides) and nonmonotonic behavior (orange; 18% of peptides; 
Fig. 1c). Half-tryptic and fully tryptic peptides showed a similar profile 
distribution (Fig. 1d).

Based on known PK activity and cleavage preferences43,46, we inter-
pret the observed fully tryptic profiles as follows (Fig. 1e). In the folded 
state, peptide bonds within tightly folded regions are typically poorly 
accessible to PK, but flexibility and accessibility increase after unfold-
ing. Thermal profiles with decreasing fully tryptic peptide intensity 
(green) indicate increasing proteolytic accessibility and thus might be 
explained by protein unfolding. Profiles with increasing fully tryptic 
peptide intensity (purple), by contrast, indicate decreasing proteolytic 
accessibility and may therefore represent temperature-induced protein 
aggregation. Nonmonotonous profiles (orange) would represent a 
combination that is initial unfolding followed by aggregation. The exact 
opposite profiles are expected for half-tryptic peptides (Supplemen-
tary Fig. 1f). Our interpretation is consistent with the fact that E. coli 
proteins previously reported not to undergo temperature-induced pre-
cipitation47, defined here as nonprecipitating proteins, were enriched 
(P = 8.9 × 10−28, Fisher’s exact test) in peptides with a pure unfolding 
(green) profile (Fig. 1f and Supplementary Fig. 1g for half-tryptic pep-
tides) relative to precipitating proteins. Overall, our data indicate that 
the proteome response to thermal denaturation is complex and that 
thermal profiling by LiP–MS could monitor events beyond protein 
unfolding alone.

Osmolytes have a global effect on protein thermal stability
We applied the improved LiP–MS pipeline to monitor the effects of a 
panel of osmolytes on protein thermal stability across the proteome. 
We chose osmolytes from four chemical groups (sugars (glucose and 
trehalose), methylamines (TMAO and betaine), polyols (glycerol) 
and amino acids (proline)) with the goal of elucidating both general 
and osmolyte-specific effects. We used concentrations of osmolytes  
(1 M except 0.5 M for trehalose) consistent with those reported under 
stress conditions in cells48,49 and previously used in vitro6–11. The addi-
tion of osmolytes induced shifts in the profiles but mostly did not alter 
their shape (Supplementary Fig. 2a).

We then assessed thermal stabilization by quantifying any shift 
in the peptide profiles after the addition of an osmolyte and sum-
marizing peptide-level information into a protein-level stabilization 
score (Methods and Fig. 2a). At a peptide- and protein-level false dis-
covery rate (FDR) of <0.05 (Supplementary Fig. 2b,c and Methods), 
all osmolytes stabilized a large fraction of detected proteome based 
on scores obtained for >1,000 proteins under each condition (Fig. 2b 
and Supplementary Data 1). TMAO stabilized the largest number of 
proteins (67.2% of detected proteins) and showed the strongest sta-
bilization, whereas glycerol at the same concentration stabilized the 
fewest proteins (18.7%) and showed the weakest stabilization (Fig. 2c).

To validate these results, we quantified the effect of osmolytes on 
the melting temperature of a lysate by differential scanning fluorim-
etry (DSF). The DSF-measured melting temperature of an untreated 

Also, results on a few individual proteins may not apply across the pro-
teome. Systematic, proteome-wide studies of osmolyte mechanisms 
within the complex cellular matrix are needed.

We adapted a global structural proteomics method based on 
limited proteolysis and mass spectrometry (LiP–MS) to the study of 
osmolyte mechanisms41–43. Our approach enables the measurement of 
protein stability, structure and aggregation in a cellular lysate and on a 
proteome-wide scale42. We could therefore apply it to test the effects of 
all four major groups of osmolytes (sugars, polyols, methylamines and 
amino acids) on the proteome of E. coli, which uses osmolytes to coun-
teract stress44,45, and to test their previously proposed mechanisms of 
action. All tested osmolytes stabilized many proteins; methylamine 
trimethylamine N-oxide (TMAO) stabilized the largest number of pro-
teins and with the strongest effect, and glycerol stabilized the fewest 
proteins. Interestingly, the preferential exclusion model could explain 
much of the observed stabilization effect across the proteome. Our 
approach allows the assessment of whether direct osmolyte binding 
is required for protein stabilization and reveals strong stabilization of 
a few proteins due to protein–osmolyte binding events, but that bind-
ing is not broadly necessary for stabilization. Our global study enabled 
the analysis of the biophysical properties of osmolyte-stabilized pro-
teins, showing preferential stabilization of proteins with lower charge 
and lower isoelectric point (pI) across osmolytes, whereas glucose 
and trehalose stabilized those rich in negatively charged residues. 
Osmolytes generally caused an upward shift in the temperatures at 
which proteins aggregated due to stabilization of protein structure. 
Similar effects could be seen for TMAO and trehalose in the human 
(HEK293T cell) proteome.

We studied the thermal behavior and the effects of osmolytes on 
intrinsically disordered proteins in the human proteome. We found 
evidence of intrinsic disorder (that is, flat thermal unfolding profiles) 
in situ, and more than one-third of protein regions predicted to be 
disordered may be folded in the cellular context. TMAO had different 
effects on folded and disordered human proteins, stabilizing globular 
proteins but promoting aggregation of large disordered ones.

We provide a systematic study of in situ osmolyte mechanisms 
across an entire proteome. The data revealed both general and 
protein-specific effects of osmolytes on protein stabilization and 
aggregation and identified biophysical principles by which these 
effects occur.

Results
LiP–MS for the study of proteome-wide osmolyte effects
We previously showed that LiP–MS applied over a range of tempera-
tures can measure protein thermostability across the proteome42. In 
brief, sequence-unspecific proteinase K (PK) is added to aliquots of a 
native lysate exposed to a temperature gradient and cleaves flexible 
and accessible regions of proteins. As proteins unfold with increasing 
temperature, PK increasingly cleaves newly accessible regions. The 
abundance of differentially produced peptides across the tempera-
ture gradient can then be monitored to yield thermal profiles for each 
protein. In our previous work, we used such profiles to extract protein 
melting temperatures at the proteome scale42. Here, we improved the 
coverage and resolution of the approach, extended it to enable robust 
comparison of thermal profiles between conditions (Fig. 1a,b) and 
made it compatible with the analysis of small-molecule osmolytes.

First, our new thermal profiling pipeline included analysis of both 
half-tryptic and fully tryptic peptides and not just the latter as in our 
previous work42 (Supplementary Fig. 1a and Methods). Half-tryptic 
peptides are a rich source of structural information, and the intensi-
ties of both peptide types are well correlated (Supplementary Fig. 1b). 
Including half-tryptic peptides thus increased the structural resolution 
and sequence coverage of the analysis.

Second, we extended the approach beyond the analysis of pure 
protein unfolding profiles (Methods) to capture nonmonotonous 
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Fig. 1 | LiP–MS thermal profiling to study osmolyte effects. a, Chemical 
structures of osmolytes used in the study. All osmolytes were used at 1 M except 
for trehalose (0.5 M). b, Overview of the experimental procedure. Aliquots of an 
E. coli lysate were subjected to a thermal gradient (ten temperatures; 37–76 °C) in 
the presence or absence of an osmolyte. Subsequent proteolysis with PK under 
native conditions yielded proteolytic fragments that are informative about the 
folded state of proteins, with PK accessibility increasing after protein unfolding. 
Trypsin digestion under denaturing conditions generated peptides that can 
be measured with MS. Scaled relative abundance of individual peptides across 
the temperature gradient allows profiling of protein thermal unfolding, and 
osmolyte effects can be studied by comparing profiles between control (gray 
curves) and osmolyte (red curves) conditions. Figure created with BioRender.
com. c, Peptide thermal profile clusters in the absence of osmolytes. Both 

fully tryptic (FT) and half-tryptic (HT) peptides are shown. The numbers of 
peptides in each cluster are indicated. Colors indicate profiles with decreasing 
intensity (group 1, green), profiles with increasing intensity (group 2, purple) 
and nonmonotonous profiles (group 3, orange). d, Percentage of cluster groups 
from c shown separately for FT and HT peptides. e, Interpretation of FT peptide 
behavior in the three cluster groups from c. We interpret changing FT peptide 
intensity as a function of increased or decreased proteolytic susceptibility 
(Suscept.) as indicating protein in a folded (F), unfolded (U) or aggregated (A) 
state. For HT peptides, the opposite effect (that is, a flipped thermal profile) 
is expected (Supplementary Fig. 1f). f, Percentage of cluster groups from c 
separated by proteins defined as nonprecipitators (NP) and precipitators (P) in 
TPP; only FT peptides are shown (see Supplementary Fig. 1g for HT peptides).
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E. coli lysate (54.07 ± 0.14 °C; Supplementary Fig. 2d) was close to that 
(54.92 ± 0.06 °C) reported for E. coli cytosolic proteins by thermal pro-
tein profiling (TPP)47, indicating that the approach is applicable to com-
plex biological extracts. At the same concentrations used in our LiP–MS 
experiment, all osmolytes significantly increased the lysate melting 
temperature, with TMAO showing the strongest stabilization and 
glycerol the weakest (Fig. 2d), matching the LiP results. We observed 
a good correlation between DSF-determined melting temperatures 
of osmolyte-treated lysates and the mean LiP–MS stabilization score 
(Fig. 2e), thus validating our stabilization score. Lysate concentration/
dilution had minimal effects on the results (Supplementary Fig. 2e). 
Together, our data indicate that several classes of osmolytes have a 
global stabilizing effect on the proteome.

Mechanism of global protein stabilization by osmolytes
We next investigated the different existing hypotheses on how 
osmolytes stabilize proteins, including stabilization effects driven 

by crowding, viscosity, preferential exclusion and direct binding. 
We observed no correlation between stabilization score and either 
osmolyte mass concentration (Fig. 2f) or viscosity (Fig. 2g). Further, 
equalizing the viscosities of added TMAO, betaine, proline and glyc-
erol to that of 0.5 M trehalose or 1 M glucose did not equalize the 
stabilization efficiency (Supplementary Fig. 2f,g). This suggests that 
osmolyte-dependent thermal stabilization in cell lysates is not primarily 
due to effects on crowding and viscosity.

The preferential exclusion theory postulates that osmolytes 
form unfavorable interactions with the protein backbone such that 
folded protein states are favored in the presence of osmolytes8,15,39. 
The extent of protein stabilization by preferential exclusion can be 
approximated by the free energy change after transfer of a model 
protein backbone from water to 1 M osmolyte8. We observed a good 
correlation (R2 = 0.93) between our mean stabilization score and pre-
viously calculated transfer free energies for each osmolyte (Fig. 2h)8, 
demonstrating that preferential exclusion can explain the osmolyte 
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Fig. 2 | Osmolytes have a global effect on protein stability. a, Overview of 
the analytical procedure. A peptide-level score was calculated by summing the 
distances (blue) between thermal profiles in the absence (gray) and presence 
(red) of osmolyte at temperature values where confidence intervals do not 
overlap. Peptide-level scores were then combined after correcting for peptide 
length and overlap into a stabilization score for each protein (Supplementary  
Fig. 2c and Methods). b, Fraction of stabilized proteins out of all detected 
proteins for each osmolyte. c, Distribution of stabilization scores for proteins 
significantly stabilized by each osmolyte. Horizontal lines define the median, and 
boxes define the 25th and 75th percentiles; whiskers represent the maximum and 
minimum values. Each box plot represents the stabilization scores of stabilized 
proteins (205 proteins for glycerol, 791 for glucose, 885 for trehalose, 702 for 
betaine, 423 for proline and 733 for TMAO) calculated based on two LiP–MS 

replicates per temperature. d, Melting curves for E. coli cell lysate measured 
by DSF under control conditions (gray) and after the addition of osmolytes. 
Error bars show mean ± s.d. (n = 5 replicates per condition). e, Linear regression 
between DSF-measured lysate melting temperatures and mean stabilization 
scores for all detected proteins. Error bars show mean ± s.d. (n = 5 replicates). 
The shaded area represents the confidence interval of the linear fit (dashed 
line). f–i, Linear regression between mean stabilization score and osmolyte mass 
concentration (wt/vol; f), osmolyte viscosity at 25 °C (g), transfer free energy 
(Gtr) for backbone model substrate transferred from water to 1 M osmolyte8 (h) 
and fraction polar surface area8 (fPSA; i). Transfer free energy for glucose was not 
available in the literature. In all cases, the shaded area represents the confidence 
interval of the linear fit (dashed line); cP, centipoise.
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stabilization effect in cell lysates8,15,39. In addition, according to this 
theory, differential osmolyte stabilization effects are explained by dif-
ferences in the fractional polar surface areas of osmolytes. Indeed, for 
nonsugar osmolytes, we observed a high negative correlation between 
fractional polar surface areas and the mean stabilization score of lysates 
(Fig. 2i; R2 = 0.85), consistent with previous data for a single purified 
protein8 and further supporting the model of osmolyte-dependent 
protein stabilization by preferential exclusion.

Biophysical features of stabilized proteins
There were large overlaps in the set of stabilized proteins between most 
osmolyte pairs (Fig. 3a). For instance, TMAO, glucose and trehalose all 
stabilized >70% of the proteins that each other osmolyte did, although 
this fraction was much smaller for glycerol (<30%). Further, of the 860 
proteins that we reproducibly measured under all conditions, about 
half were stabilized by four or more osmolytes, and 11.5% of proteins 
were stabilized by all osmolytes (Supplementary Fig. 3a); note that 
because these analyses do not take false-negative rates into account 
(that is, sensitivity), these numbers are likely underestimates. Only 36 
proteins were not stabilized by any osmolytes (Fig. 3b), and, interest-
ingly, this set was enriched in proteins involved in stress responses 
and clearance of reactive oxidative species (P < 0.001, Fisher’s exact 
test). The relative strength of stabilization (Fig. 3b) indicates that 
TMAO is the best stabilizer for about half of the proteins and glucose 
for around 25% of the proteins. These results suggest that the tested 
osmolytes stabilize similar sets of proteins, but stabilization strength is  
osmolyte dependent.

Many, but not all, individual proteins showed a high correlation 
of stabilization score with the mean proteome score (Fig. 3c and Sup-
plementary Data 1). DSF-derived melting temperatures for three puri-
fied proteins (6-phosphogluconate dehydrogenase (Gnd), enolase 
(Eno) and ribokinase (RbsK)) showed a good correlation (R2 > 0.79) 
with the LiP–MS-derived score in lysate (Fig. 3d and Supplementary 
Fig. 3b), showing that osmolyte stabilization is protein specific and 
also validating the stabilization score at the individual protein level. 
Although preferential exclusion is a good predictor of bulk proteome 
stabilization by osmolytes, we asked whether specific biophysical pro-
tein features are enriched in specific osmolyte-stabilized proteins. We 
compared 54 physicochemical and biochemical characteristics based 
on both protein sequence and structure (see Methods and Supplemen-
tary Fig. 3 for a full list) between the stabilized and nonstabilized set of 
proteins for each osmolyte as well as between those proteins that were 
well (Spearman correlation of >0.5) and poorly (Spearman correlation 
of <0.5) correlated in their stabilization score with the global proteome 
(Fig. 3e). Although the detailed patterns for different osmolytes var-
ied, the data showed some general trends (Fig. 3e and Supplementary 
Fig. 3d). Many osmolytes preferentially stabilized proteins with lower 
charge and lower pI. Glucose and trehalose preferentially stabilized 
proteins with a higher percentage of negatively charged amino acids. 
TMAO, betaine and trehalose preferentially stabilized larger proteins 
with low relative accessible surface areas (RASAs) and low numbers 
of unstructured regions, indicating stabilization of globular compact 
proteins and again supporting a preferential exclusion mechanism for 
these osmolytes. Likewise, proteins that were stabilized in the same 
way as the global proteome (Spearman correlation of >0.5) were large, 
compact globular proteins with low RASAs and unstructured scores. 
Overall, this analysis confirms that a large fraction of proteins, in par-
ticular those with a compact globular structure, was stabilized through 
preferential exclusion, although additional factors may explain the 
stabilization of other proteins.

Stabilization of multidomain proteins
To further elucidate osmolyte mechanisms of action, we took advantage 
of the peptide-level resolution of LiP–MS to ask whether osmolytes can 
stabilize single domains of multidomain proteins. For proteins with 

greater than one annotated domain and greater than or equal to three 
detected peptides per domain (n = 157 proteins), 28 proteins showed 
differential stabilization of domains (Fig. 4a). Most of these proteins 
showed domain-specific stabilization for more than one osmolyte, 
suggesting that this property was protein dependent and not osmolyte 
dependent. The strongest domain-specific effects were in the chaper-
one DnaK, and we explored this case further.

The nucleotide-binding domain and substrate-binding domain of 
DnaK (Fig. 4b) were differentially stabilized by TMAO, betaine, proline 
and glycerol, with better stabilization of the nucleotide binding domain 
and the biggest difference for proline and TMAO (Fig. 4c). Notably, the 
nucleotide binding domain showed a lower thermal stability than the 
substrate binding domain in the absence of added osmolytes (Fig. 4d), 
with the difference reduced after the addition of TMAO or proline. We 
validated these findings using DSF on purified DnaK (Fig. 4e). As in LiP–
MS, DSF showed a melting behavior with two transitions in the absence 
of added osmolytes, and this behavior was lost after the addition of 
TMAO or proline. Our data show that osmolytes can preferentially 
stabilize individual domains of multidomain proteins and that this can 
reduce stability differences between domains.

Direct binding to proteins causes strong stabilization
Protein stabilization could also be affected by direct protein–osmolyte 
binding, and we observed this effect for known binding partners of 
betaine, proline and glucose (Supplementary Fig. 4a). The effect 
was osmolyte specific (Supplementary Fig. 4b), indicating that this 
set of proteins is not generally better stabilized. For glucose, known 
monosaccharide-binding proteins were also stabilized (Supplementary 
Fig. 4c), in line with the monosaccharide binding promiscuity reported 
for some sugar kinases, for example, fructokinase50. Both glucokinase, 
which phosphorylates glucose, and fructokinase were more strongly 
stabilized by glucose than by other osmolytes (Supplementary Fig. 4d).

Interestingly, we also observed strong stabilization of RbsK by 
glucose, which is not known to bind this osmolyte, and to a lesser extent 
by glycerol (Supplementary Fig. 4d). We therefore asked whether the 
stabilization of RbsK was due to currently unknown binding of glucose 
to the ribose-binding site. Melting temperatures of purified RbsK in 
competition experiments between increasing ribose concentrations 
and added osmolyte suggest that glucose and glycerol stabilized RbsK 
through binding to the ribose-binding site because high ribose can 
compete away their stabilizing effect (Supplementary Fig. 4e). By 
contrast, stabilization by TMAO rose sharply with increasing ribose, 
which is known to cause compaction of RbsK51, and therefore suggests 
that TMAO acts via a preferential exclusion effect.

We next asked whether osmolytes affected protein thermal 
stability by altering protein structure more generally, either via 
currently unknown binding events or other indirect effects such as 
structure compaction. We focused on the first two temperatures  
(37 °C and 40.5 °C) in the thermal gradient, at which most proteins are 
not expected to unfold, and identified proteins with altered proteolytic 
susceptibility after osmolyte addition. We previously showed that this 
approach enables the global detection of metabolite–protein bind-
ing events (LiP-Smap)41. More than 50% of stabilized proteins under 
all conditions (and >90% for trehalose and glycerol) did not show 
any structural alteration after addition of the osmolyte to the lysate 
(Supplementary Fig. 4f and Supplementary Data 2). Thus, osmolytes 
induce structural changes in some proteins, but such changes, includ-
ing direct osmolyte binding, are not required for stabilization across 
the proteome.

Role of osmolytes in aggregation
Osmolytes were previously shown to affect aggregation of specific 
proteins52,53, but their effects across the proteome are unclear. We 
therefore investigated the effects of osmolytes on protein aggrega-
tion across the proteome. As discussed earlier (Fig. 1d), decreasing 
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protease accessibility in an LiP–MS thermal profiling experiment is 
likely to indicate protein aggregation. However, LiP data alone cannot 
distinguish between aggregation and other structural rearrangements 
that decrease susceptibility to proteolysis. We thus made use of TPP, 
which measures thermal stability by monitoring protein aggregation.

We performed TPP under the same conditions as LiP–MS and 
probed the effect of osmolytes on thermal profiles. Insoluble aggre-
gates typically appeared at higher temperatures in the presence of 
osmolytes than in the absence of osmolytes except for glycerol and 
proline, which had no effect, but none of the osmolytes prevented 
aggregation at the highest temperatures (Fig. 5a), when proteins are 
known to be unfolded42,47. More than 60% of detected proteins showed 
agreement between the LiP and TPP experiments for the stabilization 

effects of all three osmolytes (Fig. 5b, Supplementary Data 3 and  
Methods). In addition, both TPP and LiP identified TMAO as globally 
the best stabilizer, followed by glucose (Supplementary Fig. 5a). The 
good agreement between these two methods indicates that the upward 
shift in the temperature of aggregation in the presence of osmolytes 
occurs via stabilization of protein structure.

To monitor the effects on aggregation at both near-physiological 
and high temperatures, we focused on the lowest temperatures (37 °C 
and 42 °C) and the highest temperatures (69 °C, 72 °C and 76 °C) 
of the TPP data; for the latter set, most proteins will have lost their 
native structure. Proline and glucose did not affect protein aggre-
gation. TMAO treatment yielded less aggregation of a few proteins  
(6/18 proteins at low/high temperatures; Supplementary Fig. 5b),  
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which we confirmed using LiP–MS was via strong stabilization of pro-
tein structure (Supplementary Fig. 5c). Surprisingly, TMAO caused 
more aggregation of 186 and 158 proteins at the tested temperatures 
(Fig. 5c and Supplementary Data 3). At the lower temperatures, this 
set was predicted to have low solubility and be aggregation prone 
(TANGO score; Methods), suggesting that these were proteins on the 
edge of solubility. By contrast, TMAO promoted the high-temperature 
aggregation of proteins that were generally more soluble than the pro-
teome (Supplementary Fig. 5d). In addition, these proteins had more 
predicted short disordered protein-binding regions54, higher RASAs 
and predicted disorder and were shorter than the rest of the measured 
proteome (Fig. 5d). They also had a lower percentage of histidines  
(Fig. 5d) and were enriched for periplasmic proteins (Supplementary 
Fig. 5e), which tend to unfold but not aggregate55. Our data thus indi-
cate that TMAO promotes the aggregation of small, partially unfolded 
proteins that otherwise tend to remain soluble after unfolding.

To understand the effect of TMAO better, we focused on the ribo-
some recycling factor (Frr), which remained soluble across the entire 
temperature gradient but precipitated at higher temperatures in the 
presence of TMAO (Fig. 5e). This effect was also observed by LiP–MS, 
which further provided peptide-level information on Frr structural 

changes (Fig. 5f). The LiP–MS unfolding profiles reported that several 
osmolytes stabilized Frr. For the peptide ASPSLLDGIVVEYYGTPTPLR 
(amino acids 32–52 (blue region), predicted to be aggregation prone; 
see Methods), the profile changed from unfolding to nonmonotonous 
after the addition of TMAO or betaine, indicating that the protein 
precipitated at high temperatures in the presence of these osmolytes. 
Purified Frr behaved similarly, suggesting that the effects of TMAO 
and betaine are direct rather than via chaperones or binding partners 
(Supplementary Fig. 5f). Further, because TMAO stabilized the Frr 
structure as shown with both LiP–MS (Fig. 5f) and circular dichroism 
(Supplementary Fig. 5g), we concluded that TMAO promotes aggrega-
tion only after the protein has unfolded.

In conclusion, the addition of osmolytes caused an upward shift in 
the aggregation temperature of most proteins due to osmolyte stabi-
lization of protein structure. However, TMAO in particular promoted 
the aggregation of subsets of proteins.

Osmolyte effects on the human proteome
To assess whether our observations are generalizable and to inves-
tigate the thermal behavior of intrinsically disordered proteins 
(IDPs), we analyzed in situ osmolyte effects on the human proteome.  
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IDPs are estimated to comprise 33% of the human proteome versus 4.2% 
in E. coli56 and are in several cases associated with human disease57. We 
thus studied both the in situ thermal unfolding behavior and osmolyte 
effects of this interesting set of proteins. We focused our analysis on 
TMAO because it promoted aggregation of proteins with higher pre-
dicted disorder in E. coli while strongly stabilizing globular proteins; 
trehalose was also included for comparison.

We first examined the thermal unfolding behavior of the human 
proteome in the absence of added osmolytes. Consistent with our 
previous observations on α-synuclein42, protein regions with high 
predicted disorder tended to show flat rather than thermal unfolding 
(that is, sigmoidal) profiles. For instance, the CAP-1 protein showed 
clear thermal unfolding profiles for regions predicted to be folded 
(peptides 2 and 5), whereas peptides mapping to predicted disor-
dered regions (peptides 1, 3 and 4) showed a flat profile not affected 
by temperature (Fig. 6a). Across the proteome, proteins with a high 
fraction of predicted disorder had significantly more peptides with 
a flat profile than folded proteins (Fig. 6b; flat profiles were defined 
as those with absolute log2 (fold change) values of <0.5 between the 
minimum and maximum peptide intensity values). Similarly, peptides 
originating from regions with high predicted disorder had a sig-
nificantly flatter thermal profile than peptides from regions with low 
predicted disorder, which are more likely to be folded (Supplemen-
tary Fig. 6a). Overall, 62.6% of peptides predicted to be disordered  
(pLDDT score of <50) had a flat thermal profile (Supplementary  
Data 4). Thus, our data enable the definition of regions of the human 
proteome (n = 1,864 peptides, corresponding to 727 proteins) that 
have flat thermal unfolding profiles and are predicted to be intrinsi-
cally disordered, providing evidence for intrinsic disorder in situ. Inter-
estingly, the remaining 37.4% of peptides predicted to be disordered 
showed evidence of thermal unfolding in cell lysates (Supplementary  
Fig. 6b); an example is peptides from the protein PCBP2 (Supple-
mentary Fig. 6c). These data suggest that a substantial fraction of 
predicted disordered regions may fold, bind other molecules or both 
in cell lysates (see Discussion).

We then examined the effects of TMAO and trehalose on human 
proteins. We first asked how osmolytes affect the structure of folded 
and disordered regions of human proteins by analyzing LiP–MS data 
from the first two temperatures (37 °C and 40.5 °C) of our thermal 
profiling gradient. As in E. coli, only a very small fraction of proteins 
showed structural effects of TMAO or trehalose, but, interestingly, we 
observed different effects on folded and disordered regions. TMAO 
affected around 10% of disordered regions, whereas folded regions 
were less affected. By contrast, trehalose showed almost no struc-
tural change in disordered regions, and its overall effect was smaller  
(Fig. 6c). Neither TMAO nor trehalose changed the fraction of proteins 
with flat thermal profiles in a human cell lysate, consistent with these 
osmolytes having no strong global structural effect (Supplementary 
Fig. 6d). These patterns could also be exemplarily seen for the onco-
genic protein EWS, an IDP associated with Ewing sarcoma and other 
cancers58 (Supplementary Fig. 6c).

We further analyzed how TMAO and trehalose affect aggregation 
of human proteins. At physiological temperature (37 °C), TMAO, but 
not trehalose, promoted aggregation of 25% of human proteins (Fig. 6d 
and Supplementary Data 4). This set was enriched in large disordered 
proteins with low β-sheet content, low propensity to bind proteins 
(SCRIBER score) and low AlphaFold prediction score (Fig. 6e), indicat-
ing that TMAO promotes the aggregation of large disordered human 
proteins. This set included the human disease proteins p53, huntingtin 
and EWS, all of which precipitated in the presence of TMAO but not 
trehalose (Supplementary Fig. 6e).

Finally, we focused on the subset of around 2,000 human pro-
teins for which we could derive thermal unfolding profiles, which was 
enriched in globular proteins as expected (Supplementary Fig. 6f). 
Both TMAO and trehalose stabilized more than 40% of the analyzed 

proteins (Fig. 6f and Supplementary Data 4), and, as in E. coli, the effect 
of TMAO was stronger (Fig. 6g). The stabilized proteins were enriched 
in globular proteins with high AlphaFold prediction score, high β-sheet 
content, low RASA and low predicted disorder (Fig. 6e), in line with 
the set of proteins preferentially stabilized by TMAO in E. coli and sup-
porting that human proteins are also stabilized through preferential 
exclusion. This analysis also highlights the dual effect of TMAO to 
strongly stabilize globular proteins and promote aggregation of large 
disordered proteins.

Overall, our analysis of the human proteome shows that the stabi-
lizing effects of osmolytes on proteins are general, supports the exist-
ence of IDP regions in situ, highlights interesting instances of potential 
in situ structure in disordered regions and demonstrates differential 
effects of TMAO on disordered and globular proteins.

Discussion
We have extended LiP–MS-based thermal profiling into a robust method 
to study proteome thermal stabilization in situ. This approach allowed 
us to separately analyze the effects of osmolytes on protein thermal 
unfolding, native structure and aggregation, thus going beyond the 
simple identification of osmolyte-stabilized proteins and shedding 
light on mechanisms of osmolyte action. Our approach further allowed 
for the assessment of whether direct binding is required for protein 
stabilization. We report a global analysis of osmolyte effects in a cell-like 
environment, revealing that osmolyte-dependent protein thermal 
stabilization is a widespread phenomenon in situ. Our approach can 
be applied to any small molecule with proposed stabilizing effects. 
Analysis of the human proteome shows that LiP–MS can be used to 
study the behavior of intrinsically disordered regions in situ.

We revealed biophysical characteristics of the stabilized proteome 
as well as mechanisms of osmolyte action. Our data are consistent with 
a preferential exclusion mechanism for most protein–osmolyte pairs8, 
although observations for several individual proteins did not match 
the predictions of this theory. This might be because the predictions 
are based on in vitro models and do not consider protein–protein and  
protein–metabolite interactions that can influence thermal stabiliza-
tion59. Indeed, our data show an example of such a case, where ribose 
binding to the protein RbsK increased the stabilization efficiency of 
TMAO. We identified many other candidate osmolyte binding pro-
teins, although the structure of most proteins did not change after 
the addition of osmolytes. Most osmolytes caused an upward shift 
in the temperatures at which proteins aggregate, most probably by 
stabilizing protein structure. However, the osmolyte TMAO was an 
exception; it both thermally stabilized many proteins with relatively 
strong effects and promoted aggregation in both E. coli and human 
proteomes. Intriguingly, our data suggest that TMAO stabilizes globu-
lar proteins while promoting the aggregation of disordered proteins, 
potentially helping to explain opposing reports in the literature32,52,60.

Intriguingly, in nature, TMAO is typically present in contexts in 
which there are also high levels of urea, a known protein denatur-
ant61,62. For instance, chondrichthyans (sharks, rays and skates) accu-
mulate high concentrations of urea but also TMAO in a ratio of 2:1 
(urea:TMAO)63. It is plausible that TMAO stabilization of most proteins 
is adaptive in such a context and also that urea prevents the potentially 
detrimental TMAO-dependent aggregation in some proteins. Such 
effects have been observed for the IDP α-casein, for which urea prevents 
TMAO-induced protein aggregation64.

Our observation of good overlap between proteins stabilized by 
different osmolytes helps explain their interchangeability in protecting 
microorganisms following heat stress. However, use of osmolytes is not 
uniform; for instance, TMAO is mostly found in marine organisms65,66, 
whereas plants largely use proline and betaine67. Selection of specific 
osmolytes by evolution may also have been driven by other factors, 
for instance, compatibility with enzyme function, availability, cost of 
uptake or production or other osmolyte functions.
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Our analysis of the human proteome provides global in situ evi-
dence for protein intrinsic disorder but also evidence for folding in 
protein regions corresponding to more than one-third of peptides 
predicted to be disordered. We note that it is challenging, however, to 
define appropriate thresholds for foldedness (of a protein region) and 
for flatness (of a peptide profile), both of which are needed for such 
analyses. In addition, disorder prediction algorithms are unlikely to be 
perfect. Nevertheless, our data suggest that a fraction of proteins pre-
dicted to be intrinsically disordered may take on unexpected structure 

in the cellular context, which may be due to protein–protein interac-
tions, post-translational modifications or other consequences of the 
cellular milieu. LiP–MS thermal profiling could be an exploratory tool 
both to study such effects and to identify proteins or protein regions 
that are disordered within cell lysates. Our analysis, with peptide-level 
resolution, enabled us to probe the behavior of IDRs within a protein 
sequence and expands our previous protein-level analysis of IDPs42.

Finally, our study could help identify new stabilizers. We showed 
that DSF on cell lysates can accurately predict global stabilization 
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Fig. 6 | Osmolyte effects on the human proteome. a, Analysis of predicted 
disorder in regions of CAP-1 with different thermal melting behavior. Plots (top) 
show thermal profiles of five example peptides mapping to indicated regions 
along the protein sequence. The top barcode (LiP) shows all peptides (dark gray) 
with a measurable thermal melting profile out of all detected peptides  
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protein regions. The AlphaFold-predicted structure is shown (right), with 
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separately for peptides predicted to be folded (Fold) or disordered (Dis). 
d, Number of proteins with increased (+Aggreg.) or decreased (–Aggreg.) 

aggregation after the addition of osmolytes to HEK293T cell lysates at 37 °C.  
e, Biophysical features of human proteins affected by osmolytes. The heat map 
shows significantly enriched or depleted features for proteins that precipitate in 
the presence of TMAO versus those that do not precipitate (row 1, aggregation) 
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two-sided Wilcoxon tests; ****P < 0.0001.
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effects of osmolytes, which could form the basis of a new stabilizer 
screening pipeline. DSF on a complex protein mixture could be used 
first to select promising molecules that show global effects, followed 
by LiP–MS on selected hits to profile their effects on specific proteins 
or protein groups and to study mechanisms. Interestingly, stabiliza-
tion through direct binding tends to cause a larger shift at the same 
osmolyte concentrations than stabilization through preferential exclu-
sion. This suggests that, purely for stabilization purposes, small mol-
ecules that directly bind to the protein should be favored, although a 
balance between stabilization and retention of protein activity must 
be found. Further, differential effects of an osmolyte on different pro-
teins, as we have observed for TMAO, must be considered. Our dataset 
showed that, although osmolytes are broadly interchangeable, for most 
proteins, either TMAO or glucose was the best stabilizer; these data 
can be further used to specifically identify which stabilizer is best for 
which protein or to study combinatorial effects. Last, our data could 
drive machine learning approaches to predict protein stabilization by 
a given osmolyte68.

A few caveats must be considered. First, because the experiments 
were performed in cell lysates, the effects may not entirely reflect the 
situation within intact cells. Second, the concentrations of osmolytes 
that we used are close to cellular values48,49 but may be high for bio-
technological applications. This could be circumvented by designing 
polymers with osmolyte active groups to reach a desired effect at lower 
concentrations69. Third, although LiP–MS provides information-rich 
datasets of structural changes, mechanistic interpretation of these 
changes can be challenging; as shown here, these can be tackled by 
combination with an orthogonal approach such as TPP47. Finally, our 
data do not report on important additional factors, such as osmolyte 
toxicity, which must be considered when selecting an optimal stabilizer. 
For example, increased TMAO concentrations have been associated 
with increased risk of cardiovascular disease70.

Increasing the thermal stability of enzymes and protein-based 
drugs is a major challenge in biotechnology. Our study shows the 
potential of small molecules as protein stabilizers because we found 
that specific osmolytes or combinations thereof can stabilize most 
proteins. Further, we showed that our thermal profiling approach 
can differentiate between osmolyte mechanisms of action and can 
help identify molecules that increase thermal stability or counteract 
irreversible aggregation. This global and in situ analysis of osmolyte 
action has shown which effects of osmolytes are protein specific and 
which are global and has allowed us to extrapolate observations for 
purified proteins into general theory. Our study advances the bio-
physical and biological understanding of osmolyte mechanism of 
action and provides practical insight into the development of better 
protein stabilizers.
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Methods
Escherichia coli
E. coli strain BW25223 K12 (ref. 72) was grown in M9 minimal medium73 
containing 2 g l–1 glucose at 37 °C and 800 rpm. A single colony was 
picked from a fresh plate to inoculate Luria–Bertani (LB) complex 
medium and incubated for 6 h at 37 °C with constant shaking. LB cul-
tures were diluted 1:100 with M9 minimal medium and incubated over-
night. Overnight cultures were diluted to an optical density at 600 nm 
(OD600) of 0.05 and collected when the OD600 reached 0.8.

HEK293T cells
HEK293T cells were cultured in DMEM (Gibco, 41965039) supple-
mented with 10% fetal bovine serum and 1% penicillin/streptomycin 
and passaged before confluency by detachment with 0.25% trypsin, 
followed by washing in PBS (pH 7.4; Gibco, 10010015). To store the 
pellets, cells were centrifuged at 900g for 2 min. PBS was removed, 
and the pellets were stored at –20 °C until further use.

Cell lysate preparation
E. coli. Frozen cells were thawed on ice and resuspended in lysis buffer 
(20 mM HEPES, 150 mM KCl and 10 mM MgCl2, pH 7.5). Acid-washed 
glass beads were added, and the cells were lysed with three rounds of 
vortexing for 30 s, followed by a 4-min incubation at 4 °C. The lysates 
were centrifuged (20,000g, 15 min, 4 °C) to remove cell debris. The 
supernatants were transferred to a fresh tube, and protein concen-
tration in the lysates was determined by bicinchoninic acid assay  
(BCA Protein Assay Kit, Thermo Scientific).

HEK293T cells. Cell pellets were resuspended in 300 μl of LiP buffer 
(20 mM HEPES (pH 7.5), 150 mM KCl and 10 mM MgCl2) and lysed using 
a pellet pestle (Argos Technologies) in ten cycles of 10 s of homogeniza-
tion and a 1-min pause on ice. The lysate was cleared by centrifugation 
at 15,000g at 4 °C for 10 min. The supernatants were transferred to a 
fresh tube, and protein concentration in the lysates was determined by 
bicinchoninic acid assay (BCA Protein Assay Kit, Thermo Scientific).

Preparation of standard control sample of short peptides
E. coli cell lysates were mixed with urea (final concentration of 6 M)  
and reduced with 1,4-dithiothreitol (DTT; final concentration of 12 mM) 
for 30 min at 37 °C and subsequently alkylated with iodoacetamide 
(final concentration of 40 mM) for 45 min at room temperature. 
Samples were diluted with 0.1 M ammonium bicarbonate to a final 
urea concentration of 1 M and predigested with lysyl endopeptidase  
(Wako Chemicals) at an enzyme:substrate ratio of 1:100. After 4 h 
at 37 °C, sequencing-grade porcine trypsin (Promega) was added 
at a 1:100 ratio, and samples were incubated overnight at 37 °C and 
800 rpm. The digestion was stopped by the addition of formic acid to a 
final pH of less than 3. The peptide mixtures were loaded onto Sep-Oak 
tC18 cartridges (Waters), desalted and eluted with 80% acetonitrile. All 
peptide samples were evaporated in a vacuum centrifuge to dryness 
and resolubilized with lysis buffer (20 mM HEPES, 150 mM KCl and 
10 mM MgCl2, pH 7.5) to a peptide concentration of 1 mg ml–1.

Preparation of osmolyte stock solutions
All osmolytes were prepared from ultrapure powders in lysis buffer 
(20 mM HEPES, 150 mM KCl and 10 mM MgCl2, pH 7.5) at 2× final con-
centration. If necessary, the pH was adjusted to 7.5 with 10 M NaOH 
solution. Stock solutions were frozen at −20 °C until use.

Limited proteolysis
Cell lysates were mixed with osmolyte stock solutions to a final pro-
tein concentration of 2 mg ml–1 and an osmolyte concentration of 1 M  
(0.5 M for trehalose) or with buffer as a control. Lysates were aliquoted 
into ten wells (50-μl aliquots, two replicates for each condition) and 
incubated at a temperature gradient (37–76 °C; exact temperatures: 

37, 40.5, 44.4, 49.3, 54.1, 58.9, 63.8, 68.6, 72.5 and 76 °C) for 5 min. After-
ward, PK from Tritirachium album (Sigma) was added to the protein 
extract at an enzyme:substrate ratio of 1:50, mixed well by pipetting 
with a larger volume (30 μl) and incubated for 1 min at the assigned 
temperatures. The digestion was stopped by heating the sample 
for more than 4 min at 99 °C in a thermocycler and adding sodium 
deoxycholate (DOC) to a final concentration of 5%. The samples were 
then subjected to complete digestion under denaturing conditions 
as described below. For the temperature activity assay, the same pro-
tocol was used with predigested cell lysate (fully tryptic peptides at a 
concentration of 0.5 mg ml–1) instead of native cell lysate. To mimic 
different PK activities for analysis, the same protocol was used with 
three different enzyme:substrate ratios for PK (1:20, 1:50 and 1:100).

Thermal proteome profiling
Cell lysates were mixed with osmolyte stock solutions to a final protein 
concentration of 2 mg ml–1 and an osmolyte concentration of 1 M (0.5 M 
for trehalose) or with buffer as a control. Lysates were aliquoted into ten 
wells (50-μl aliquots, two replicates for each condition) and incubated 
at a temperature gradient (37–76 °C) for 5 min. For the HEK293T cell 
precipitation assay, samples in triplicates, with and without osmolytes, 
were incubated at 37 °C for 5 min. After heating, samples were filtered 
by centrifugation at 800g for 5 min with a 0.2-μm PVDF membrane 
filter (Corning FiltrEX 96-well white filter plate). After centrifugation, 
40 μl of flowthrough was transferred to a fresh plate and mixed with 
DOC to a final concentration of 5%. The samples were then subjected to 
complete digestion under denaturing conditions as described below.

Tryptic digestion
Following LiP or filtration, protein fragments were reduced by incuba-
tion with DTT (final concentration of 12 mM) for 30 min at 37 °C and 
alkylated by incubation with iodoacetamide (final concentration of 
40 mM) for 45 min at room temperature in the dark. Samples were 
diluted with 0.1 M ammonium bicarbonate to a final concentration of 
DOC of 1%. Proteins were digested overnight with lysyl endopeptidase 
(Wako Chemicals) and sequencing-grade porcine trypsin (Promega) 
at an enzyme:substrate ratio of 1:100 at 37 °C with constant shaking 
(800 rpm). The digestion was stopped by the addition of formic acid 
to a final concentration of 1% (pH < 3). Precipitated DOC was filtered 
by centrifugation at 800g for 5 min with a 0.2-μm PVDF membrane 
filter (Corning FiltrEX 96-well white filter plate). The peptide mixtures 
were loaded onto 96-well elution plates (Waters), desalted and eluted 
with 80% acetonitrile and 0.1% formic acid. After elution, peptides 
were dried in a vacuum centrifuge, resolubilized in 0.1% formic acid 
and analyzed by MS.

Liquid chromatography–tandem mass spectrometry data 
acquisition
Peptides were separated on a Waters Acquity M-Class UPLC system on 
a 40 cm × 0.75 mm inner diameter column (New Objective, PF360-75-
10-N-5) packed with 1.9-μm C18 beads (Dr. Maisch, Reprosil-Pur 120). 
Fractionation was achieved with a gradient of buffer A (0.1% formic acid, 
Carl Roth) and buffer B (99.9 % acetonitrile and 0.1% formic acid, Carl 
Roth): a linear gradient from 3% to 35% buffer B over 120 min, followed 
by 5 min with an isocratic constant concentration of 90% buffer B. The 
column was heated to 50 °C.

Data-dependent acquisition. Shotgun liquid chromatography– 
tandem MS data-dependent acquisition on the Orbitrap Fusion Lumos 
Tribrid mass spectrometer was performed solely for library genera-
tion. One replicate of each condition was selected randomly, and 2 μl 
from the sample was injected. MS1 spectra were acquired from 350 to 
1,500 m/z at an orbitrap resolution of 120,000 with an automated gain 
control (AGC) target of 150% or 100-ms injection time. Precursors with 
an intensity exceeding 50,000 and a positively charged state between 
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2 and 5 were selected for data-dependent MS2 scans. A dynamic exclu-
sion after a single occurrence for 30 s with a 10-ppm mass tolerance 
was applied. Selected precursors were isolated with a quadrupole 
and an isolation window of 1.2 m/z. Precursors were fragmented with 
high-energy collision-induced dissociation with a fixed collision 
energy of 27%. MS2 spectra were acquired at an orbitrap resolution of 
30,000 and an automatically adapting scan range (minimum – precur-
sor × charge + 10.0) and an AGC target of 200% or a dynamic injection 
time that automatically calculated the maximal time available.

Data-independent acquisition. For measuring peptide abundances, 
2 μl of each sample was injected independently and was measured 
in data-independent acquisition (DIA) mode. The DIA MS method 
consisted of a survey MS1 scan from 350 to 2,000 m/z at a resolution of 
120,000 with an AGC target of 50% or 100-ms injection time followed 
by the acquisition of DIA in 41 variable-width isolation windows74. 
Precursors were isolated by a quadrupole and activated high-energy 
collision-induced dissociation with a collision energy of 28%. DIA MS2 
spectra were acquired with a scan range of 200 to 1,800 m/z at an 
orbitrap resolution of 30,000 with an AGC target of 200% or 54-ms 
injection time.

Protein expression and purification
E. coli strains carrying plasmids encoding DnaK, Eno, Frr, RbsK and Gnd 
with an N-terminal His6 tag from E. coli were commercially obtained75. 
From the strain libraries, precultures were inoculated in LB broth with 
corresponding antibiotic. LB cultures (1.5 l) were inoculated with 15 ml 
of preculture and grown to logarithmic phase at 37 °C. Cultures were 
induced with 1 mM IPTG at an OD600 of 0.8 and were allowed to grow at 
37 °C for 3 h with vigorous shaking.

Collected cells were suspended in 50 ml l–1 culture Buffer B (50 mM 
HEPES-KOH (pH 7.5), 150 mM NaCl and 10% glycerol) supplemented 
with 1 mM PMSF, 2 mM MgCl2, 50 U μl–1 DNase and 1× protease inhibitor 
cocktail (Sigma). Resuspended cultures were mechanically lysed by 
cell cracking with five passages at a chamber pressure of 12,000 psi. 
Cell debris was pelleted by centrifugation of lysed cells at 20,000 rpm 
from 30 min at 4 °C.

Soluble supernatant with 10 mM imidazole was applied to Ni-NTA 
agarose beads (Qiagen) with a column volume of 2.5 ml. Protein bound 
to the Ni-NTA agarose beads was washed with 10 column volumes of 
Buffer B supplemented with 20 mM imidazole. Proteins of interest were 
eluted from beads with 3 column volumes of Buffer B supplemented 
with 500 mM imidazole. An additional 1 mM EDTA was added to the 
eluted protein. Protein was further purified by gel filtration chroma-
tography on a HiLoad 16/600 Superdex 75 pg column (Cytiva, formerly 
GE Healthcare) in Buffer S (50 mM HEPES-KOH (pH 7.5), 150 mM NaCl, 
10% glycerol, 1 mM EDTA and 1 mM DTT). Purified DnaK, Eno, Frr, RbsK 
and Gnd were stored in Buffer S at −20 °C after snap freezing in liquid 
nitrogen. For various assays, the storage buffer was exchanged for 
assay buffer using PD MiniTrap G-25 columns (Cytiva, formerly GE 
Healthcare) by gravity flow.

Differential scanning fluorimetry for whole-cell lysate
E. coli cell lysates were prepared as described above. Lysates  
were diluted to a final protein concentration of 1 mg ml–1 together with 
10× Sypro Orange Gel stain (Thermo Fischer) and a buffer (control) or 
1 M osmolytes (0.5 M for trehalose) in a total volume of 25 μl. Thermal 
scanning (25–95 °C, 0.5 °C min–1) was performed in quadruplicates 
using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) with 
the scan channel set to FRET. The data were fit using the thermal unfold-
ing equation76, assuming a two-state unfolding model with the linear 
extension of before and after denaturation baseline. Because DSF is 
typically used with purified proteins, we first examined its performance 
on an untreated lysate using two different total protein concentra-
tions and two different E. coli lysate preparations. To determine the 

reproducibility of the method, the experiment was performed on 
different days; different biological replicates were used and diluted to 
different protein concentrations (from 0.5 to 2 mg ml–1). Despite this, 
the lysate melting temperature was extracted reproducibly.

Differential scanning fluorimetry for purified proteins
Proteins were purified as described above and diluted to a final pro-
tein concentration of 0.5 mg ml–1 together with 10× Sypro Orange Gel 
stain and a buffer (control) or 1 M osmolytes (0.5 M for trehalose) in a 
total volume of 25 μl. Thermal scanning (25–95 °C, 0.5 °C min–1) was 
performed in quadruplicates using a CFX96 Touch Real-Time PCR 
Detection System (Bio-Rad) with the scan channel set to FRET. For 
RbsK, the transitions were measured in the presence of increasing 
concentrations of ribose. The data were fit using the thermal unfold-
ing equation76, assuming a two-state unfolding model with the linear 
extension of before and after denaturation baseline.

Circular dichroism
Protein secondary structure and thermal transitions were measured 
using a Jasco J-715 spectropolarimeter (Brechbühler). Protein (300 μl) 
at a concentration of 0.2 mg ml–1 in buffer C (20 mM NaH2PO4.H2O/
K2HPO4 (pH 7.5), 150 mM NaCl and 1 mM MgCl2) was measured in a 
high-precision cell quartz cuvette with a pathlength of 1 mm (Hellma 
Analytics). Secondary structure scans were continuously measured 
from 260 nm to 190 nm with a scanning speed of 20 nm min–1 and a 
total of five repetitions. The average ellipticity scans were buffer cor-
rected. Ellipticity (ϴ) was then normalized to mean molar ellipticity  
in degree cm–2 dmol–1 (MRW = (ϴ × 100 × kDa)/(c × d × N)), where  
N is the number of amino acid residues, d is the cuvette pathlength in 
centimeters and c is the protein concentration in mg ml–1. Thermal 
unfolding of Frr was measured in the presence and absence of 1 M 
TMAO at 222 nm from 25 °C to 95 °C using a slope of 30 °C h–1. Changes 
in ellipticity as a function of temperature were fitted according to the 
single transition state model.

Precipitation analysis for ribosome recycling factor
Frr was diluted to a final protein concentration of 0.3 mg ml–1 in lysis 
buffer or 1 M osmolytes (0.5 M for trehalose) in a total volume of 20 μl. 
Samples in triplicates were heated to 70 °C or 37 °C (as a control) in a 
thermoblock for 5 min and subsequently centrifuged at max speed 
using a table-top centrifuge. Protein concentration in the supernatant 
was determined in technical duplicates for each replicate using a Brad-
ford assay (Thermo Fischer). Absorbance at 70 °C was divided by the 
average absorbance at 37 °C to calculate the percentage of remaining 
soluble protein.

Thermal proteome profiling for whole-cell lysates
E. coli cell lysates were prepared as described above and diluted to a 
final protein concentration of 1 mg ml–1 together with lysis buffer or 
1 M osmolyte (0.5 M for trehalose) in a total volume of 50 μl. The lysates 
were incubated at ten temperatures ranging from 37 °C to 76 °C for 
5 min. After heating, samples were filtered by centrifugation at 800g 
for 5 min with a 0.2-μm PVDF membrane filter (Corning FiltrEX 96-well 
white filter plate). The flowthrough was collected in a 96-well plate, 
and protein concentration was determined using a Bradford assay 
(Thermo Fischer).

Extended proteolysis assay
E. coli cell lysates were prepared as described above and diluted to a 
final protein concentration of 2 mg ml–1 with lysis buffer or 1 M osmolyte 
(final concentration) in a total volume of 50 μl. The lysates were incu-
bated at 76 °C for 5 min. The sample was cooled to room temperature, 
and PK was added at an enzyme:substrate ratio of 1:50. After 5, 10 or 
30 min, based on the assigned digestion time, samples were trans-
ferred to a cooled centrifuge and centrifuged for 15 min at maximum 
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speed at 4 °C. Immediately after centrifugation, the supernatant was 
removed, and aggregates were resolubilized in 50 μl of 2% SDS by 
vortexing and sonication. Protein concentration of resolubilized pro-
teins was determined by bicinchoninic acid assay (BCA Protein Assay 
Kit, Thermo Scientific). For time point 0 (no PK digestion), PK was not 
added to the sample.

Detergent resolubilization assay
E. coli cell lysates were prepared as described above and diluted to 
a final protein concentration of 2 mg ml–1 with lysis buffer or 1 M 
osmolyte (final concentration) in a total volume of 50 μl. The lysates 
were incubated at 76 °C for 5 min, and the sample was cooled to room 
temperature and mixed (1:1) with increasing concentrations of sarcosyl 
in 1× PBS. After vortexing and sonication, samples were centrifuged 
(maximum speed, 15 min at 4 °C), and the concentration of protein 
in the soluble fraction was determined by bicinchoninic acid assay  
(BCA Protein Assay Kit, Thermo Scientific).

Viscosity measurements
The viscosity of different 1 M osmolyte solutions was evaluated by 
measuring the apparent diffusion coefficient of standard 100-nm nano-
particles via dynamic light scattering, following a previously published 
protocol77. Briefly, the viscosity (η) of the solutions was calculated from 
measurements of the Stokes–Einstein equation,

η = kT
6πRhD

,

where k is the Boltzmann constant, T is the temperature, and D and Rh 
are the apparent diffusion coefficient and the hydrodynamic radius 
of the nanoparticles used as standard tracers, respectively. Dynamic 
light scattering measurements were performed on a Zetasizer Nano 
working in backscattering mode at 173°.

Peptide- and protein-level quantification
The data were searched in Spectronaut version 14.5 (E. coli) and version 
14.11 (human; Biognosys)78. Hybrid libraries for the tryptic control and 
LiP samples consisting of the corresponding data-dependent acquisi-
tion and DIA runs were created based on a Pulsar search using default 
settings except for the digest type, which was set to ‘semi-specific’, 
and the minimum peptide length, which was set to six. The data were 
searched against the UniProt fasta database (for E. coli strain K12, 
UP000000625, November 2020; for the human proteome, canoni-
cal fasta, downloaded March 2020). Targeted data extraction was 
performed in Spectronaut with default settings except for machine 
learning, which was set to ‘across experiment’, and data filtering, which 
was set to ‘Qvalue’. The FDR was set to 1% on the peptide and protein 
levels. From the LiP search, we exported peptide intensities from the 
tryptic control search (for TPP data) protein intensities.

Fully tryptic and half tryptic peptides
PK cleavage within the sequence of an fully tryptic peptide often results 
in the detection of half-tryptic peptides that share either the N or the C 
terminus with the associated fully tryptic peptide. Our previous study 
only analyzed fully tryptic peptides that reported an altered acces-
sibility to PK with temperature for the respective protein region42. In 
the current study, both fully tryptic and half-tryptic peptides were 
included in the analysis.

Correlation analysis for fully tryptic and half tryptic pairs
Fully tryptic and half-tryptic peptides were matched by their assigned 
position in a protein. Half-tryptic peptides were matched with an fully 
tryptic peptide if the borders of the half-tryptic peptides were within 
the borders of the fully tryptic peptide. Pearson correlation was calcu-
lated between the peptide intensities of the matched pairs.

Testing and correcting for condition effects on proteinase  
K activity
Left unadjusted, any effects of experimental conditions on PK activity  
could bias the analysis. We performed a protease activity assay using 
a mixture of more than 3,000 short (less than ten amino acids) pep-
tides to evaluate PK activity independent of folding effects. We tested 
whether we observed significantly different digestion of these short 
peptides when LiP was performed at different temperatures or in the 
presence of osmolytes. To eliminate the peptides with potential sec-
ondary structure, we only focused on approximately 3,000 fully tryptic 
peptides that were at most ten amino acids long. Because the fully 
tryptic peptides were the substrate of our activity assay, decreased 
abundance of the peptide indicates higher PK activity. To identify 
significantly changing peptides based on moderated t-tests using the 
R package protti79 followed by a Benjamini–Hochberg correction80, 
we compared peptide abundances at high temperatures (68.6 °C and 
72.5 °C) and low temperatures (37 °C and 40.5 °C) for the tempera-
ture assay and control and osmolyte (1 M concentration, except for 
trehalose at 0.5 M) for the osmolyte comparison. The peptides were 
considered significantly changed if the adjusted P value was <0.05 and 
the | log2 (fold change) | value was >1.

We observed significant changes (adjusted P value of <0.05, 
| log2 (fold change) | value of >1) in only 6.6% of peptides between the 
different temperatures applied in our thermal profiling experiment 
(Supplementary Fig. 1c) and in less than 3.5% of peptides across our 
tested osmolytes (Supplementary Fig. 1d). To test whether these minor 
changes in PK activity could influence the thermal profiling read-
out, we performed independent thermal denaturation experiments 
using multiple PK concentrations to mimic different PK activities. We 
observed that rescaling each peptide intensity between 0 and 1 reduced 
the difference between samples with different PK concentrations 
while not affecting the expected unfolding effects due to temperature 
differences.

Learning peptide intensity profiles across temperatures
We extended the LiP–MS thermal profile analysis beyond the analysis 
of only thermal unfolding by fitting peptide intensity data along the 
temperature gradient using a nonparametric Gaussian model instead 
of the thermodynamic model we had previously used. This extended 
our analysis beyond peptides that follow a typical sigmoidal unfold-
ing profile. To learn the temperature profiles for each peptide under 
different conditions, we used Gaussian processes (GP)81, which pro-
vide a probabilistic framework to learn a nonparametric relationship 
of peptide abundance to temperature. In detail, we used gpytorch82  
version 1.4.2 with an ExactGP model choosing a constant mean function, 
a squared exponential kernel and a Gaussian likelihood. For each pep-
tide, separate GP models for peptide intensities in the absence (control 
condition) and presence of an osmolyte (osmolyte condition) and a 
joint model were defined, and model hyperparameters were found by 
maximizing the sum marginal log likelihood across all models using 
Adam optimizer with a learning rate of 0.1 and 1,000 iterations. Based 
on the resulting posterior of the fit, predicted mean abundance profiles 
and confidence intervals based on 2 s.d. around the mean were found 
for each peptide and condition. The residual sum of squares between 
the observed peptide intensities and the predicted intensities were cal-
culated for each peptide and condition to assess the goodness of the fit.

Clustering of profiles
Fitted values (for 20 temperatures with 2 °C increases) from the learned 
temperature profiles in the control model were taken for all peptides 
and clustered into 20 clusters using fuzzy k means clustering (FKM.
ent function) from the fclust R package83, setting the fuzzy degree of 
entropy parameter to 2. After clustering, the median profiles of the 
clusters were grouped into three groups. First, we separated the clus-
ters based on whether the median profile showed nonmonotonous 
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behavior (orange group; the difference in peptide intensity between 
the lowest and highest temperature < 0.5). Next, monotonous clusters 
were grouped into increasing group (purple; peptide intensity at lowest 
temperature < peptide intensity at highest temperature) and decreas-
ing group (green; peptide intensity at lowest temperature > peptide 
intensity at highest temperature). To identify whether the peptide 
belongs to the same cluster shape following osmolyte addition, clus-
tering was repeated by including fitted values from the models for the 
control and osmolyte conditions. Peptides were clustered and grouped 
into three groups as before. For each peptide, probabilities of belong-
ing to individual clusters from the same profile group were summed. A 
peptide was considered as changing when the difference in probability 
for a certain main group for control or osmolyte was larger than 0.5.

Calculation of peptide- and protein-level scores
After fitting of the GP models, distances between the learnt control and 
osmolyte curves were calculated for the temperature regions where 
their confidence intervals do not overlap. In the case of overlapping 
confidence intervals, the distance was set to 0. To study protein sta-
bilization specifically, temperature intervals with intensity changes 
were classified as binding (changes at the start of the temperature 
gradient), stabilization (changes at the middle of the temperature 
gradient) or aggregation (changes at the end of the gradient). The dis-
tances between the curves in temperature intervals were summed as a 
proxy for the area between the curves. To identify whether the change 
represents protein stabilization or destabilization, clustering was used 
as described before to identify whether the peptide has a decreasing 
or increasing profile, and the sign of the area was corrected accord-
ingly. If two areas of stabilization were identified, only the absolute 
maximal area was considered the peptide-level stabilization score. 
To summarize the peptide-level stabilization data into protein-level 
stabilization data, amino acid-level stabilization was calculated to 
correct for overlapping peptides and peptides of different lengths. 
To calculate the amino acid-level score, we first calculated the mean 
value of all peptide-level scores of overlapping peptides at a specific 
amino acid position to determine whether that position was generally 
stabilized (mean > 0) or destabilized (mean < 0). For a ‘stabilized posi-
tion’, a weighted 0.75 quantile of the peptide-level score for all overlap-
ping peptides at a specific position was calculated, weighted by the 
goodness of fit (summed for both conditions (control and osmolyte)). 
For a ‘destabilized position’, a weighted 0.25 quantile was calculated. 
The mean goodness of fit for each position was also calculated. To 
summarize the information into a single protein-level stabilization 
score, we first calculated a mean value of all amino acid-level scores 
to determine whether the protein was generally stabilized (mean > 0) 
or destabilized (mean < 0). For stabilized proteins, we calculated 
the weighted 0.75 quantiles for all positions, weighted by the mean 
goodness of fit. For destabilized proteins, we calculated the weighted  
0.25 quantiles for all positions, weighted by the mean goodness of fit. 
The 0.75 quantile was chosen to maximize the agreement between TPP 
and LiP–MS data, while keeping the false-positive rate of analysis below 
5%. More details about the analysis can be found in the Rmarkdown 
script (Supplementary Note). To assess the peptide-level FDR of the 
proposed approach of identifying stabilized proteins from melting 
curves, the control experiment (that is, no osmolyte) was performed 
with four replicates that were grouped into two groups and treated as 
separate conditions. In such a setup, we would expect no significant 
changes between groups. We observed that the peptide-level FDR 
was lower than 0.05. For calculation of the protein-level FDR, different 
quantiles for summarization were considered, ranging from 0.5 to 1 for 
stabilized protein and from 0.5 to 0 for destabilized protein. A protein 
was considered significantly changing when the protein-level score was 
not equal to 0 (Supplementary Fig. 2c). We observed a protein-level FDR 
of 0.05 when 0.75 quantile (0.25 quantile for destabilized proteins) was 
used for summarization.

Comparison of stabilization strength for known binders
Proteins were classified as known binders of glucose, betaine or 
proline based on UniProt annotations. Analysis was performed on 
peptide-level stabilization scores, as only few known binders were 
identified in the literature. Within each dataset, only peptides with 
significant stabilization scores were considered, and the peptides 
were classified as originating from a binding protein or not (binding 
and not binding). Stabilization scores were scaled within a dataset 
using the following formula to adjust for overall different strengths 
of different osmolytes, for example, glucose stabilizing the proteome 
better than glucose:

Scaled score

= Peptide stabilization score −median (stabilization scores)
0.7quantile (stabilization scores) − 0.25quantile (stabilization scores)

The stabilization scores are all stabilization scores of stabilized 
peptides of a given osmolyte dataset. Scaled stabilization scores for 
known binders and nonbinding proteins from glucose, betaine and 
proline datasets were then combined to produce Fig. 4a. To produce 
Supplementary Fig. 4a, the same approach was applied, only the bind-
ing and nonbinding proteins were mismatched, for example, glucose 
binding protein was assigned as betaine binding protein to assess 
whether the subset of binding proteins was generally stabilized better 
under all osmolyte conditions.

LiP–MS binding analysis
To study changes of native proteins after small-molecule addition, we 
focused only on the first two temperatures (37 °C and 40.5 °C) where 
the majority of the proteins should not be unfolded. Peptide differential 
abundance was calculated based on t-tests, followed by Benjamini–
Hochberg multiple testing correction80. Because this analysis was 
performed on nonscaled data (compared to scaled data used for the 
analysis of thermal stabilization), a more stringent cutoff was used for 
significance analysis to account for potential changes caused solely due 
to changes in PK activity that scaling can correct for. The significance 
cutoff was set to an adjusted P value of <0.01 and a | log2 (fold change) | 
value of >1.5. Proteins were identified as significantly changing as soon 
as one proteotypic significantly changing peptide from that protein 
was identified.

Calculation of protein characteristics
We assessed 54 protein physicochemical and biochemical character-
istics based on protein sequences (for example, charge, pI and hydro-
phobicity) on AlphaFold-predicted protein structures84 (for example, 
RASA, secondary structure and disorder) or using a variety of additional 
sequence-based predictors. Protein characteristics based on protein 
sequence (protein pI, charge, protein length, hydrophobicity, aliphatic 
index, hydrophobic moment and percentages of individual amino acids 
or amino acid groups) were calculated using the Peptides package 
(https://journal.r-project.org/archive/2015/RJ-2015-001/RJ-2015-001.
pdf) in R. The predictions SCRIBER score85, DRNApredDNAscore86, 
DRNApredRNAscore86, MoRFchibi54, DFLpred, DisoRNAscore, Diso-
PROscore and DisoDNAscore were downloaded from DescribeProt87. 
Solubility (CamSol) was calculated using CamSol software88. Aggrega-
tion prediction was calculated using TANGO89. Amino acid-level infor-
mation was summarized by calculating the percentage of amino acids in 
the aggregation-prone region (percentage_agg) or the longest consecu-
tive stretch of aggregation-prone amino acids (longest_agg). RASAs 
and secondary structures were calculated using AlphaFold-predicted 
structures84 with the Bio.PDB package in Python using the DSSP module 
with default settings. Individual values for RASA were calculated by 
calculating the average RASA for the whole protein. Individual values 
for each structural element (helix, sheet or coil) were calculated as a 
percentage of amino acids of a certain structure to the whole protein. 
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The radius of gyration was calculated using AlphaFold structures with 
the Bio.PDB package (Rg function) with default settings. To identify 
whether two groups (stabilized versus nonstabilized, high correla-
tion versus low correlation and increased aggregation versus rest) of 
proteins significantly differ in certain protein characteristics, t-tests 
were performed, followed by Benjamini–Hochberg corrections80. 
The difference between mean values for the two groups was calcu-
lated, and the control value was always subtracted from the test group 
to calculate whether the characteristics were higher or lower in the  
test group.

Identification of nonprecipitators
Proteins were characterized as precipitators or nonprecipitators based 
on the TPP dataset47. Proteins were considered nonprecipitators if at 
the highest temperature more than 50% of the protein, relative to 37 °C, 
remained in the soluble fraction.

Analysis of differential scanning fluorimetry data
Raw fluorescence intensities were scaled between 0 and 1 using the fol-
lowing formula: x′ = [x – min(x)]/[max(x) – min(x)]. Scaled intensities as 
a function of temperature were fit to the following equation: S = ((Sf +  
mf × T) + (Su + mu × T) × e[(∆Hm/RT) × ((T – Tm)/Tm)])/(1 + e[(∆Hm/RT) ×  
((T – Tm)/Tm)]). Here, S is the scaled fluorescence signal in arbitrary 
units, Sf and Su are the scaled fluorescence signals of the folded and 
unfolded states at 0 K, respectively, in arbitrary units, mf and mu are 
the linear dependencies of Sf and Su, respectively, on temperature 
(that is, slopes of the pre- and post-transition baseline, respectively) 
in arbitrary units K−1, T is the temperature in K, Tm is the melting tem-
perature in K, ∆Hm is the unfolding enthalpy at the Tm in J mol−1, and 
R is the gas constant, 8.314 J K−1 mol−1. The fitting was performed as 
previously described42.

Analysis of thermal protein profiling data
Protein-level quantification data were extracted from Spectronaut 
without data normalization. Protein abundance relative to 37 °C was 
calculated to determine the amount of protein in the soluble fraction. 
Scaled abundances were processed, fit and analyzed the same way as 
peptide-level data from the LiP–MS study without summarization.

Spearman correlation analysis
To calculate whether individual proteins are stabilized in a similar 
manner as the whole lysate, the Spearman correlation between protein 
stabilization score and mean stabilization score was calculated for 
all proteins reproducibly measured under all conditions. To obtain a 
random distribution, we calculated the Spearman correlation between 
protein stabilization score and randomized mean stabilization score 
shuffled between different osmolyte conditions independently for 
each protein. The calculation of randomized correlations was repeated 
1,000 times to assess the variability of random distribution.

Identification of proteins with changed aggregation 
abundance
To identify the proteins where protein precipitation is affected, 
we focused on the last three temperatures (68.8, 72.5 and 76 °C) of 
TPP measurements. To identify whether the protein precipitates 
significantly more or less after the addition of osmolyte, t-tests 
were performed on scaled values, followed by Benjamini–Hochberg 
multiple testing correction80. The significance cutoff was set to an 
adjusted P value of <0.05 and | log2 (fold change) | value of >1. To 
identify whether LiP–MS shows significant changes in protein aggre-
gation/structure of protein aggregates, we focused on the last two 
temperatures (72.5 and 76 °C). We performed significance analysis, 
as described earlier, at the peptide level. Proteins were considered 
significantly changing as soon as a single significantly changing 
peptide was identified.

Gene ontology enrichment analysis
We tested the proteins where TMAO promotes protein aggregation as 
defined above (Identification of proteins with changed aggregation) 
for functional enrichments using the topGO package in R90. We down-
loaded current annotation files for E. coli (http://current.geneontology.
org/annotations/ecocyc.gaf.gzm, accessed 2 June 2020). To focus on 
the most informative terms, we tested for enrichment with Fisher’s 
exact tests using the elim-algorithm in topGO90. We performed the 
test for biological processes, cellular compartments and molecular 
functions. Only terms with adjusted P values of <0.01 after the Ben-
jamini–Hochberg P value correction80 were considered; however,  
P values and unadjusted P values are displayed.

Domain-level analysis
Peptides were mapped to domains based on Pfam annotation91.  
A peptide was considered part of a domain when a single amino acid of 
a peptide was part of the domain. Proteins with at least two domains 
with at least three peptides mapping to each of the domains were con-
sidered for analysis. Differential analysis using t-tests (two domains) 
or analysis of variance (more than two domains) was performed to 
identify proteins with domains with significantly different stabilization.

Data visualization and processing
Data visualization was performed using R version 4.0.5 and the ggplot2 
(ref. 92) and ComplexHeatmap93 packages for plotting.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All MS proteomics data have been deposited at ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier 
PXD036186. UniProt fasta databases for E. coli (strain K12, organism 
ID 83333) were accessed in November 2020 via the UniProt databases 
download page (https://www.uniprot.org/downloads). Protein struc-
tures for DnaK (PDB ID 4JNE) were downloaded in 2022 from the Protein 
Data Bank website (https://www.rcsb.org/pdb). AlphaFold predictions 
for the whole E. coli proteome were downloaded in August 2021. The 
DescribeProt database for the whole E. coli proteome (http://biomine.
cs.vcu.edu/servers/DESCRIBEPROT/download.html) was downloaded 
in February 2021. The TPP dataset from a previously published study47 
(dataset EV3 of the publication) was downloaded in 2020. All other data 
needed to evaluate the conclusions described in the paper are present 
in the Supplementary Information.

Code availability
The custom R script for data analysis is available via GitHub at  
https://github.com/PicottiGroup/Thermal_unfolding, together with 
Rmarkdown showing how to perform the analysis, and on Zenodo 
(https://doi.org/10.5281/zenodo.10514118).
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