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Since the first large genome-wide association studies1 were 
carried out in 2007, there has been a steady increase in 
sample size—now reaching hundreds of thousands of indi-

viduals—which is enabled by a parallel stream of methods with 
ever-increasing computational efficiency. Initial methods used sim-
ple linear or logistic regression using programs such as SNPTEST1 
and PLINK2, but these have largely been replaced by the use of lin-
ear mixed models (LMMs) and the closely related whole-genome 
regression models. These approaches have been shown to account 
for population structure and relatedness, and offer advantages  
in power by conditioning on associated markers from across the 
whole genome3–7.

The initial methods were focused on quantitative traits3 for stud-
ies with a few thousand samples and assumed a Gaussian distribu-
tion on SNP effect sizes. These approaches were extended to datasets 
including tens of thousands of individuals by computational strat-
egies that avoided repeated matrix inversions when testing each 
SNP7,8. Building on work from the plant and animal breeding litera-
ture9,10, even more efficient whole-genome regression approaches 
were developed that allowed for more flexible (non-Gaussian) prior 
distributions of SNP effect sizes11,12. BOLT-LMM and LEMMA are 
implementations of this approach13–15. The fastGWA LMM approach 
reduces the computational time by using a sparse representation 
of the genetic correlations present in the sample16. For simple lin-
ear regression of quantitative traits, the BGENIE method (https://
jmarchini.org/BGENIE/) introduced the idea of the simultaneous 
analysis of multiple quantitative traits, which required only a single 
pass through the genetic data and provided substantial speed-ups 
over PLINK17.

BOLT-LMM and fastGWA have also been applied to binary 
(case–control) traits when the case–control ratio is reasonably bal-
anced and relatively common variants are tested for association. 
However, these approaches break down when applied to unbalanced 
case–control studies tested with rarer variants, such as those found 

in exome sequencing studies. The SAIGE method implements a 
logistic mixed-model approach and a saddle-point approximation 
(SPA) to the null distribution of the test statistic, which is effective 
at controlling Type 1 errors18.

The BOLT-LMM, fastGWA and SAIGE methods all proceed in 
two main steps that are applied one trait at a time. In Step 1, a model 
is fit to a set of SNPs from across the whole genome, such as all of 
the SNPs on a genotyping array. The resulting model fit is then used 
to create either a prediction of individual trait values based on the 
genetic data (in BOLT-LMM and SAIGE) or an estimate of the trait 
variance–covariance matrix (in fastGWA). In Step 2, a larger set of 
imputed or sequenced variants on the same set of samples are tested 
for association, conditional on the predictions or variance–covari-
ance matrix in Step 1. This is usually carried out using the so-called 
leave-one-chromosome-out (LOCO) scheme, where each imputed 
SNP on a chromosome is tested conditional on the Step 1 predic-
tions ignoring that chromosome. This approach avoids proximal 
contamination, which can reduce the power of association tests8,19.

In this paper we propose a new machine-learning method within 
this two-step paradigm, called REGENIE (https://rgcgithub.github.
io/regenie/), that is substantially faster than existing approaches. 
Extended Data Fig. 1 provides an overview of the REGENIE method. 
In Step 1, array SNPs are partitioned into consecutive blocks of B 
SNPs and a small set of J ridge regression predictions are gener-
ated from each block (this is referred to as Level 0). Within each 
block, the ridge regression predictors each use a slightly different 
set of shrinkage parameters. The idea of using a range of shrinkage 
values is to capture the unknown number and size of truly associ-
ated genetic markers in each window. This approach is equivalent to 
placing a Gaussian prior on the effect sizes of the SNPs in the block 
and finding the maximum a posteriori estimate of the effect sizes 
and the resulting prediction. One can think of these predictions 
as local polygenic scores that account for local linkage disequilib-
rium (LD) within blocks. Combining the predictions from across 
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the genome results in a large reduction in the size of the genetic 
dataset. In this paper we use B = 1,000 and J = 5, and this reduces a 
set of M = 500,000 SNPs to M = 2,500 predictors. The method then 
uses a second ridge regression (referred to as Level 1) to combine 
the M predictors into a single predictor, which is then decomposed 
into 23 chromosome predictions for a LOCO approach. Linear or 
logistic regression is used at Level 1, depending on the phenotype. 
The resulting LOCO predictions are then used as a covariate in 
Step 2 when each imputed SNP is tested. This approach completely 
decouples Step 1 and Step 2 so that the Step 1 predictions can be 
re-used when running Step 2 on distinct sets of markers (for exam-
ple, imputed and exome markers) or even when distinct statistical 
tests are needed at Step 2. All of the predictions at Level 0 and Level 
1 are obtained within a cross-validation (CV) scheme (either K-fold 
CV or leave-one-out CV (LOOCV)) to prevent over-fitting.

This approach exhibits a number of desirable properties. First, 
many of the calculations in Steps 1 and 2 can be carried out for mul-
tiple traits in parallel. This leads to substantial gains in speed as the 
files containing the variants in Steps 1 and 2 are read only once, 
rather than repeatedly for each trait. In practice, we find that for 
Step 1, REGENIE can be over 150× faster than BOLT-LMM and 
300× faster than SAIGE when analyzing 50 UK Biobank quantita-
tive and binary traits with up to 407,746 samples (Tables 1 and 2). 
In Step 2, each variant is tested for association and the overall com-
putational burden will depend on the number of variants tested. For 
example, analyzing imputed variants across the genome will result 
in a higher computational burden for Step 2 relative to Step 1, but 
this will be less so when Step 2 involves testing coding variants from 
exome sequencing. The computational differences between meth-
ods in Step 2 are less extreme and mostly depend on the type of trait, 
test statistic and implementations of file format reading and paral-
lelization schemes. However, REGENIE analyzes multiple traits in 
parallel and this can result in substantial computational savings, 
especially for quantitative traits. On an imputed dataset with 30 
million tested variants and 50 traits, we find that over both Steps 
1 and 2, REGENIE is 19.5× and 4.4× faster than BOLT-LMM and 

SAIGE, respectively. In the Supplementary Note and Supplementary 
Table 1 we provide an analysis of the computational complexity of 
REGENIE.

Second, in Step 1 of REGENIE, only B SNPs need to be stored 
in memory at once, which leads to a low memory footprint, which 
can reduce the costs on cloud-based platforms. Third, the method is 
applicable to both quantitative and binary traits and we have imple-
mented a new, fast Firth logistic regression test as well as a SPA test 
for binary traits. Finally, our algorithm is ideally suited to imple-
mentation on distributed computing frameworks, such as Apache 
Spark, where both the dataset and application of the method and 
computation can be parallelized across a large number of machines. 
The main implementation of REGENIE is a standalone C++ pro-
gram (https://rgcgithub.github.io/regenie/) but these methods 
have also been implemented for quantitative traits in the Apache 
Spark-based Glow project (http://projectglow.io; see Supplementary 
Note). All of the main experiments and results in the paper were 
obtained using the C++ program.

Results
Quantitative traits. Figure 1 shows the results of applying 
REGENIE, BOLT-LMM and fastGWA to three quantitative phe-
notypes measured on white British participants of the UK Biobank 
(low-density lipoprotein cholesterol, n = 389,189; body mass index, 
n = 407,609; and bilirubin, n = 388,303), where Step 2 testing was 
performed on 9.8 million imputed SNPs (see Supplementary Note). 
The Manhattan plots for all three phenotypes show good agreement 
between the methods (see also Extended Data Fig. 2) with both 
REGENIE and BOLT-LMM showing increased power gains relative 
to fastGWA at known peaks of association.

To demonstrate the advantages of analyzing multiple traits 
in parallel using REGENIE, we compared it to BOLT-LMM and 
fastGWA on a set of 50 quantitative traits from the UK Biobank, 
each with a distinct missing data pattern (Supplementary Table 2). 
Whereas REGENIE can analyze all traits at once within a single run 
of the software, the BOLT-LMM and fastGWA software must be run 
once for each of the 50 traits. Across all 50 traits, we found that the  
P values for REGENIE and BOLT-LMM were in very close  

Table 1 | Computational performance of REGENIE, fastGWA 
and BOLT-LMM when analyzing 50 quantitative traits with UK 
Biobank data

Method Step Benchmark

CPU time 
(h)

Elapsed time 
(h)

Memory 
usage (GB)

REGENIE 1 111 12 12.9

REGENIE–
LOOCV

1 192 19 23.6

REGENIE 2 2,916 197 6.0

fastGWA 0 454 201 –

fastGWA 1–2 9,191 624 2.0

BOLT-LMM 1 60,735 1,815 49.6

BOLT-LMM 2 2,271

For REGENIE and BOLT-LMM, 469,336 LD-pruned SNPs were used as model SNPs when 
fitting the null model (Step 1). For fastGWA, these SNPs were used to compute the sparse 
genetic-relatedness matrix with a default relatedness threshold of 0.05 (Step 0). Tests were 
performed on 11.4 million imputed variants and the timings were projected to 30 million variants 
(Step 2). For Step 1, REGENIE was run in multi-trait mode analyzing all traits together at once using 
fivefold CV (REGENIE) as well as LOOCV (REGENIE–LOOCV). All of the runs were performed on 
the same computing environment (16 virtual CPU cores of a 2.1-GHz AMD EPYC 7571 processor, 
64 GB of memory and a 600-GB solid-state disk), except for the genetic-relatedness-matrix 
calculation required for fastGWA, where we used 250 partitions in a computing environment with 
four virtual CPU cores and 8 GB of memory. The BGEN file input needed for Step 2 was split by 
chromosome, so fastGWA had to be run separately for each chromosome being tested. The sample 
sizes for the 50 traits ranged from 332,739 to 407,662 individuals (see Supplementary Table 2).

Table 2 | Computational performance of REGENIE–Firth, 
REGENIE–SPA and SAIGE when analyzing 50 binary traits with 
UK Biobank data

Method Step Benchmark

CPU time (h) Elapsed time 
(h)

Memory 
usage (GB)

REGENIE 1 1,590 117 11.8

REGENIE–
LOOCV

1 777 108 19.5

REGENIE–Firth 2 115,492 8,237 7.7

REGENIE–SPA 2 79,363 5,090 9.1

SAIGE 1 275,070 21,428 48.7

SAIGE 2 239,865 173,992 2.1

When fitting the null model (Step 1), 469,336 LD-pruned SNPs were used as model SNPs. Tests 
were performed on 11.8 million imputed SNPs and the timings were projected to 30 million variants 
(Step 2). For Step 1, REGENIE was run in multi-trait mode analyzing all traits together at once using 
fivefold CV (REGENIE) as well as LOOCV (REGENIE–LOOCV). For Step 2, REGENIE was run using 
Firth correction (REGENIE–Firth) and SPA (REGENIE–SPA). Step 1 of SAIGE did not finish for 2/50 
traits as it exceeded the four-week limit; the reported timings of SAIGE Step 2 are thus projections 
based on the timings of the completed runs. All of the runs were performed on the same computing 
environment (16 virtual CPU cores of a 2.1-GHz AMD EPYC 7571 processor, 64 GB of memory and 
a 600-GB solid-state disk). The sample sizes for the 50 traits ranged from 381,591 to 407,746 
individuals (see Supplementary Table 6).
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agreement on the majority of traits tested, with some evidence that 
REGENIE is slightly less powerful for a few traits (Supplementary 
Fig. 1), whereas the fastGWA P values were noticeably deflated 
compared with REGENIE and BOLT-LMM. The compute time and 
memory usage of the three methods is given in Table 1. The table 
shows that in this 50-trait scenario, REGENIE is 151× faster than 
BOLT-LMM in elapsed time for Step 1 and 11.5× faster for Step 2, 
and this translates into an overall speed-up in terms of elapsed time 
of approximately 20× when projecting to 30 million tested vari-
ants obtained using imputation information score > 0.8. Similar to 
BOLT-LMM, Step 2 of REGENIE has been optimized for input gen-
otype data in BGEN v1.2 format, which highly helped reduce the 
runtime. In addition, REGENIE has a maximum memory usage of 
12.9 GB, which is mostly due to REGENIE reading onlya small por-
tion of the genotype data at a time, whereas BOLT-LMM required 
50 GB. To keep memory usage low when analyzing the 50 traits, 
within-block predictions are stored on disk and read separately for 
each trait working across blocks. The added input/output operations 
incur a small cost on the overall runtime but substantially decrease  
the amount of memory needed by REGENIE (Supplementary Table 3).  
When running analyses on cloud-based services such as Amazon 
Web Services, these time and memory reductions both contribute to 

large reductions in cost as cheaper Amazon Web Services instance 
types can be used and for less time. In the same 50-traits scenario, 
we find that REGENIE is about 3× faster than fastGWA but fast-
GWA is very memory efficient and uses a maximum of only 2 GB.

Binary traits. In addition to analyzing quantitative traits, REGENIE 
was also designed for the analysis of binary traits, including those 
with unbalanced case–control ratios. REGENIE includes imple-
mentations of both Firth and SPA corrections to handle this sce-
nario (see Methods). Figure 2 (see also Extended Data Fig. 3) shows 
the results of applying REGENIE, BOLT-LMM and SAIGE to four 
binary phenotypes measured on white British participants of the 
UK Biobank (coronary artery disease, N = 352,063; glaucoma, 
N = 406,927; colorectal cancer, N = 407,746; and thyroid cancer, 
N = 407,746) where Step 2 testing was performed on 11.6 million 
imputed SNPs (Supplementary Note). All four approaches dem-
onstrated very good agreement for the most balanced trait (coro-
nary artery disease; case–control ratio = 1:11), but as the fraction of 
cases decreased, BOLT-LMM tended to give inflated test statistics. 
However, both REGENIE with Firth and SPA corrections as well as 
SAIGE are robust to this inflation and show similar agreement for 
the associations detected.
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Fig. 1 | Comparison of methods on three quantitative traits from the UK Biobank. a–c, Results from REGENIE, fastGWA and BOLT-LMM for low-density 
lipoprotein cholesterol (a; n = 389,189), body mass index (b; n = 407,609) and bilirubin (c; n = 388,303) of samples from white British individuals. Tests 
were performed on 9.8 million imputed SNPs with a minor allele frequency greater than 1%. The bottom dashed horizontal line represents the genome-wide 
significance (P = 5 × 10−8) and the top dashed horizontal line represents the breakpoint for the different scaling of the y axis. The dashed vertical lines 
separate the 22 chromosomes.
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The SPA approach calculates a standard score test statistic and 
approximates the null distribution, whereas the Firth correction 
uses a penalized likelihood approach to estimate the SNP-effect-size 
parameters in an asymptotic likelihood-ratio test. Although both 
provide good control of Type 1 error for rare binary traits, we found 
that the SPA approach implemented in SAIGE can result in very 
inflated effect-size estimates (Supplementary Fig. 2). However, the 
Firth correction used in REGENIE provides reasonable effect-size 
estimates and standard errors when the minor allele count is 
low (Supplementary Table 4). The fast Firth correction that we  
developed agrees well with the exact Firth correction  
(Supplementary Figs. 3 and 4) but is approximately 60 times faster 
(Supplementary Table 5).

To assess the computational resources needed to analyze a larger 
number of traits, we again ran REGENIE using Firth/SPA correc-
tion and SAIGE on a set of 50 binary traits from the UK Biobank 
with a range of different case–control ratios and distinct missing 
data patterns (Supplementary Table 6). The compute time and 
memory usage details are given in Table 2.

For Step 1, we found that REGENIE (using the LOOCV scheme) 
was about 350 times faster (CPU time of 777 versus 275,070 h) 
and required only 40% of the memory used by SAIGE (19.5 versus 
49 GB). In Step 2, REGENIE–Firth and REGENIE–SPA were 2× and 
3× faster than SAIGE in CPU time, respectively, but 21× and 34× 
faster than SAIGE in elapsed time, respectively, which suggests that 

REGENIE makes better use of parallelization in this step. Overall, in 
this 50-trait setting, REGENIE–Firth was 4.4× faster than SAIGE in 
terms of CPU time and 23× faster in elapsed time when projected to 
30 million tested variants obtained using INFO > 0.8%. REGENIE 
reduces the CO2 footprint by more than 85% compared with SAIGE 
(Supplementary Table 7). Supplementary Figs. 5–10 compare the 
accuracy of REGENIE and SAIGE across all 50 traits and show good 
agreement.

A large portion of the compute time in SAIGE is used to imple-
ment the LOCO, but it has been suggested that for binary traits, 
the effect of proximal contamination is not as substantial for less 
prevalent traits18. We ran SAIGE without LOCO on the same 50 
binary traits and observed that the impact of using LOCO was 
indeed more apparent with low case–control imbalance, where it 
can be highly beneficial (Extended Data Fig. 4 and Supplementary  
Figs. 11–13). These results would caution against the perfunctory 
use of SAIGE without LOCO for the analysis of all traits in a study 
such as the UK Biobank.

CV scheme. We implemented both a K-fold CV and a LOOCV 
scheme in Step 1 for both quantitative and binary traits (see 
Methods). Both approaches provided almost identical accuracy 
(Supplementary Figs. 14 and 15). For the dataset of 50 quantitative 
traits, LOOCV required 192 h of CPU time and 23.6 GB of memory, 
whereas the K-fold CV required 111 h of CPU time and 12.9 GB of 
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Nature Genetics | VOL 53 | July 2021 | 1097–1103 | www.nature.com/naturegenetics1100

http://www.nature.com/naturegenetics


Technical ReportNaTURE GEnETIcs

memory (Table 1). For the dataset of 50 binary traits, the LOOCV 
approach required approximately 50% of the CPU time used by the 
K-fold CV approach (CPU time of 777 versus 1,590 h) and 65% 
more memory, but the elapsed time of the two methods was similar 
(108 versus 117 h). The LOOCV approach requires fewer relatively 
expensive logistic regression calls compared with the K-fold CV, but 
the extra calls needed are easily parallelized across multiple cores.

Missing phenotype data. When analyzing multiple traits together 
with different missing data patterns, we use mean imputation of 
missing phenotype values in Step 1 but keep only samples with 
non-missing phenotypes in Step 2. This approach gave almost 
identical results to an exact approach that uses only samples  
with non-missing phenotypes in both Step 1 and Step 2 
(Supplementary Figs. 16–18).

Simulation studies. Through simulations, we investigated the Type 
1 error and power of the tests in REGENIE, BOLT-LMM, fastGWA, 
SAIGE and simple linear/logistic regression with the top principal 
component as a covariate (PCA). We also assessed the LOCO scheme 
used in REGENIE and the accuracy of the effect-size estimates from 
REGENIE–Firth and SAIGE. We used real genetic array data from 
the UK Biobank to simulate realistic genetic LD patterns and popu-
lation structure. We sampled 100,000 individuals from either the 
white British or the full European ancestry set of the UK Biobank 
and selected one of the following: (1) only unrelated individuals, (2) 
individuals at random or (3) half of the samples from the related 
individuals and the remaining half from the unrelated individuals. 
To consider scenarios of more extreme relatedness, we sampled only 
first-degree relatives (N = 22,990), first- and second-degree relatives 
(N = 30,775) or first- to third-degree relatives (N = 70,684) in the set 
of white British participants. More details can be found in the ‘Data 
simulation’ section of Methods.

We used genomic inflation (λGC) and empirical Type 1-error 
rate (defined as the proportion of null tests with a P value less than 
a nominal level α) to assess the calibration of the tests across 100 
simulation replicates. For the quantitative traits, the PCA method 
was well calibrated when the sample consisted only of unrelated 
individuals but became inflated with increasing levels of relat-
edness (Extended Data Fig. 5 and Supplementary Tables 8,9). 
However, REGENIE, BOLT-LMM with a mixture of Gaussian’s 
model (BOLT-LMM-MoG), the BOLT-LMM infinitesimal model 
(BOLT-LMM-Inf) and fastGWA retained good Type 1-error 
control in all of the settings considered. REGENIE had slightly  
deflated type I error rates when half of the samples were related. 
This was also observed in more extreme relatedness scenarios, 
where the use of the Step 1 predictions in REGENIE led to good 
calibration of the test unlike the PCA method, which was inflated 
(Supplementary Table 10).

For binary traits with low case–control imbalance, REGENIE–
Firth, REGENIE–SPA, BOLT-LMM-MoG, BOLT-LMM-Inf and 
fastGWA had good control of the Type 1 error with the more com-
mon variants tested (Extended Data Fig. 6, Supplementary Fig. 19d 
and Supplementary Tables 11,12), and SAIGE had slightly deflated 
Type 1 error rates. BOLT-LMM-MoG, BOLT-LMM-Inf and fast-
GWA were inflated for more unbalanced traits and this was worse 
for rarer variants (Supplementary Fig. 19). However, REGENIE–
Firth, REGENIE–SPA and SAIGE were robust against this inflation 
and for extremely unbalanced traits; REGENIE–SPA was conser-
vative with rarer variants. In more extreme relatedness scenarios, 
the PCA method became inflated with higher heritability levels but 
REGENIE–Firth and REGENIE–SPA retained good control of the 
Type 1 error, although they became conservative for more heritable 
traits (Supplementary Table 13).

To quantify power, we used the mean χ2 test statistic at causal 
SNPs. For quantitative traits, REGENIE and BOLT-LMM-Inf had 

similar power performance, which was higher than for fastGWA 
across all settings (Supplementary Fig. 20 and Supplementary 
Table 14). BOLT-LMM-MoG had the highest power perfor-
mance with fewer causal SNPs, and the power difference with 
REGENIE decreased as the number of causal SNPs increased. 
BOLT-LMM-MoG uses a more flexible mixture of Gaussian’s prior, 
which may model traits with highly non-infinitesimal genetic archi-
tectures better. For binary traits, we compared REGENIE–Firth, 
REGENIE–SPA and SAIGE, which were all well calibrated. With 
low case–control imbalance, REGENIE–Firth and REGENIE–SPA 
had slightly higher power than SAIGE and for more unbalanced 
traits, REGENIE–Firth and SAIGE had similar power performance 
and REGENIE–SPA had slightly lower performance at rarer vari-
ants (Supplementary Fig. 21 and Supplementary Table 15).

We further investigated the accuracy of the effect sizes from 
REGENIE–Firth and SAIGE. They were similar for moderately 
unbalanced traits but as the case–control imbalance increased, 
the estimates from SAIGE became highly inflated (Extended Data 
Fig. 7). Finally, when comparing the approximate LOCO scheme 
in REGENIE to an exact LOCO scheme, we found that they gave 
similar results, both for the genetic predictions in Step 1 (squared 
sample correlation coefficient (R2) = 0.99932 for quantitative 
traits and R2 = 0.98710 for binary traits) and the P values in Step 2 
(Supplementary Fig. 22).

We assessed the single-trait performance of REGENIE, 
BOLT-LMM and SAIGE and found that REGENIE takes 
approximately 3× less CPU time than BOLT-LMM for quantita-
tive traits and >8× less CPU time than SAIGE for binary traits 
(Supplementary Table 16). With five traits, the computational effi-
ciency of REGENIE improved—it took approximately 10× less CPU 
time than BOLT-LMM and >22× less CPU time than SAIGE. More 
generally, we observed that Step 1 of REGENIE scales sub-linearly 
with the number of traits and the scaling gets closer to linear when 
the number of traits become large (Extended Data Fig. 8).

Inter-chromosomal LD in the UK Biobank. While develop-
ing REGENIE, we and others20 identified an anomaly in the UK  
Biobank array genotypes that leads to reduced performance of 
some of the LMMs being tested. We observed a sizeable number of 
SNP pairs that exhibited inter-chromosome LD, which breaks the 
assumptions of the LOCO scheme and can result in loss of power 
when any one of the SNPs in a pair is associated with a trait (see 
Supplementary Note).

Discussion
In this study we present a machine-learning method that imple-
ments simultaneous whole-genome-wide regression of multiple 
quantitative or binary traits. The method uses a strategy that splits 
computation into blocks of consecutive SNPs and does not require 
loading of a genome-wide set of SNPs into memory. This approach 
also facilitates the analysis of multiple traits in parallel. Overall, this 
results in substantial computational savings in terms of both CPU 
time and memory usage compared with existing methods such as 
BOLT-LMM, fastGWA and SAIGE. As the number of large-scale 
cohorts with deep phenotyping grows, this approach will probably 
become even more relevant. The parallel nature of the approach is 
ideally suited to distributed environments such as Apache Spark. We 
have developed a first version of REGENIE for quantitative traits 
within the Glow project as well as the full version of the method for 
quantitative and binary traits in a standalone C++ program with 
source code that is openly available.

Analysis of large cohorts for which phenotypes are derived from 
electronic health records often results in many binary traits with 
substantial case–control imbalance. REGENIE is applicable to 
binary traits and we have proposed an approximate Firth regres-
sion approach, which we show is almost identical to an exact Firth 
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regression implementation, and much faster. This approach has the 
added benefit that it avoids the parameter estimate inflation that 
occurs when SAIGE is used to analyze ultra-rare variants.

Like many existing mixed-model-based approaches, REGENIE is 
well able to handle relatedness in the sample, although it can become 
conservative in more extreme cases and hence, we recommend that 
it not be used for smaller cohorts with high levels of relatedness—
such as founder populations, where exact mixed-model methods 
can be used. As previous methods have proposed to address this 
issue13,18,21, we plan to explore extending REGENIE to compute and 
incorporate a calibration factor in its association testing step.

The approach used in REGENIE is inspired by, but not the 
same as, the machine-learning approach of stacked regressions22. 
REGENIE uses ridge regression to combine a set of correlated pre-
dictors, whereas Breiman’s stacking approach used non-negative 
least squares to combine a set of highly correlated predictions in an 
ensemble learning approach. We have not yet investigated whether 
non-negative least squares might have advantages here. Furthermore, 
our simulations with traits that have a sparser genetic architecture 
also highlight the potential improvement of the REGENIE method 
by using more flexible priors on the effect size of predictors, as is 
done in BOLT-LMM with a mixture of Gaussian’s prior.

There are many other potential avenues for development of this 
approach. It will be easy to expand the functionality to include 
tests such as SNP × covariate interactions16, variance tests23 and a 
whole range of gene-based tests24–26. Multivariate probit regression 
for binary traits27, multivariate linear regression for quantitative 
traits28 and multi-trait burden tests29 will all be straightforward to 
implement.

We also plan to investigate whether REGENIE can be extended 
to handle time-to-event data30 and multinomial regression in a 
mixed-model framework31,32. We suspect it may also be possible to 
leverage the REGENIE output to estimate SNP heritability, poly-
genic scores and multi-trait missing data imputation using mixed 
models on a scale that is not possible using the existing approaches33.

One novel application would be to use REGENIE to analyze 
cohorts that have undergone both RNA-sequencing and either 
whole-genome SNP genotyping or sequencing. In this setting, the 
expression levels of up to 20,000 genes would represent the multiple 
traits of interest, and running a whole-genome regression analysis 
would allow for joint inference of cis and trans expression quantita-
tive trait loci in a single analysis. This would be equivalent to an 
LMM analysis of an RNA-sequencing study, which has been per-
formed in previous studies34,35.

Cohorts will continue to grow in terms of sample size, the num-
ber of phenotypes and the number of variants available for testing, 
either via imputation from whole-genome-sequenced reference 
panels or via direct whole-genome sequencing of the study samples. 
It seems clear to us that Step 1 of the whole-genome regression para-
digm is now highly computationally tractable using the REGENIE 
approach. However, further advances will be needed to reduce the 
compute time in Step 2, as whole-genome sequencing produces 
ever-increasing numbers of rare variants. Efficient utilization of the 
sparsity of such variants will help to improve memory efficiency and 
substantially reduce the cost of computation.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-021-00870-7.
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Methods
Whole-genome linear regression. In a sample of N individuals, y denotes the 
N-element phenotype vector, G represents the N × M genotype matrix, where 
Gij ∈ {0, 1, 2} is the allele count for individual i at the jth marker and X represents 
the N × C matrix of covariates (including an intercept), which is assumed to be full 
rank. We consider a whole-genome regression model

y = Xα + GSβ + ε (1)

where α are the fixed covariate effects, GS is a standardized version of G, the 
genotypes have been transformed to have a mean of zero and variance of one, 
β ~ MVN(0, σ2

gIM) and ε ~ MVN(0, σ2
eIN), where MVN denotes the multivariate 

normal distribution. This is the standard infinitesimal model, which can also be 
re-written as

y = Xα + g + ε (2)

with g ~ MVN(0, σ2
aK), where K = GSGT

S /M  is usually referred to as a 
genetic-relatedness matrix or empirical kinship matrix and σ2

a = Mσ2
g  is the 

additive polygenic variance.
Covariate effects are removed from both the trait and the genotypes in 

equation (1) by first computing an orthonormal basis for the covariates, projecting 
the genotypes and the trait onto that basis and then subtracting out the resulting 
vectors to obtain the residuals. This is equivalent to using a projection matrix 
PX = IN − X(XTX)−1XT with

ỹ = PXy (3)

˜G = PXGS (4)

Both the genotype and phenotype residuals are then scaled to have a variance 
of one.

Stacked block ridge regression. Fitting equation (1) is computationally intensive 
given that G typically has many hundreds of thousands of columns. Instead, for 
Step 1, we transform the model to

ỹ = Wη + ε (5)

where W is a matrix derived from G with substantially fewer columns.  
Specifically, we divide G into blocks of B consecutive and non-overlapping  
SNPs, and from each block we derive a small set of predictors using ridge 
regression across a range of J shrinkage parameters (see Supplementary Note).  
The idea behind using a range of shrinkage values is to capture the unknown 
number and size of truly associated genetic markers within each window.  
This approach is equivalent to placing a Gaussian prior on the effect sizes  
of the SNPs in the block and finding the maximum a posteriori estimate  
of the effect sizes and the resulting prediction. Another approach would  
be to integrate out the effect sizes over the Gaussian prior to obtain the best  
linear unbiased prediction36 but we have not investigated that approach  
in this paper.

The ridge predictors are re-scaled to have unit variance and are stored in 
place of the genetic markers in matrix W, providing a large reduction in data size. 
If M = 500,000, B = 1,000 and J = 5 are used, then the reduced dataset will have 
JM / B = 2,500 predictors. We refer to this part of the method as the Level 0  
ridge regression.

To keep the memory usage low when analyzing multiple traits, the 
within-block predictions are stored on disk and read separately for each trait when 
fitting models at Level 1 (see below). The added input/output operations incur a 
small cost on the overall runtime and substantially decrease the amount of  
memory needed.

The ridge regression takes account of the LD within each block but not 
between blocks. One option that we have considered, but not implemented yet, is 
to condition the ridge regression on the estimates from the previous block, which 
may better account for LD across block boundaries.

The predictors in W will all be positively correlated with the phenotype.  
Thus, it is important to account for that correlation when building a 
whole-genome-wide regression model. The predictors will also be correlated  
with each other, especially within each block, but also between blocks that  
are close together due to LD. We use a second level of ridge regression  
on W for a range of shrinkage parameters and choose a single best value  
using the K-fold CV scheme22. This assesses the predictive performance  
of the model using held-out sets of data and aims to control any over-fitting 
induced by using the first level of ridge regression to derive the predictors  
(see Supplementary Note). We refer to this part of the method as the Level 1  
ridge regression.

The result of this model fit is a single N × 1 predicted phenotype ŷ∗, and this 
can be partitioned into 22 LOCO predictions (denoted ŷ∗LOCO), which are used 
when testing SNPs for association in Step 2 to avoid proximal contamination  
(see Supplementary Note).

Association testing. When testing for association of the phenotype with a variant g 
in Step 2, we consider a simple linear model

ŷ∗resid,LOCO = g̃β + ε̃ (6)

where ŷ∗resid,LOCO = ỹ − ŷ∗LOCO refers to the phenotype residuals where the 
polygenic effects estimated from the null model with LOCO have been removed, 
g̃ = PXg are residuals obtained from removing the covariate effects from the tested 
variant and ε̃ = PXε with ε ~ MVN(0, σe

2IN).
A score test statistic for H0: β = 0 is

Tlinear =
g̃Tŷ∗resid,LOCO
[σ̂2

e · g̃Tg̃]1/2
(7)

where we use σ̂2
e = ||ŷ∗resid,LOCO||22/(N − C). In equation (7), when estimating the 

variance of the numerator, we assume that the polygenic effects are given, which 
leads to the denominator involving only O(N) computation. While other methods 
make use of a calibration factor in the denominator to account for the variance of 
the polygenic effects13,18,21, we found in applications that the results obtained using 
this simple form match up closely to those using a calibration factor. Finally, we use 
a normal approximation, T2

linear ∼ χ2
1, to estimate the P value. As with Step 1 above, 

the REGENIE software reads the genetic data file in blocks of B SNPs and these are 
processed together, taking advantage of parallel linear algebra routines in the Eigen 
library.

Multiple traits. Both Step 1 and Step 2 above are easily extended so that multiple 
phenotypes can be processed in parallel. The genetic data files in both steps can be 
read once, in blocks of B SNPs, which means the method uses a small amount of 
memory. In addition, the linear algebra operations for the covariate residualization, 
ridge regression and association testing can be shared across traits. This is similar 
to the approach implemented in the BGENIE software for single SNP linear 
regression analysis17. The fine details of the multiple phenotype approach are given 
in the Supplementary Note.

Binary traits. For binary traits, we use exactly the same Level 0 ridge regression 
approach, which effectively treats the trait as if it were quantitative. However, at 
Level 1, instead of a linear regression in equation (5) we use logistic regression

logit (pi) = XT
i α + WT

i η (8)

where pi = E(yi) = P(yi = 1) with yi indicating the case status of the ith individual, Xi 
is the covariate vector for the ith individual, α are the fixed covariate effects, Wi are 
the within-block (BR) predictions for the ith individual and η = (η1,…, ηBR)T, with 
ηi ~ N(0, 1/ω). This model corresponds to logistic regression with ridge penalty 
applied to the effects of within-block predictions in W.We approximate the model 
in equation (8) by first fitting a null model for each trait that only has

logit (pi) = XT
i α (9)

covariate effects and then using the resulting estimated effects as an offset in the 
model in equation (8),

logit (pi) = XT
i α̂ + WT

i η (10)

where α̂ represents the effects estimated in equation (9). As the covariate effects 
are not expected to change substantially (unless correlation between covariates and 
block predictions are very large), this approximation is expected to work well in 
most analyses.

As with quantitative traits, we used K-fold CV to choose the Level 1 
ridge regression parameter. However, for extremely unbalanced traits, it may 
happen that one of the folds contains no cases. To avoid this situation, we also 
implemented an efficient version of LOOCV. Although at first sight it may seem 
that LOOCV is more computationally intensive than K-fold CV given that the 
model has to be fitted N times (rather than K times) on data with N − 1 samples, 
the leave-one-out estimates can actually be obtained (approximately for binary 
traits) from rank 1 updates to the results from fitting the model once to the 
full data (see Supplementary Note). In practice we have found that LOOCV 
gives similar association results to K-fold CV (Supplementary Figs. 14 and 15) 
and can be computationally faster in some cases (see Tables 1 and 2). A LOCO 
scheme is applied to the polygenic effect estimates and the resulting predictions 
ŵLOCO = WLOCO η̂LOCO are then stored.

In Step 2, we use a logistic regression model score test to test for association 
between each marker and binary trait. Covariate effect sizes are estimated along 
with genetic marker effect sizes but we include the LOCO predictions from Step 1 
as a fixed offset (see Supplementary Note).

When rare variants are tested for association with a highly unbalanced 
trait (that is, a trait that has low sample prevalence), the use of asymptotic test 
statistic distributions does not work well and results in elevated Type 1 error 
rates. REGENIE implements several methods to handle this situation. First, it 
includes the SPA test37, which is also included in SAIGE18. This approach better 
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approximates the null distribution of the test statistic but we have found that it can 
sometimes fail to produce good estimates of SNP effect sizes and standard errors, 
which are highly desirable for meta-analysis applications (Supplementary Table 4 
and Supplementary Fig. 2).

Second, we use Firth logistic regression, which uses a penalized likelihood to 
remove much of the bias from the maximum-likelihood estimates in the logistic 
regression model. This approach results in well-calibrated Type 1 errors and 
usable SNP effect sizes and standard errors. Given that the use of Firth regression 
can be relatively computationally intensive, we have developed an approximate 
Firth regression approach that is much faster (Supplementary Table 5), which 
involves estimating the covariate effects in a null Firth regression model and then 
including covariate effects along with the LOCO genetic predictor as offset terms 
in a Firth logistic regression test (see Supplementary Note). In practice, we have 
found this approximation to give very similar results to when the exact Firth test 
is used (Supplementary Fig. 3). This approach has been used to analyze COVID-
19 outcomes across four studies and four ancestries38, and proved vital to provide 
accurate effect-size estimates for the meta-analysis.

Handling missing data. As a key goal of our approach is to analyze multiple traits 
all at once, one issue that remains to be addressed is the presence of ‘missingness’ 
in the data, which could differ among the traits. We consider different approaches 
based on the nature of the trait as well as whether the null model is being fitted or 
whether association testing is being performed.

For quantitative traits, when fitting the null model missing data is addressed 
by replacing the missing values by the sample averages for each trait and in the 
association testing step, individuals with missing phenotype observations are 
removed from the analysis for each trait. The latter is done by ensuring that 
when taking sums over individuals, those with a missing phenotype have a 
zero contribution to the sum. This is similar to the approach implemented in 
the BGENIE software (https://jmarchini.org/BGENIE/) for single SNP linear 
regression analysis17. We assume that covariates are fairly well-balanced in the 
sample and project them out of the phenotypes using all of the samples (that is, 
ignoring the missingness within each trait). In the case where phenotypes have 
the same or very similar patterns of missingness, or if only a single phenotype is 
being analyzed, it may be more logical to discard the missing observations rather 
than impute them with the sample averages per trait. Hence, we implement an 
alternative approach where, in both the null-fitting and the association testing 
steps, all samples with missingness at any of the P phenotypes are dropped. 
An approach we have not yet implemented, but may produce better results for 
quantitative traits, would involve using a multivariate normal model to jointly 
model correlation between the set of traits and impute missing data, either before 
or conditional on the output of Step 1.

For binary traits, we use the mean-imputed phenotypes to fit the Level 0 
linear ridge regression models within blocks but discard missing observations 
when fitting Level 1 logistic ridge regressions. As the logistic ridge regressions 
are fitted separately for each trait, this makes it straightforward to account for 
the missingness patterns separately for each trait. Similarly, in the testing step, we 
discard missing observations when fitting logistic regression for each trait as well 
as when using Firth or SPA corrections.

UK Biobank dataset. The UK Biobank17 (http://www.ukbiobank.ac.uk) is a large 
prospective study of about 500,000 individuals who are 40–69 years old and 
for whom extensive phenotype information is being recorded. Genotyping was 
performed using the Affymetrix UK BiLEVE Axiom array on an initial set of 
50,000 participants and the Affymetrix UK Biobank Axiom array was used for 
the remaining participants. Up to 11,914,699 variants imputed by the Haplotype 
Reference Consortium panel that either have a minor allele frequency above 0.5% 
or a minor allele count above five and are annotated as functional in 462,428 
samples of European ancestry were used in the data analyses. We selected up to 
407,746 individuals of white British ancestry for whom genotype and imputed 
data were available and applied quality-control filters on the genotype data using 
PLINK2 (ref. 39; version v2.00aLM, https://www.cog-genomics.org/plink2) that 
included: a minor allele frequency of ≥1%, a Hardy–Weinberg equilibrium test not 
exceeding P = 1 × 10−15, a genotyping rate above 99%, not present in low-complexity 
regions, not involved in inter-chromosomal LD and LD pruning using a R2 
threshold of 0.9 with a window size of 1,000 markers and a step size of 100 markers. 
This resulted in up to 471,762 genotyped SNPs that were kept in the analyses.

Data simulation. We performed simulations to assess the performance of the 
tests in REGENIE under various population-structure configurations for both 
quantitative and binary traits. To mimic realistic scenarios, we used genotype array 
data from the UK Biobank European samples (679,209 array SNPs with a minor 
allele count > 5). We considered scenarios with 100,000 samples obtained from the 
set of white British participants or from the full European set so as to incorporate 
various amounts of population structure. In addition, we varied the proportion 
of related individuals selected from 0 to 50% of the sample, where we defined a 
pair of individuals as related if their estimated kinship coefficient, provided by 
UK Biobank using KING40, was above 0.044. This is to assess how REGENIE 
would perform in samples with higher amounts of relatedness. We also considered 

randomly selected samples from the white British or European set, irrespective of 
the relatedness information, where about 30% of samples in these sets are related 
up to the third degree. Finally, to consider scenarios of more extreme relatedness, 
we considered scenarios with samples consisting of only first-degree white British 
relatives (N = 22,990), first- and second-degree white British relatives (N = 30,775), 
and first- to third-degree white British relatives (N = 70,684).

We generated quantitative traits as

Yi =

M∑

j=1
Gijβj + Aγ + εi

where the M causal SNPs were randomly selected only from odd chromosomes 
with a minor allele count above 100 and not involved in inter-chromosomal LD, 
and Gij represents the standardized genotype for individual i at the jth causal SNP, 
Ai represents the score of the individual for the top principal component from a 
genotype relatedness matrix using SNPs on odd chromosomes and εi represents 
the environmental effects. The effect sizes for the causal SNPs were sampled from 
a normal distribution with a mean of zero, where the variance was determined 
based on the desired proportion of trait variance explained by the causal SNPs h2g . 
The effect from population structure γ was set so that the proportion of the trait 
variance explained by the top principal component was 5%. The environmental 
effects were sampled from a normal distribution with a mean of zero and the 
variance was set to correspond to a trait variance of one.

For binary traits, we used the model described above to obtain a quantitative 
phenotype and then applied a threshold based on a target sample prevalence value 
K to dichotomize the phenotype and obtain a binary trait. We also considered 
simulations to assess the effect-size estimates using a logistic model where

logit (pi) = β0 +
M∑

j=1
Gijβj

and Yi|pi ~ Bernoulli(pi), independently, where β0 was chosen to achieve the desired 
prevalence level, and the effect sizes of the causal SNPs were sampled from a 
normal distribution with a mean of zero and the variance parameter was chosen so 
that they explain 20% of the variance on the logistic scale.

We simulated up to 100 phenotypic replicates for each simulation setting and 
selected 10,000, 25,000 or 50,000 SNPs to be causal. For binary traits, we varied the 
sample prevalence K between 0.1, 0.01 or 0.001, corresponding to a case–control 
ratio of 1:9, 1:99 or 1:999, respectively, and fixed the number of causal SNPs 
to 10,000. SNPs on even chromosomes (Mnull = 324,838 variants) were used to 
assess the Type 1-error performance and the power was estimated using the set 
of causal SNPs for each trait. REGENIE was compared with BOLT-LMM with a 
mixture of Gaussian’s model (BOLT-LMM-MoG), BOLT-LMM with infinitesimal 
model (BOLT-LMM-inf), fastGWA, SAIGE (only for binary traits and run with 
LOCO scheme) and PCA (using only the top principal component as a covariate 
in Step 2 of REGENIE without the LOCO predictions from Step 1). The top 
principal component was included as a covariate for all methods. For REGENIE–
Firth, REGENIE–SPA and SAIGE, the P-value fallback threshold for Firth/SPA 
correction was set to 0.05.

Statistical analyses. We used REGENIE to perform genome-wide association 
analyses on up to approximately 11 million imputed variants for 50 quantitative 
traits and 54 binary traits of up to 407,746 white British participants in the 
UK Biobank. Quantitative phenotypes were converted to z-scores using 
rank-inverse-based normal transformation. In the statistical models used, the 
covariates included age, age2, sex, age × sex and the top-10 principal components 
provided by the UK Biobank to appropriately correct for population stratification. 
To assess the performance of REGENIE in genome-wide association studies, 
we compared the results from REGENIE with those of existing approaches 
for large-scale analysis, which included BOLT-LMM (version 2.3; https://data.
broadinstitute.org/alkesgroup/BOLT-LMM/) and fastGWA (GCTA version 
1.93.0beta; https://cnsgenomics.com/software/gcta/#Overview) for quantitative 
phenotypes and SAIGE (version 0.36.5.1; https://github.com/weizhouUMICH/
SAIGE) with the LOCO option for binary traits. For all methods, Step 1 was run on 
a set of array SNPs stored in bed/bim/fam format and Step 2 was run on imputed 
data stored in BGEN format. All association analyses used a χ2

df=1 statistic to 
test a variant for association with a trait (that is H0:βSNP = 0). All programs were 
called within R41, where we used the function system.time to track the CPU and 
wall-clock timings.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The individual-level genotype and phenotype data are available through formal 
application to the UK Biobank (http://www.ukbiobank.ac.uk). Results from the 
genome-wide association study analyses in this paper have been deposited in the 
GWAS Catalog under the accession numbers GCST90013862–GCST90014022.
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Code availability
The C++ source code for REGENIE is available from https://rgcgithub.github.io/
regenie/ under an MIT License. Analysis code for the main results in the paper can 
be found at https://github.com/rgcgithub/regenie/tree/master/scripts.
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Extended Data Fig. 1 | Overview of the REGENIE method. REGENIE consists of two steps: (1) In Step 1, the dimension of the genetic data is reduced using 
ridge regression applied to blocks of SNPs, and then the resulting predictors are combined using a second round of linear or logistic ridge regression to 
produce an overall prediction for each trait, split into 23 LOCO predictors. (2) In Step 2, these LOCO predictors are used when testing each phenotype 
against a set of either imputed, exome or CNV markers.
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Extended Data Fig. 2 | Scatterplots comparing three LMM methods for three quantitative traits using UK Biobank white British samples. Results from 
REGENIE, fastGWA and BOLT-LMM are compared for (a) LDL (N = 389, 189), (b) BMI (N = 407, 609) and (c) Bilirubin (N = 388, 303). 9.8 million imputed 
SNPs with minor allele frequency above 1% are tested for association with each trait. For each trait, the p-value for each variant was obtained using  
a χ2df=1 test statistic.
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Extended Data Fig. 3 | Scatterplots comparing results from different mixed model methods for 4 binary traits using UK Biobank white British samples. 
Results from REGENIE using Firth and SPA correction, BOLT-LMM and SAIGE are compared for (a) coronary artery disease (case–control ratio=1:11,  
N = 352,063), (b) glaucoma (case–control ratio=1:52, N = 406,927), (c) colorectal cancer (case- control ratio=1:97, N = 407,746), and (d) thyroid cancer 
(case–control ratio=1:660, N = 407,746). Tests were performed on 11.6 million imputed SNPs, and the plotting symbols represents variant categories 
based on using a minor allele frequency (MAF) threshold of 1%. For each trait, the p-value for each variant was obtained using a χ2df=1 test statistic.
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Extended Data Fig. 4 | Manhattan plots comparing association results for coronary artery disease using 337,484 unrelated white British participants 
from UK Biobank. For REGENIE, BOLT-LMM and SAIGE-noLOCO, 329,641 genotyped SNPs from chromosomes 1-22 are included as model SNPs in step 1, 
and for SAIGE-LOCO all SNPs from chromosome 9 are excluded which results in 314,309 SNPs. In step 2, 482,884 imputed SNPs on chromosome 9 are 
tested for association. The red dashed horizontal line represents the genome-wide significance level of 5 × 10−8.
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Extended Data Fig. 5 | Type 1 error performance on simulated quantitative traits with UK Biobank white British samples. (a) Distribution of λGC 
computed at null SNPs. (b) Distribution of empirical type 1 error rates at nominal level 0.05 computed at null SNPs. Each boxplot represents the 
distribution of the estimated quantity across 100 simulation replicates. Quantitative traits were simulated fixing h2g (the proportion of trait variance 
explained by causal SNPs) to 0.2 and the number of causal SNPs was varied from 10,000 to 50,000. The proportion of related individuals in the sample 
of size 100,000 was varied from 0% to 50% (including randomly selecting individuals from the white British set which includes about 30% related 
individuals). Each box indicates the interquartile range (IQR) and the line inside each box is the median value, the whiskers indicate data up to 1.5 times 
the IQR, and outliers are indicated by individual dots.
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Extended Data Fig. 6 | Type 1 error performance on simulated binary traits with UK Biobank white British samples. Each boxplot represents the 
distribution of empirical type 1 error rates at nominal level 5 × 10−4 across 100 simulation replicates. Each type 1 error rate was evaluated at 324,838 null 
SNPs using a minor allele frequency filter of 1%. Binary traits were simulated fixing h2g (the proportion of variance on liability scale explained by 10,000 
causal SNPs) to 0.2 and the case–control ratio was varied from 1:999 to 1:9. With a total sample size of 100,000, the proportion of related individuals was 
also varied from 0% to 50% (including randomly selecting individuals from the white British set which includes about 30% related individuals). Each box 
indicates the interquartile range (IQR) and the line inside each box is the median value, the whiskers indicate data up to 1.5 times the IQR, and outliers are 
indicated by individual dots.
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Extended Data Fig. 7 | Effect size estimates for REGENIE-FIRTH and SAIGE on simulated binary traits with 100,000 UK Biobank white British samples. 
REGENIE-FIRTH and SAIGE were run on 10 simulated binary trait replicates with case–control ratio varied between 1:9 and 1:999. A logistic model was 
used to simulate the traits randomly selecting 10,000 SNPs on odd chromosomes with minor allele count (MAC) above 100 to be causal. The effect size 
estimates β̂ are compared to the true effect sizes β for (a) causal SNPs or (b) the null SNPs on even chromosomes. Summary statistics were obtained for 
variants with minor allele count greater than 5, p-values in REGENIE-FIRTH and SAIGE below 0.05 (fallback p-value threshold for Firth/SPA correction, 
respectively), and not involved in inter-chromosomal LD.
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Extended Data Fig. 8 | Computation time of REGENIE as the number of quantitative traits analyzed increases. 100,000 samples were used in a single 
run of REGENIE with 1, 10, 100 or 500 simulated quantitative trait (QT) or binary trait (BT) replicates. All axes are on log10 scale. The slope of the dotted 
lines represents the power law scaling with the number of traits P.
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