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A Genomics England haplotype reference 
panel and imputation of UK Biobank
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We built a reference panel with 342 million autosomal variants using 78,195 
individuals from the Genomics England (GEL) dataset, achieving a phasing 
switch error rate of 0.18% for European samples and imputation quality 
of r2 = 0.75 for variants with minor allele frequencies as low as 2 × 10−4 
in white British samples. The GEL-imputed UK Biobank genome-wide 
association analysis identified 70% of associations found by direct exome 
sequencing (P < 2.18 × 10−11), while extending testing of rare variants to the 
entire genome. Coding variants dominated the rare-variant genome-wide 
association results, implying less disruptive effects of rare non-coding 
variants.

A key step in genome-wide association studies (GWAS) is imputation of 
untyped variants from those genotyped using a reference panel, allow-
ing downstream testing of imputed sites. Reference panel quality sub-
stantially impacts results, particularly for low-frequency variants. Here, 
we build a reference panel with improved accuracy compared to exist-
ing panels using the Genomics England (GEL) high-coverage sequenc-
ing (30×) dataset, among the largest genetic variation resources yet 
collected in the United Kingdom1. We impute the UK Biobank samples 
across the whole genome and find several new rare-variant associa-
tions for tested traits. In our genome-wide analyses, high-confidence 
associations with large effect sizes only rarely occur away from cod-
ing sequences, suggesting that, although the most of the genome is 
non-coding, non-coding variants only occasionally possess effect sizes 
comparable to those of the strongest coding variants.

The GEL study design intentionally samples many closely related 
individuals. This enhances the power of filters, including the Mendelian 
error filter, to eliminate false-positive calls and also allows more accu-
rate phasing and imputation of rare variants. In particular, even variants 
found in only one or two individuals may be phased through transmis-
sion. The resulting GEL reference panel consists of 341,922,205 auto-
somal variants, with 31,502,703 (9.26%) being indels. Most detected 
variants are rare: 287.2 million (84.1%) have an allele frequency <0.0001, 
including 66.7 million (19.5%) singletons and 91.1 million (26.7%) 
doubletons. We compared GEL to the widely used TOPMed r2 (ref. 2)  

(we note that the r3 version containing ~30% more variants and sam-
ples was released while this manuscript was in preparation) and HRC3 
panels, and found that GEL has 8 times and 1.1 times more variants than 
HRC and TOPMed, respectively (Fig. 1a and Extended Data Fig. 1). Owing 
to the use of mostly low-coverage sequencing technology, HRC has 
limited numbers of rare variants, especially those with allele frequency 
(AF) ≤ 10−4. While the numbers of rare variants captured in TOPMed and 
GEL are similar, around half of the ultra-rare variants (AF ≤ 10−4) from 
GEL and TOPMed are non-shared across the panels. As expected, all 
three panels capture a similar set of more common (AF > 10−2) variants, 
with <4% unique to each panel (Extended Data Fig. 1), indicating that 
common variants are largely saturated.

The GEL reference panel provides a powerful resource for phasing 
European and South Asian samples due to their strong representation in 
the dataset. We compared phasing accuracy using the GEL and HRC ref-
erence panels on 1000 Genomes (1000 G) Project samples (Methods). 
GEL-based phasing achieved lower switch error rates than HRC phas-
ing across 1000 G populations sampled from most worldwide regions 
(Extended Data Fig. 2), with HRC only showing improved performance 
for South American samples, which are largely absent from GEL.

A primary use of the GEL resource will be as a reference panel for 
genotype imputation of other datasets. We assessed (Methods) the 
accuracy of imputation of 1000 G samples (from UKB single nucleo-
tide polymorphism (SNP) array sites) using the GEL, TOPMed and HRC 
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the corresponding HRC and UK10K-imputed ‘HRC-UKB’6, GEL-UKB has 
around 3 times more variants, 3.5 times more missense variants and 
6.6 times more ‘high impact consequence’ variants (Supplementary 
Table 1). The imputed information scores (Methods) were higher for 
GEL-UKB than HRC-UKB for 87% of variants they share, while 98% (78%) 
of GEL-imputed variants in the frequency range 10−5–10−4 (10−6–10−5) 
exceeded a threshold of 0.3 versus 78% (54%) for HRC (Extended Data 
Figs. 5 and 6). Finally, we tested the imputation potential from using 
the imputed GEL-UKB haplotypes (GELUKB-hap) as a reference panel 
in place of GEL itself. Again imputing 1000 G samples, we observed 
near-identical results (Extended Data Fig. 7) using GELUKB-hap ver-
sus GEL, implying that GELUKB-hap provides a powerful alternative 
imputation resource.

To demonstrate the use of GEL-UKB, we carried out exemplar 
GWAS on four quantitative traits: standing height, body mass index, sys-
tolic and diastolic blood pressure, with variant testing using REGENIE7. 
Across these traits, we found 31,699 and 30,711 significant (P < 5 × 10−8) 
rarer variant associations (MAF < 0.05) from GEL-UKB and HRC-UKB, 
respectively. The GEL-UKB imputed common variants also exhibited 
fewer likely false associations than HRC-UKB (Supplementary Note, 
Supplementary Table 2 and Supplementary Figs. 2–4). The resulting 

reference panels. Squared correlation r2 between the imputed allele 
dosages and true genotypes were calculated, stratified by the inde-
pendently estimated genome aggregation database (gnomAD) (v.3.3.1) 
minor allele frequency (MAF)4. GEL achieved higher imputation r2 than 
HRC in all allele frequency bins for all ancestry groups and outperforms 
the TOPMed panel in white British (GBR) and South Asian (SAS) sam-
ples, especially for rarer variants: at MAF < 10−5, the GEL imputation r2 
for GBR samples is 0.6, compared to 0.3 and 0.29 using TOPMed and 
HRC, respectively (Fig. 1b). The TOPMed panel outperforms GEL in 
African (AFR), American (AMR) and East Asian (EAS) samples due to its 
better representation from these groups (Fig. 1b). Examining imputa-
tion accuracy using the phased UKB 200 K high-coverage sequencing 
data as a reference panel5 (Supplementary Note and Extended Data 
Fig. 3) suggested substantial complementarity with GEL: similar overall 
imputation quality at the rarest variants with MAF ~10−5, slightly better 
imputation using UKB 200 K for shared MAF ~10−4–10−2 variants but 
more false-positive and false-negative variants for UKB 200 K com-
pared to GEL. The GEL reference panel also imputed indels well: r2 = 0.74 
at MAF = 10−3 for GBR samples (Extended Data Fig. 4).

We used the GEL panel to impute 488,315 UK Biobank samples at 
342,573,817 variants, producing a ‘GEL-UKB’ dataset. Compared with 
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Fig. 1 | The GEL reference panel variant count and imputation accuracy.  
a, Venn diagram comparing numbers of variants from the GEL, HRC and TOPMed 
r2 reference panels. The numbers show the variant count (in millions of variants, 
M), followed by the Ts/Tv ratio of these variants in brackets. b, Imputation 
performance, measured by r2 (Methods), for imputation of 1000 Genomes 

Project samples with African (AFR), American (AMR), East Asian (EAS), British 
(GBR), North European (CEU) and South Asian (SAS) populations, using three 
different reference panels (labels). The variants are stratified by gnomAD allele 
frequency (v.3.3.1)4 of their corresponding population.
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GEL-UKB GWAS P values generally show high correlation with those of 
TOPMed-UKB and UKB200K at sites they share (Supplementary Figs. 5 
and 6). Compared to TOPMed-UKB, only GEL-UKB found ultra-rare 
associations (five at MAF < 10−5). The number of GEL-UKB-specific 
findings substantially exceeds those of TOPMed-UKB in all allele fre-
quency bins (Supplementary Fig. 5), even common variants. We saw a 
useful improvement in fine-mapping (Methods) using GEL-UKB ver-
sus HRC-UKB; specifically, 44% of GEL-UKB based 95% credible sets 

contain fewer SNPs, while only 25% contain more SNPs (Fig. 2b and 
Supplementary Table 3).

A recent UKB exome sequencing-based association study reported 
34 rarer (MAF < 0.05) GWAS hits across the four traits (P < 2.18 × 10−11) 
(ref. 8). At the same P-value threshold, we discovered 70% of these 
associations using GEL-UKB (76% at P < 5 × 10−8), compared to 56% 
using HRC-UKB (Supplementary Table 4). Comparing to the UKB 
whole-exome imputation GWAS results9, all but 4 of the 28 exome 
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Fig. 2 | GEL-imputed UK Biobank data boost power to find common and rare 
associations. a, A set of independent genome-wide significant (P < 5 × 10−8) 
associations identified by step-wise regressions (conditioned joint analysis), 
and with INFO > 0.8, are plotted versus their imputed allele frequency (x axis). 
Blue points represent variants that were flagged by step-wise regressions in one 
dataset and also showed a significant GWAS association in the other dataset. 
Red points indicate variants unique to that dataset. The shape of the data 
points reflects the predicted consequences of the variants as determined by 
the Ensembl Variant Effect Predictor (release 105)14. Dots represent functional 
variants, including stop gained, stop lost, splice donor/acceptor, frameshift, 
in-frame insertion/deletion and missense variants and the triangles indicate 
non-functional variants. The dashed lines indicate the smallest hypothetical 

effect sizes that can be captured by the P-value threshold (P < 5 × 10−8) at power of 
0.5. b, Comparison of the number of variants in the 95% credible sets for GEL-UKB 
and HRC-UKB fine-mapping results for standing height (capped at 20 variants; 
Methods). The circle sizes represent the number of fine-mapping regions 
showing each combination; plots below the diagonal correspond to GEL-UKB 
having fewer variants in the credible set compared to HRC-UKB. c, LocusZoom 
plot of ultra-rare-variant association (rs757561770) (in blue triangle) detected 
by GEL-UKB. The color indicates the linkage disequilibrium (LD) between 
SNPs and the focal SNP rs4931017, showing that rs757561770 is in low linkage 
disequilibrium with the focal SNP (r2 = 6.57 × 10−6). Blue lines show the regional 
recombination rate.
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imputation likely causal rare coding variants associated with standing 
height (P < 5 × 10−8) were found to be significant using GEL-UKB versus 
all but 9 using HRC-UKB (Extended Data Fig. 8). Noticeably, our imputed 
data P values were more significant than those previously obtained 
using imputation from 150,000 sequenced UKB samples10 (Supple-
mentary Table 7), perhaps due to the more powerful testing framework 
offered by REGENIE7 or improvements in GEL-based imputation.

At very rare variants (MAF < 5 × 10−4), several independent asso-
ciations are discovered by GEL-UKB (Fig. 2a) but not HRC-UKB. For 
example, GEL-UKB identifies a new ultra-rare association signal for 
diastolic blood pressure at rs757561770 in FGD4, with allele frequency 
9.31 × 10−6. Common variants in FGD4 have previously been associated 
with hypertension11 (Fig. 2c). Notably, rs757561770 is intronic and 
shows no strong linkage disequilibrium (r2 > 0.7) with any identified 
coding variant (Supplementary Table 6). Because we test the entire 
genome, our results allow us to investigate whether similar large-effect 
variants (which in our example GWAS are only found at low frequency; 
Fig. 2b) occur in coding or non-coding DNA more generally. We identi-
fied 27 independent large-effect/rare-variant signals (MAF < 0.001; 
P < 5 × 10−8), across traits using step-wise regression (Methods). Among 
these, 15 are coding or splice site variants (n = 9) or in strong linkage 
disequilibrium (r2 > 0.7) with such a variant. Two more genic variants 
occur in 5′ untranslated regions (UTRs) (Supplementary Table 6). 
These 17 variants comprise 63% of all signals including, 16 of the 18 
strongest associations by P value (Supplementary Table 6). If repli-
cated for other phenotypes, this implies that it may be unusual for 
variation in non-coding regions, for example enhancers, to achieve 
dramatic trait effects—despite such regions dominating GWAS signals 
overall12. Because it seems likely that non-coding variants are able to 
strongly disrupt the binding of individual transcription factors, this 
might imply that (except in 5′ UTR regions), in most cases, no indi-
vidual transcription factor binding site plays an essential functional 
role. Nonetheless, we still observed several cases implicating only 
non-genic sites—for example, two rare intronic signals for decreased 
height (rs773574844 and rs1414220739) near SLC12A1, a gene known 
to be associated with height and Bartter syndrome, whose symptoms 
include growth retardation13. We anticipate that, despite their modest 
effect sizes and limiting power at present (likely, even if genomes are 
fully sequenced), the number of non-coding associations will prob-
ably increase rapidly in the future once sample sizes become larger. 
Moreover, our results imply that imputation will be highly effective in 
identifying such associations, even for rare variants.

One unexpected finding for increased height was a tight ~1-kilobase 
(kb)-wide cluster of five independent low-frequency variants on chro-
mosome 6 (Supplementary Table 7), including the rare missense vari-
ant rs957675208 (HMGA1/LOC124901225), in a region not reported 
by previous exome sequencing8 and exome imputation9 analyses or 
by HRC-UKB (low imputation INFO). Notably, rs957675208 shows the 
strongest height-increasing impact of any SNP in the whole genome, 
equivalent to gaining 3.5 cm of height. On further examination, three of 
the five variants are missense variants in LOC124901225 and the remain-
ing two variants are in the 5′ UTR of HMGA1, in a region not annotated 
in prior exome studies. It is unclear whether these associations reflect 
regulatory or direct coding roles. This gives one example of how the 
complete genome-wide coverage of the GEL-UKB data allows for more 
findings compared to previous approaches.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
This work was conducted under the approved UK Biobank applications 
numbered 48031 and 27960 and Genomics England Clinical Interpreta-
tion Partnership project ID RR91.

Genomics England high-coverage sequencing data
The GEL 100,000 Genomes Project was launched in 2013, focusing 
on rare diseases and cancer. More than 120,000 genomes have been 
sequenced. It comprises genomes from 73,700 patients with rare 
diseases (disorders affecting ≤1 in 2,000 persons) and their close rela-
tives and 46,539 genomes from patients with cancer1. The GEL refer-
ence panel described in this paper is built on the aggregated dataset 
(aggV2), comprising 78,195 samples from both rare disease and cancer 
germline genomes. Samples were sequenced with 150 bp (base pair) 
paired-end reads on the IlluminaHiSeq X platform and processed with 
the Illumina North Star Version 4 Whole Genome Sequenced Workflow 
(iSAAC Aligner v.03.16.02.19 and Starling small variant caller v.2.4.7) 
and aligned to the GRCh38 human reference genome. The individual 
gVCF files were aggregated into multisample VCF files using Illumina 
gVCF genotyper and normalized with vt v.0.57721. The aggregated mul-
tisample VCF dataset (aggV2) comprises over 722 million initial called 
SNPs and short indels (≤ 50 bp). Multi-allelic variants were decomposed 
into biallelic variants. The dataset includes 49,641 samples (63.48%) 
from individuals self-identifying as white British, 4,100 (5.24%) as ‘Other 
white’, 2,885 (3.69%) as Pakistani, 1,860 (2.3%) as Black, 1,751 (2.24%) 
as Indian and 12,277 samples (15.7%) as ‘Unknown’. According to the 
self-reported data, only 27,346 samples (34.97%) have no relatives in 
the reference panel; 11,584 (14.81%), 32,679 (41.79%) and 6,586 (8.43%) 
samples possess two, three and more than three family members in the 
dataset, respectively. We identified 12,816 (16.39%) samples as mem-
bers of duo families and 35,106 (44.9%) as members of trio families, 
whereas 30,273 (38.71%) samples are treated as unrelated for phasing 
(Supplementary Note).

Quality control
Before the quality control (QC) described here, sample-level QC was 
carried out by the GEL informatics team on variants called one sample 
at a time. We conducted further QC by pooling information across 
samples to remove false-positive sites. Specifically, we used aggregated 
VCFs, considering genotype quality, depth, missingness, allelic bal-
ance, Mendel errors, Hardy–Weinberg equilibrium and gnomAD4 allele 
frequency concordance. Because singletons observed in unrelated 
samples are difficult to phase accurately, these sites were removed. 
We applied two sets of QC rules. First, we applied a stringent rule set 
applied to all sites, including those de novo in GEL and very rare sites. 
Second, we applied a more lenient group of filters for relatively com-
mon sites (AF > 0.001) that also showed support from independent 
external datasets (TOPMed, HRC, 1000 Genomes and gnomAD) to 
avoid removing a proportion of genuine sites (for example, for a mod-
est number of Mendel errors). For these sites, if they failed our stringent 
filters but passed with somewhat less stringent missingness, Mendel 
error and gnomAD frequency concordance thresholds, we included 
them, after separate phasing conditional on the phase of sites passing 
the more stringent thresholds, that is in a manner that did not impact 
the stringent sites. These sites were incorporated in the final dataset 
but with a QC flag indicating their slightly lower reliability. Overall, our 
filters reduced the initial number of sites from 722 million to 342 million 
(Supplementary Note and Supplementary Table 5).

Phasing the GEL reference panel
We used a multistage phasing strategy leveraging the relatedness 
within GEL, in particular allowing phasing of singletons where possible.

 (1) We used the makeScaffold software (https://github.com/ode-
laneau/makeScaffold) to determine the phase of duo and trio 

samples (Supplementary Note) by direct transmission informa-
tion (this phases most sites in these samples).

 (2) For remaining unphased genotypes in these related samples, 
with phases undetermined due to heterozygosity or missing 
data, phases were inferred using SHAPEIT4.2.2 (ref. 15), using 
the phased genotypes from step 1 as a scaffold.

 (3) To phase genotypes in the unrelated samples, we first phased 
the common variants (AF > 0.01) one chromosome at a time, 
using SHAPEIT4.2.2 and now using the genotypes (at these com-
mon sites) from step 1 and 2 in the related samples as a refer-
ence panel.

 (4) Finally, to phase the remaining sites: genotypes at rare variants 
in unrelated samples, we use SHAPEIT4.2.2 with the phased 
samples from steps 1 and 2 as a reference panel and the phased 
common variants from step 3 as a scaffold for these samples.

 (5) For sites only passing our lenient filters (‘Quality control’ sec-
tion above and Supplementary Note), we used the results of 
step 4, for the sites on the UKB Axiom array sites passing the 
stringent filters, as a scaffold and then used SHAPEIT4.2.2 on 
the remaining genotypes.

Phasing for steps 1 and 3 was done at the entire chromosome level; 
for steps 2 and 4, it was carried out in regions of ~300,000 sites, with 
30,000 sites on each side as buffer. The resulting phased regional seg-
ments were merged and concatenated using bcftools16. These phasing 
steps were computationally intensive and took ~6,500 CPU days in total 
to accomplish. The phased reference panel is stored in VCF format and 
has been made available for all GEL registered users on the GEL trusted 
research environment.

Estimation of 1000 Genome trio phasing switch error rate
Phasing accuracy is important for direct biological interpretation of 
variants within GEL, as well as ensuring high-quality imputation in 
other samples and other downstream applications. We assessed the 
ability of the GEL panel to phase such external samples. Specifically, 
we phased the parents of mother–father–child trios included in the 
1000 Genomes Project (but not HRC or GEL) using the reference panels 
from HRC and GEL. We then assessed the resulting phase accuracy by 
comparing phased haplotypes to those directly inferred using inher-
itance patterns to the child in each trio. The HRC reference panel was 
lifted over from the GRCh37 to the GRCh38 reference genome using 
GATK Picard LiftoverVCF17. The original GRCh37 HRC reference panel 
has 39,131,578 autosomal variants. We removed 13,813 variants either 
due to incompatibility between reference genomes or mismatch-
ing chromosome between the two reference genomes. The resulting 
autosomal GRCh38 HRC reference panel contains 39,115,765 variants 
and 27,165 samples. The 1000 Genome Project samples within the HRC 
reference panel were removed.

We analyzed only sites passing 1000 Genome Project data18 filters. 
The phasing test was carried out on 589 trio families from diverse ethnic 
backgrounds, using SHAPEIT4.2.2 (ref. 15). We tested all the heterozy-
gous 1000 G sites for each individual reference panel, yielding a total 
of 1.04 × 109 heterozygous sites (1.76 million per trio family) for the 
HRC panel and 1.16 × 109 (1.9 million per trio family) for the GEL panel.

Imputation testing of the 1000 Genomes Project samples
We used 2,405 samples from the 1000 Genomes Project to test the 
relative performance of imputation based on the GEL, TOPMed r2 
and HRC imputation panels. We first performed quality control on the 
1000 Genomes Project data by removing sites which either possess a 
missingness >5% or failed a Hardy–Weinberg equilibrium test, by hav-
ing P < 10−10 in any of the 26 populations of the 1000 Genome Project. 
We then masked genotypes in 1000 Genomes Project sequencing 
samples, except the sites existing in the UK Biobank Axiom array, to 
mimic imputation using this array. This gave 716,473 biallelic SNPs 
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across all autosomes. The pseudo-SNP array dataset was then phased 
one chromosome at a time using SHAPEIT4.1.2 (ref. 15). TOPMed impu-
tation was carried out using the TOPMed imputation server with the 
TOPMed r2 reference panel and the imputation software minimac4 
1.5.7 (ref. 19). IMPUTE5 (ref. 20) was used to impute from the GEL and 
HRC reference panels. We stratified imputation results into six groups: 
661 AFR, 347 AMR, 504 EAS, 489 SAS, 313 non-Finnish European (NFE) 
samples and 91 GBR samples.

UK Biobank imputation using the GEL reference panel
The UK Biobank SNP array data consist of 784,256 autosomal variants. 
We removed the set of 113,515 sites identified by the previous central-
ized UK Biobank analysis as failing quality control6 and an extra set of 
39,165 sites failing a test of Hardy–Weinberg equilibrium on 409,703 
GBR samples, with the P-value threshold of 10−10. The resulting UK 
Biobank SNP array data were mapped from the GRCh37 to GRCh38 
genome build, using the GATK Picard LiftOver tool. Alleles with mis-
matching strand but matching alleles were flipped. We removed 495 
sites because of incompatibility between the two reference genomes, 
resulting in a final SNP array incorporating 631,081 autosomal variants 
that we used for phasing and imputation. Haplotype estimation of the 
SNP array data is a prerequisite for imputation. Phasing was carried out 
one chromosome at a time using SHAPEIT4.2.2 without a reference 
panel, using the full set of UK Biobank samples. We ran SHAPEIT4 using 
its default 15 Markov chain Monte Carlo iterations and 30 threads. The 
runtime varied from 2 to 30 hours for each chromosome. Imputation 
of normal filter set and lenient filter set SNPs was carried out inde-
pendently. Autosomal imputation using the GEL reference panel was 
performed using IMPUTE5 (v.1.1.4). The SNP array data were divided 
into 408 consecutive and overlapping chunks with ~5 megabases (Mb) 
for each chunk and 2.5 Mb buffer across the genome using the Chun-
ker program in IMPUTE5 (ref. 20) and each chunk was further divided 
into 24 sample batches with each batch containing 20,349 samples. 
IMPUTE5 was run on each of the 9,792 subsets using a single thread 
and default settings, at a speed <4 min per genome, resulting in a total 
time of ~1,200 CPU days to impute all UK Biobank samples. The result-
ing imputed genotype dosages are stored in BGEN format and phasing 
information is stored in VCF format.

Genome-wide association studies
We selected four quantitative traits to demonstrate the GWAS perfor-
mance of the GEL-imputed UK Biobank data (GEL-UKB), compared to 
the HRCUK10K-imputed UKB (HRC-UKB) data on 429,460 GBR samples. 
These traits are standing height (HEIGHT), body mass index (BMI), 
systolic blood pressure (SBP) and diastolic blood pressure (DBP). 
Variants with minor allele count <5 are not included in testing. The 
phenotypes are transformed using rank inverse normal transformation 
(RINT) within sexes to ensure normally distributed input phenotypes 
and reduce the likelihood of false positives due to outliers. We also 
performed GWAS on the raw phenotype measures as a reference but, 
in our analyses, we use the RINT results if not otherwise specified. In 
addition, we followed the same procedure to perform GWAS using 
TOPMed imputed UKB (TOPMed-UKB) and 200,000 UKB sequencing 
data (UKB200K) on the UKB research analysis platform.

Samples between 40 and 70 years old are included and for each 
phenotype; outliers that are above ±4 s.d. from the mean value were 
removed6. SBP and DBP values are based on automated blood pres-
sure readings, substituting in manual reading values when automated 
readings are not available. We calculated the mean SBP and DBP values 
from two automated (n = 418,755) or two manual (n = 25,888) blood 
pressure measurements. For individuals with one manual and one 
automated blood pressure measurement (n = 13,521), we used the 
mean of these two values. For individuals with only one available blood 
pressure measurement (n = 413), we used this single value. After calcu-
lating blood pressure values, we adjusted for blood pressure-lowering 

medication (n = 94,289) use by adding 15 and 10 mmHg to SBP and DBP, 
respectively21, for individuals on such medication.

GWAS effect size estimates and P values were obtained using REG-
ENIE7. Throughout the paper, we present two-sided raw P values and 
use a widely used significance threshold of P < 5 × 10−8. We used the 
UKB SNP array data to estimate the LOCO predictors in REGENIE step 
1 and the imputed data for step 2, accounting for sex, age, sex squared, 
sex × age and 20 principal components as covariates7. The associa-
tion tests for GEL-imputed UKB (GEL-UKB) and HRCUK10K-imputed 
UKB (HRC-UKB) used the identical setup. The HRC-UKB summary 
statistics of the association tests were mapped using Picard LiftOver 
from GRCh37 to GRCh38 to compare the results with GEL-UKB. In 
all analyses, we used an INFO threshold of 0.3 for common imputed 
variants (MAF > 0.05) and 0.8 for rare imputed variants (MAF ≤ 0.05). 
Supplementary Fig. 1 shows that higher INFO thresholds are effective 
for detecting false-positive rare associations.

Bayesian fine-mapping
Bayesian fine-mapping credible set size comparison was carried out 
on 1,660, 711, 505 and 546 non-overlapping regions for HEIGHT, BMI, 
SBP and DBP, respectively, on the basis of HRC-UKB GWAS summary 
statistics. These regions were defined by the following procedure. 
First, candidate regions were identified with width 0.125 cM plus 25 kb 
on each side of a significant marker. Overlapping candidate regions 
were successively merged until there were no remaining regions over-
lapping. We removed 60, 30, 33 and 51 regions for the above traits, 
respectively, in which GEL-UKB showed no significant sites (P < 5 × 10−8 
in GWAS) for each trait. The recombination rate is based on the HapMap 
genetic map22. A detailed description of this approach can be found 
in refs. 6,23.

For each region, we assume a single causal variant—we call this 
model M. Given this, we define model Mi to be the model where SNP i 
is the causal variant. We seek the probability of Mi given the data and 
that model M is true. This posterior Pr(Mi|X, M) can be written in terms 
of the Bayes factor relating the probability of the data given Mi versus 
the probability of the data under the null model with no associated SNP 
in the region, BFi. Further, BFi can be approximated by an asymptotic 
Bayesian factor (ABFi):

Pr (Mi|X,M) =
BFi
k
∑
i=1

BFi

≈ ABFi
k
∑
i=1

ABFi

.

ABFi can be calculated using the standard error (Vi) and Z score (z) esti-
mated by REGENIE6. In each region, the smallest possible 95% credible 
set of potential causal markers can be obtained by successively includ-
ing the sites with the highest probabilities, to accumulatively reach 
0.95. Model M requires a prior (a Gamma distribution) on effect sizes; 
we choose this prior W to have parameters 0.22 and 0.022 but found 
that the results are not particularly sensitive to the choice of the prior.

Conditional joint analysis using step-wise regression
A standard GWAS uses a marginal model considering one variant at a 
time, while a joint model considers all the selected variants and esti-
mates their joint effect simultaneously to remove rare-variant signals 
that are explained by stronger signals at more common nearby SNPs8. 
We performed a conditional joint analysis via a step-wise forward 
selection procedure, considering each chromosome separately. First, 
we defined the set S of genome-wide significant variants in one chro-
mosome (P < 5 × 10−8) in the marginal regression using REGENIE. We 
initialized a set of variants R as the most significant variant in the mar-
ginal regression. Given the current value of R, we calculate the P value 
of all the remaining variants in S one at a time, conditioned on R and 
the covariates used for the initial GWAS. We then move the variant with 
the smallest conditional P value from S to R, until this smallest P value 
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is no longer genome-wide significant. This approach identifies a set 
of variants that are independently significant and account for all the 
genome-wide association signals (note that this set is not unique), while 
also accounting for linkage disequilibrium between sites. To identify 
rare causal variants within UKB found using GEL-UKB imputation, we 
considered only those variants found by this step-wise forward selec-
tion approach. The full conditional joint analysis results can be found 
in Supplementary Table 7.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The GEL haplotype reference panel is available in the GEL Research 
Environment (https://re-docs.genomicsengland.co.uk/ox_aggv2/) 
to approved researchers in the Genomics England Research Net-
work (https://www.genomicsengland.co.uk/research/academic/
join-research-network). The UK Biobank data imputed using the GEL 
haplotype reference panel are available to those with approved access 
to the UK Biobank resource and described on the UK Biobank showcase 
(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21008). The GWAS 
summary statistics can be downloaded from GWAS Catalog under the 
study accession codes from GCST90435412 to GCST90435415.

Code availability
All analyses were performed using previously published or developed 
tools, as indicated in the Methods. SHAPEIT4 (v.4.1.2) was used to phase 
the GEL reference panel and the phasing experiment of 1000 Genomes 
samples (https://odelaneau.github.io/shapeit4/). The imputation of 
UK Biobank samples was carried out by IMPUTE5 (v.1.1.4), which is 
freely available for academic use (https://jmarchini.org/software/). 
The imputation experiment using TOPMed reference panel was car-
ried out on the TOPMed imputation server (https://imputation.bio-
datacatalyst.nhlbi.nih.gov/). REGENIE was used to perform GWAS 
(https://rgcgithub.github.io/regenie/). The following open source 
software was used for the data processing and quality control pipeline: 
BCFTools (https://samtools.github.io/bcftools/), GATK Picard Lifto-
verVCF (https://gatk.broadinstitute.org/hc/en-us/articles/3600370
60932-LiftoverVcf-Picard). No custom code was developed or used.
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Extended Data Fig. 1 | GEL, HRC and TOPMed reference panels variant counts. Allele frequency (colors) for variants existing in more than one reference panel is 
assigned to the highest allele frequency among all the panels.
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Extended Data Fig. 2 | 1000 Genome Project samples phasing switch error 
rate using GEL and HRC reference panels. Phasing accuracy for 589 high 
coverage 1000 Genome Project children from mother-father-child trio families, 

using HRC and GEL reference panels. The average GEL phasing switch error rates 
are 0.18%, 0.33%, 0.31% and 0.73% for European, African, South Asian, and East 
Asian samples, respectively.
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a

b c

Extended Data Fig. 3 | Imputation accuracy and site counts of GEL, TOPMed 
and UKB200K. a, 1000 Genome Project SNP imputation accuracy measured 
as the r2 between imputed dosages and the ground truth genotypes. ‘GEL’ and 
‘UKB200K’ use all the SNPs from the respective reference panels, and ‘GEL 
exclusive’ and ‘UKB200K exclusive’ use only the SNPs that are not present in the 

other reference panel. b, The number of variants that are in overlap with 1000 G 
GBR samples with respect to the total number of SNPs of UKB200K. c, Venn 
diagram shows the autosomal site overlapping situation of GEL, TOPMed_r2 and 
UKB200K data, and the numbers indicate the variant count in each category.
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Extended Data Fig. 4 | GEL indel imputation accuracy. GEL indel imputation accuracy of 1000 Genome Project samples, measured as the r2 between imputed 
dosages and the ground truth genotypes, stratified by 1000 Genome Project populations.
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Extended Data Fig. 5 | Imputation INFO score histogram comparison between GEL-UKB and HRC-UKB. Each panel shows the distribution of INFO scores for GEL 
and HRCUK10K imputed UK Biobank variants in different MAF bins. The total number of variants in each bin is provided in the panel legend.
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Extended Data Fig. 6 | A heatmap of imputed UK Biobank INFO scores from the 65 million sites present in both GEL-UKB and HRC-UKB. GEL imputation of the UK 
Biobank (GEL-UKB) shows improved INFO scores for 87% of existing imputed markers in HRC-UKB. The x-axis shows imputation using HRC-UKB, and the y-axis shows 
imputation using GEL-UKB.
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Extended Data Fig. 7 | GELUKB-hap imputation accuracy. SNP imputation 
accuracy of 1000 Genome Project samples, measured as the r2 between imputed 
dosages and the ground truth genotypes, stratified by 1000 Genome Project 

populations, showing the performance of using GEL-UKB imputed haplotypes 
(GELUKB-hap) as reference panel compared to GEL and TOPMed overall SNP 
imputation accuracy.
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Extended Data Fig. 8 | Comparing the P-values of GEL-UKB and HRC-UKB with 
rare likely causal coding variants identified by whole exome imputation. The 
x-axis shows the P-value using whole exome imputation9, and the y-axis shows 
the P-value using GEL-UKB (left) and HRC-UKB (right). The −log P-value is set to 

be 0 when the variant is not found. The dots are colors according to their allele 
frequency from the exome imputation data. The horizontal and vertical lines 
show the genome-wide significant threshold, that is 5 × 10−8.
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