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WGS harbors advantages for medical diagnosis1,2, espe-
cially in a critical care setting, but pipelines for sequenc-
ing and downstream analysis have typically been slow3,4. 

One approach based on short-read sequencing initially reported a 
time for diagnosis of 56 h5. By reducing the compute time for this 
same sequencing approach, we reported a pipeline capable of mak-
ing a diagnosis in 48 h6. In 2019, it was reported that developments to 
this pipeline returned results in as little as 19:10 h (19:10–31:02 h)7. 
In 2021, one case was reported at a turnaround time of 14:33 h8.

With recent advances, nanopore sequencing has emerged as a 
high-throughput, high-fidelity sequencing platform9,10. We specu-
lated that, with a capacity for 48 flow cells, the PromethION platform 
(Oxford Nanopore Technologies) would have the ability to sequence 
a single sample to a clinical quality depth in 2 h. Furthermore, we 
hypothesized that alignment, variant calling and variant filtration 
could be started in real time and completed within hours. However, 
several technical challenges were immediately apparent in realiz-
ing this vision. First, conventional sample preparation protocols do 
not account for the generation of sequencing libraries sufficient for 
the rapid clinical use case from a limited volume of blood, some-
thing particularly relevant when samples are derived from critically 
ill neonates. Second, although complete reads can be streamed off 
the nanopore sequencing device in real time and within minutes 
of starting a run, with 48 flow cells running in parallel, the rate of 
data production far outpaces the highest rate of base calling and 
alignment possible on the local PromethION compute tower (Data 
Acquisition Unit accompanying the Sequencing Unit). This leads 
to a high compute latency, where the base calling and alignment 

runtime are an order of magnitude higher than the sequencing 
time. Third, although small-variant, nanopore-calling pipelines 
have been shown to harbor high accuracy in gold-standard cell-line 
data11, their performance has not yet been characterized in clinical  
samples. Finally, traditional variant filtration and prioritization 
methods result in a high number (~100) of variant candidates that 
can be time prohibitive for the manual curation and confirmation 
required in a clinical setting.

In the present study, we address these challenges developing a 
whole-genome nanopore-sequencing pipeline with improvements 
in library preparation, a cloud-based module to perform near 
real-time base calling and alignment, accelerated variant calling 
(single nucleotide polymorphisms (SNPs), insertions and deletions 
(indels) and structural variants (SVs)) and focused variant filter-
ing. We demonstrate the characteristics of this pipeline using the 
Genome In A Bottle (GIAB) HG002 sample12. Finally, we apply  
the pipeline to the diagnosis of a critically ill 57-year-old man and  
a 14-month-old infant, surfacing in both cases a candidate variant 
in <8 h after the blood draw, representing a 46–50% improvement 
on the fastest reported time (sample preparation to variant identi-
fication) to date8.

Results
Ultra-rapid, whole-genome, nanopore-sequencing pipeline. 
First, we adapted the standard sample preparation protocols to allow 
for a sufficient quantity of sample library to be distributed across 
48 flow cells. To accommodate neonates and infants, we needed a 
DNA-extraction protocol to yield sufficient high-quality genomic 
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DNA from a limited volume of blood. We tested multiple methods 
(Supplementary Table 1) and found an approach capable of isolating 
high-molecular-mass DNA with an average fragment size >60 kb, mea-
sured with electrophoresis (Tapestation, Agilent Technologies Inc.),  
a minimum of 36 μg of genomic DNA measured by fluorometry 
(Qubit, Invitrogen/Themo Fisher Scientific) and sample purity 
with an average of 1.70 measured by the 260-/280-nm ratio spec-
trophotometer (Nanodrop, Thermo Fisher Scientific) from 1.6 ml 
of blood in 50 min (PureGene, QIAGEN). Preparing a sequencing 
library for each of the 48 flow cells was not only time prohibitive, 
but would also require a total of 48 μg (1 μg per reaction) of start-
ing DNA. Instead, we investigated whether we could exceed the  
recommended amount of input DNA per reaction while scaling 
down the number of library reactions. We found that increasing the 
input DNA to 4 μg per reaction, and preparing eight reactions in 
parallel, results in an optimal library yield of 16 μg, allowing for up 
to 333 ng of library to be loaded per flow cell.

To reduce per-sample cost, we re-used a set of 48 flow cells for 
multiple samples. To re-use the flow cells for consecutive samples, 
we removed the DNA library after each sequencing run with a stan-
dard nuclease wash as described in Online Methods. One approach 

to further minimize carryover from a previous library involves pre-
paring each library with unique nucleotide sequences (barcodes) 
ligated to the genomic DNA. However, we observed that barcoding 
adds time and reduces the amount of DNA available to load per flow 
cell, due to an additional library cleanup needed for the barcoding 
protocol. Hence, we investigated whether barcoding was necessary 
for robustness in the pipeline. To assess the effect of barcoding on 
downstream variant calling performance, we measured carryover 
rates between samples, finding a maximum rate of 0.4% (Online 
Methods). We then modeled carryover at a higher rate by randomly 
introducing 1% HG005 reads to an HG002 sample (Supplementary 
Notes). We compared the variant call performance between the arti-
ficial sample with carryover and a pure sample, and found that there 
were no notable differences (Supplementary Table 2). These data 
suggest that at least 1% carryover is tolerated in our variant calling 
pipeline. For further validation, we sequenced the NIST reference 
material HG002 genome from the Personal Genome Project13, with 
and without barcoding on flow cells that had previously sequenced 
six different samples, each with similar throughput (Supplementary 
Table 3). The nonbarcoded VCF was generated incorporating all 
passed reads (strand q score ≥7), whereas the barcoded VCF was 
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Fig. 1 | Overview of ultra-rapid computational pipeline. a, After the start of sequencing on the PromethION48 device, raw signal files are periodically 
uploaded to cloud storage. Our cloud-based pipeline scales compute-intensive base calling and alignment across 16 instances with 4× Tesla V100 
GPUs each and runs concurrently with sequencing. The instances aim for maximum resource utilization, where base calling using Guppy runs on GPU 
and alignment using Minimap2 (ref. 17) runs on 42 virtual CPUs in parallel. b, Once the alignment file is ready, small-variant calling performed using 
GPU-accelerated PEPPER–Margin–DeepVariant11 on 14 instances and SV calling using Sniffles18 on 2 instances. Each instance processes a specific set of 
contigs. Specific details about the Google Cloud Platform-based instance configurations are provided in Supplementary Table 21. c, These variant calls 
are annotated to aid in the subsequent variant filtration and prioritization. Our score-based variant filtration method takes in millions of variants reported 
by the variant caller to surface any deleterious variant for review using Alissa. The filtration method is designed such that it reports a tractable number of 
variants for manual curation.
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generated using only passed reads with the appropriate barcode. We 
then investigated whether the carryover in the nonbarcoded samples 
impacted variant calling by comparing variant call performance of 
each sample against NIST GIAB HG002 small-variant benchmark-
ing data14. Figure 2a illustrates that HG002 variant calling perfor-
mance with and without barcoding is similar (barcoded F1 score: 
0.9974 SNP, 0.7396 indels; nonbarcoded F1 score: 0.9974 SNP, 
0.7322 indels). Moreover, variant calling performance in stratified 
regions such as exons and complex regions of the genome is similar 
between barcoded and nonbarcoded data (Fig. 2a, Supplementary 
Fig. 1 and Supplementary Table 4). Similarly robust outcomes were 
observed in the barcoded and nonbarcoded SV calls when com-
pared against the GIAB HG002 benchmarked SV data15 (barcoded 
F1 score: 0.915; nonbarcoded F1 score: 0.910; Supplementary Fig. 2).  
Based on these data, we elected to continue without barcoding. This 
resulted in a 37-min reduction in total library preparation time and 
improved downstream sequencing efficiency16.

Next, we addressed the limitation of the local compute tower 
with respect to real-time base calling and alignment. When running 
48 flow cells and high-accuracy base calling models, the compute 
tower performs base calling and alignment at a slower rate than the 
maximum sequence data generation rate of 1.8 Gb min−1 (ref. 16). 
We established a baseline for running base calling (Guppy v.4.2.2) 
and alignment (Minimap2 v.2.17 (ref. 17)) sequentially on the local 
tower using the 218-Gb dataset generated from the earlier nonbar-
coded HG002 sample. In this test, base calling ran for 17.5 h and 
alignment was completed in another 2.5 h. With a theoretical maxi-
mum throughput of 2.5 Gb min−1 across 48 flow cells, sequencing 
would run for 1.5 h and running base calling and alignment con-
currently with sequencing would still leave us with a substantial 

18.5-h overhead time (we define overhead time as the runtime for 
base calling and alignment after sequencing has been completed). 
To address this issue, we developed a cloud compute infrastruc-
ture (specifically, using Google Cloud Platform in our study) and 
parallelized base calling and alignment across multiple graphics 
processing unit (GPU) instances (each with four NVIDIA V100 
GPUs). Although this configuration created an additional network 
memory bandwidth-intensive step of transferring terabytes of raw 
signal data from the tower to cloud storage, we solved this bottle-
neck by using improved fast5 (raw signal file type) file compression 
(VBZ), adjusting the number of reads per fast5 file and shifting to 
a timed periodic upload model. The upload management is coor-
dinated with distribution of the raw data to 16 compute instances 
(Fig. 1a), each running Guppy and Minimap2 for a specific set of 
three flow cells per instance. Using this approach, we were able 
to achieve near real-time base calling and alignment at scale. We 
ran a simulation where all the fast5 files from the HG002 sample 
were randomly distributed into 48 subsets, each representing the 
throughput from a distinct flow cell. To simulate a throughput rate 
as high as 2.5 Gb min−1, the data from each subset were transferred 
at a uniform rate over a period of 90 min to a different output direc-
tory (consistent with the associated directory generated during 
every sequencing run). With 16 instances running in parallel, the 
base called and aligned output files were generated with an over-
head time of 25 min. In this way, base calling and alignment of  
a high-depth (200 Gb), long-read, whole human genome can be 
completed in near real time.

Next, we approached the acceleration of variant calling. We used 
PEPPER–Margin–DeepVariant11 to identify small-variants and 
Sniffles18 for SV calling. We scaled variant calling to several cloud 
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instances to achieve runtime acceleration. We used 14 instances 
with GPU for PEPPER–Margin–DeepVariant and 2 central  
processing unit (CPU)-only instances for Sniffles (Fig. 1b). Each 
small-variant calling instance processes a single contig or a pair of 
assigned contigs sequentially (Supplementary Table 5). To derive 
the contig distribution, we first profiled the variant calling runtime 
for each contig with the HG002 sample (Supplementary Table 6). 
As PEPPER–Margin–DeepVariant uses long-range phasing infor-
mation during variant calling, we did not go below chromosome 
scale for parallelization. Similarly, we sped up Sniffles by running 
genomic sections in parallel (Supplementary Table 7) with a varying 

number of threads, resulting in a runtime of 29 min for the HG002 
sample. We balanced sensitivity to larger duplications and inver-
sions and interchromosomal translocation events in the choice of 
chromosome-level structural variant calling.

As a proof-of-concept, we demonstrated a further reduc-
tion of overall runtime from 40 min to 23 min by integrating the 
GPU-accelerated implementation of DeepVariant available with  
the NVIDIA Parabricks toolkit (https://www.nvidia.com/en-us/
clara/genomics) into the PEPPER–Margin–DeepVariant pipeline. It  
reduced the overall runtime from 40 min to 23 min (Supplementary 
Table 6). Although several previous studies have demonstrated  
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the performance of the nanopore-based variant calling to be com-
petitive against other methods14,19–21, we further improved the 
variant calling accuracy of our pipeline. The main error mode 
of nanopore sequencing is indels, especially in homopolymers. 
To improve the accuracy of indel calling and thereby reduce 
curation time, we modified the DeepVariant pile-up image to 
include a realignment of reads to the alternative allele of an indel  
event, a process first described for long-read sequencing  
for the Pacific Biosciences platform (https://ai.googleblog.com/2020/ 
09/improving-accuracy-of-genomic-analysis.html). This expands 
insertion sequences and improves generalization by making the 
alignment support for the alternative allele look similar to real 
events of either deletions or insertions. As a result, our indel F1 
score increased from 0.6999 to 0.7322 (Supplementary Fig. 3). 
Specifically, the total number of reported variants decreased by 3% 
(from 4,439,940 to 4,308,281), whereas we observed increased accu-
racy, thereby reducing the curation time required to assess potential 
variants (Supplementary Table 8).

Last, we annotated the variant calls (Fig. 1c) and developed 
a customized schema for variant filtration to accelerate manual 
review of variants. For each sample, we derived a patient-specific, 
phenotype-based target gene list in collaboration with treating  
clinicians. The small-variant vcf file was analyzed using Alissa 
Interpret (Agilent Technologies Inc.) and variants were filtered 
and prioritized for review using a customized classification tree. 
The customized classification tree is an adaptation of Stanford 
Clinical Genomics Program’s (GCP’s) clinically validated proband 
exome classification tree (Online Methods). This standard filtra-
tion scheme is designed for application to patients on a diagnos-
tic journey and provides a broad search that allows for phenotype 
expansion as well as limited gene–disease discovery. In the standard 
system, manual review is triggered when the variant meets any  
one of several possible criteria (or sets of criteria), including  
previous annotation, presence on a patient-specific gene list and 
potential biallelic inheritance or predicted deleterious impact 
(Supplementary Table 9). For application in the rapid setting, our 
goal was to readily surface clearly pathogenic, actionable variants 
in established disease genes. The same categories of criteria were 
applied as in the standard system, but, instead of acting as a trigger, 
each criterion was scored independently (Supplementary Table 10) 
and manual review was implemented only if the total score met our 
empirically derived threshold of ≥4. In addition, many criteria were 
evaluated under tighter constraints for the rapid system. For example,  
in the standard system, all rare biallelic variants were evaluated;  
in the rapid system biallelic variants received points only if those 
genes were associated with autosomal recessive disease in OMIM 
(Online Mendelian Inheritance in Man)22. In the case of the above 
HG002 sample, the prioritized variant count was reduced from 101 
in the standard system to 20 for the rapid approach (Supplementary 
Table 8).

Pipeline application and performance in a clinical setting. To 
illustrate the performance of this pipeline (Fig. 3a) in a real-world 
setting, we summarized the clinical presentation and the pipe-
line details for two cases. First, a 57-year-old man with a severe 
SARS-CoV-2 infection and comorbidities, including hyperthy-
roidism and hypertension, required a bilateral lung transplanta-
tion. Intraoperative transesophageal echocardiography revealed 
biventricular dysfunction with left ventricular hypertrophy and 
postoperative episodes of sinus bradycardia. A cardiac magnetic 
resonance image provided evidence of hypertrophic cardiomy-
opathy; however, the differential diagnosis was wide and included 
coronary artery disease, myocarditis, cardiac amyloid and cardiac 
sarcoid. Rapid molecular testing was requested to help clarify the 
diagnosis. In 6:55 h (Fig. 3b), variant calling resulted in 4,316,464 
small-variants (Supplementary Table 11) and 35,780 structural 

variants. In 7:18 h from the start of sample preparation, a diagnos-
tic heterozygous variant (approximately 341 C > T) was identified 
in the TNNT2 gene and classified as likely pathogenic according to 
the American College of Medical Genetics and Genomics (ACMG) 
guidelines23. The diagnosis further reduced the need for multiple 
follow-up imaging studies and cardiac biopsy.

Second, we identified a 14-month-old female infant with a his-
tory of dystonic/opisthotonic posturing and developmental delay, 
who was admitted to the pediatric intensive care unit at Stanford’s 
Lucile Packard Children’s Hospital after experiencing a cardiac 
arrest and respiratory failure. Brain magnetic resonance imaging 
revealed generalized ventricular prominence, a small pons and a 
thin corpus callosum. All other diagnostic testing was unremark-
able, suggesting the possibility of a genetic etiology. The sequenc-
ing time to generate 200 Gb was 2:46 h (1.2 Gb min−1, lower than 
our peak throughput rate of 1.8 Gb min−1). In 7 h (Fig. 3c) from the 
blood draw, 4,481,802 small-variant calls (Supplementary Table 11)  
and 36,423 SV calls were generated. The filtration method sur-
faced 31 small-variants and 21 SVs prioritized for manual review 
and, within the next 48 min, we identified a candidate variant of 
unknown significance (approximately 791 + 1 G > A) in LZTR1, a 
gene suspected of being involved in the stabilization of the Golgi 
complex. This variant was manually reviewed and ultimately any 
pathogenic contribution was determined to be unclear. No other 
prioritized variants were suspected to contribute to the patient’s 
clinical presentation. Orthogonal clinical genetic testing did not 
identify a genetic etiology. Family-based studies are ongoing to  
further characterize any potential contribution of this variant.

We separately examined the effectiveness of our filtration tree, 
comparing the numbers of variants marked for review by the stan-
dard system with those marked for review by the rapid system (Fig. 
2b) for patient 2. The standard system prioritized 147 variants for 
review. The rapid system scored 209 in total, but 178 variants had 
total scores of 1–3 and so did not meet the threshold for review. As 
noted above, a total of 31 variants were marked for review by our 
system, enabling rapid completion of the manual curation aspect of 
our pipeline (Supplementary Table 8).

Discussion
The need for rapid clinical diagnosis from WGS is pressing24,25. 
Although the standard turnaround time for clinical WGS is weeks, 
recent studies have reduced the turnaround times in neonatal popu-
lations to a range of 3–5 d26–28. In the present study, we developed 
a streamlined approach to nanopore WGS that provides accurate 
small and large variant calls faster than any previously reported clin-
ical WGS pipeline. The pipeline is capable of generating high-depth, 
human whole-genome data in <2 h and diagnostic variant calls in 
<8 h. This pipeline has been shown to be up to 50% faster than the 
previously reported fastest genome diagnosis made in 14:33 h8. 
Overall, this pipeline has been shown to be associated with a 42% 
diagnostic rate16.

Our approach to sequencing a single human genome across 48 
nanopore flow cells required the solving of several technical chal-
lenges. During sample preparation, we focused on maximizing DNA 
quality and length while limiting the preparation time, especially for 
small volumes of blood. Compute methods were adapted to reduce 
runtime by the use of massive parallelism in the cloud and GPU 
acceleration. Although our study used Google Cloud Platform, the 
pipeline can easily be adapted to run on other cloud platforms as 
well. Other optimizations in speed or accuracy create trade-offs. For 
example, the additional alignment of the alternative allele results in 
more accurate but slower variant calling, although it speeds vari-
ant prioritization by reducing the number of frameshift variants 
for inspection. Another example not explored in the present study  
is the use of more accurate, but slower, base calling software. As infra-
structure to scale computation unambiguously reduces runtime,  
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in theory it is possible to use greater parallelism to further mitigate 
trade-offs of runtime for accuracy in the analysis methods.

The nanopore-based method can generate high-quality variant  
calls outside low-complexity regions11,19 and within medically 
relevant genes20,29. It has also been shown that outside the GIAB 
high-confidence region, nanopore-based variant calls have high 
Mendelian consistency21. Previous studies also show that variant  
calling performance (F1 score) of nanopore in Gencode v.35- 
annotated coding sequences in the human genome is 0.998 for SNPs 
and 0.858 for indels compared with PacBio HiFi’s 0.999 for SNPs 
and 0.945 for indels11, and Illumina’s 0.994 for SNPs and 0.992 for 
indels (Supplementary Table 12). These stratified analyses suggest 
that nanopore can identify pathogenic variants in coding sequences 
with high accuracy. In addition, a variant calling performance analy-
sis using the Human Gene Mutation Database (HGMD)30 database 
(Online Methods) in Supplementary Table 13 shows that the nano-
pore pipeline has an SNP recall of 0.995, comparable to Illumina’s 
recall of 1.00. However, the nanopore pipeline has a lower indel recall 
of 0.68 compared with Illumina’s indel recall of 0.96. Nanopore-based 
methods are error prone in low-complexity regions with homo-
polymers, in particular indel variants in homopolymer regions. In 
extending this technology to medical-grade application, we designed 
a variant curation scheme that flags calls in homopolymer regions 
to lower their priority during the review process. Moreover, with 
the improvement in the nanopore technology such as R10.4 chem-
istry and more accurate base calling, we would expect substantial 
improvement in the nanopore indel performance in the near future.

One aspect of this pipeline is to use phase information to improve 
variant calling. The value, particularly for identifying false-positive 
calls, was readily apparent across the clinical cases on which this 
pipeline has subsequently been tested16. Gains are substantial, 
particularly for large and complex genes. A further advantage of 
nanopore sequencing is the ability to derive methylation informa-
tion directly from the raw signal. Although methylation changes as 
a cause of genetic disease are uncommonly recognized, literature 
reports31,32 are probably an underestimate of the overall incidence 
because technology to quantify genome-wide methylation has, to 
date, remained mostly in the research domain.

Variant databases such as gnomAD33 contain information about 
variant frequencies across large study populations. However, such 
databases were largely constructed using short-read sequencing 
technology and are therefore biased toward point variations and 
regions accessible to short-read mapping. As adoption of long-read 
technologies increases, these limitations will be reduced, speed-
ing prioritization by more comprehensively annotating common 
variants. In addition, trio approaches26 have known advantages in 
diagnostic sensitivity that have been well documented. Although 
we would expect trio sequencing to increase our yield, the yield 
currently presented (42%)16 is very much in line with the yield of 
genome assays presented over the last decade, suggesting excellent 
overall performance with the balance of enhanced SV detection and 
increased false-positive indel reporting in low-complexity regions.

In summary, we present a pipeline for high-depth nanopore 
sequencing of a human genome in <2 h combined with real-time 
base calling, alignment and accelerated variant calling and filtra-
tion, allowing the surfacing of candidate genetic variants in <8 h.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, supplementary information, acknowledge-
ments, peer review information; details of author contributions and 
competing interests; and statements of data and code availability are 
available at https://doi.org/10.1038/s41587-022-01221-5.
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Methods
Samples and sample collection. 
•	 Standard HG002: cell pellets from HG002 cell line were a generous gift of M. 

L. Salit. HG002 and HG005 data for the in silico carryover experiment were 
obtained from the dataset provided in ref. 11.

•	 Patient sample: the patients presented in this text were recruited to our study 
because their clinical presentation was suspected to have a genetic etiology. We 
acquired consent from adults directly and, for minors, from parents or guard-
ians according to the Stanford Institutional review board protocol 58559.

Sample preparation. 
•	 DNA extraction: we extracted high-molecular-mass DNA (hmwDNA)  

from 1.6 ml of whole blood in EDTA using a modified protocol for the  
QIAGEN Puregene kit. First, red blood cells were lysed by adding blood  
to red cell lysis buffer at a 1:3 ratio and incubating for 5 min at room  
temperature. Nucleated cells were then isolated by centrifuging the solution 
at 15,000g for 30 s. The pelleted cells were lysed using cell lysis solution and 
proteinase K, and incubated at 56 ∘C for 5 min. Protein was then precipitated 
and removed using protein precipitation buffer and incubated on ice for 5 min, 
followed by a 1-min centrifugation at 15,000g. The supernatant was then 
recovered and incubated on ice for an additional 5 min and centrifuged for 
3 min at 15,000g to remove any residual protein. DNA was precipitated  
in isopropanol and pelleted by centrifugation for 1 min at 15,000g. DNA  
was washed with cold 70% ethanol and re-pelleted by centrifugation for  
1 min at 15,000g and then dried for ~2 min at 37 ∘C and resuspended in 
ultrapure water.

•	 Fragmentation: hmwDNA was sheared using Covaris g-tubes. In short, 50 μl 
of hmwDNA 80 ng μl−1 (4 μg) was applied to the g-tube and centrifuged at 
1,450g in 1-min increments until the entirety of the DNA solution passed 
through the tube. The tube was then inverted and the process repeated. If the 
yield of hmwDNA permitted, this process was done in multiples of 8 to result 
in a 32-μg pool of fragmented DNA.

•	 Library preparation: standard sequencing libraries were prepared using the 
SQK-LSK109 kit (ONT). Barcoded sequencing libraries were prepared using 
the SQK-LSK109 and EXP-NBD104 (ONT). Libraries were prepared in 8× 
reactions according to the manufacturer’s protocol with multiple alteration. 
Input-sheared DNA was increased to 4 μg per reaction and repaired with 
formalin-fixed paraffin embedding (New England Biolabs), end-prepped with 
Ultra II End-Prep (New England Biolabs) and incubated at 20 ∘C for 5 min 
and then 65 ∘C for 5 min. This reaction was cleaned up using AmpureXP 
Beads (Agencourt) and washed with 70% ethanol. Libraries designated for 
barcoding had ONT native barcodes ligated in the following reaction: 24 μl 
of recovered DNA from end-prep, 5 μl of NBD and 29 μl of Blunt/TA Ligase 
Master Mix (New England Biolabs), and incubated at room temperature for 
10 min. This reaction was then cleaned up using AmpureXP beads and washed 
with 70% ethanol. Barcoded libraries then had ONT adapters ligated using 
AMII (ONT), Quick T4 DNA ligase and NEBNext Quick Ligation Reaction 
Buffer. Nonbarcoded libraries had ONT adapters ligated using AMX (ONT), 
Quick T4 DNA ligase (New England Biolabs) and LNB (ONT). Libraries were 
cleaned up after adapter ligation with AmpureXP beads (Agencourt) and 
washed with long fragment buffer (ONT). After each cleanup step, libraries 
were pooled and DNA was quantified using a Qubit.

•	 Flow cell preparation and sequencing: 48 R9.4.1 flow cells (product code 
FLO-PRO002) were brought to room temperature, loaded into Prome-
thION48 (ONT) and checked for available pores. Each flow cell was primed 
with 500 μl of priming buffer (FB + FLT) twice, separated by an incubation 
period of approximately 20 min. The pooled sequencing library was mixed 
with SQB and LB (ONT) and was equally distributed over the flow cells.

Complete details of the protocols are open sourced34 under the Creative 
Commons Attribution License.

Carryover rate after nuclease wash. As a set of 48 flow cells was used for multiple 
samples, we investigated the fraction of reads carried over from a previous library 
(carryover rate) by preparing 12 libraries, loading a set of flow cells with a single 
library, sequencing for a total of 90 min and then performing a nuclease wash. We 
repeated this process for each of the 12 libraries on the same flow cells. We filtered 
out the reads with a q score <7 (‘failed’ reads) and the reads that were not mapped 
to any barcode (unclassified reads) (Supplementary Table 14). We then determined 
the carryover rate by calculating the fraction of reads with barcodes that did not 
match the expected barcode for each sequencing run (Supplementary Fig. 4). The 
highest rate of carryover observed was 0.4%.

In silico carryover experiment. In our experimental setup to test the robustness of 
variant calling performance with and without barcoding in silico, we considered 
HG005 (Chinese son) as patient 1 and HG002 (Ashkenazi son) as patient 2. The 
pure HG002 sample data are analogous to a barcoded sample and the HG002 
sample with 1% carryover from HG005 represents the nonbarcoded sample. We 
used two different individuals of different ancestry to the two patients to estimate 

the effect of carryover rate. We took 1% reads from HG005 and added to HG002 
data to simulate the carryover from one sample to the other.

Sequencing, base calling and alignment. Once sequencing starts, fast5 files 
(raw signal files) are uploaded to a cloud storage bucket every 3 min using the 
cron utility and rsync utility from the Google Cloud SDK for synchronizing and 
avoiding any redundancy in the upload. The raw bandwidth requirement is 
improved by configuring VBZ compression of the fast5 file. There is a trade-off 
between reducing the total latency associated with the application programming 
interface (API) calls for data transfer (improved by increasing file size) and 
increasing the number of files that can be uploaded simultaneously. Hence, we set 
the number of reads per fast5 file to 10,000 and used VBZ compression for the 
signal data (https://github.com/nanoporetech/vbz_compression.git) that resulted 
in a fast5 file size of around 1 GB for near real-time data transfer.

We used Guppy v.4.2.2 for base calling the sequenced reads and Minimap2 
v.2.17 (ref. 17) to align the base called reads to the GRCh37 human reference 
genome using 16 instances. Every instance uses a cron job each, for base calling 
and alignment. For base calling, the cron job first checks whether the previous job 
was running; if not, the new batch of fast5 files in cloud storage data generated 
from three specific flow cells (Supplementary Table 15) assigned to the instance are 
downloaded and base called. We used the high-accuracy model for base calling, 
along with the corresponding configuration provided for acceleration using 
NVIDIA Tesla V100 GPUs. Reads with a q score <7 (assigned ‘fail’ by Guppy) are 
filtered out and reads that pass the threshold constitute an alignment job for the 
batch. If a previous alignment job is not running, a new alignment job from the 
queue is started. Once sequencing has been completed and all the data for the three 
flow cells have been aligned, the alignment files (BAM format) from all the batches 
are combined, split into contig-wise alignment file using samtools35 and uploaded 
to the cloud storage bucket.

Small-variant calling. Haplotype-aware variant calling pipeline. We used the 
PEPPER–Margin–DeepVariant11 pipeline to identify small-variants. The pipeline 
employs three modules: PEPPER, Margin and DeepVariant which together build a 
haplotype-aware variant caller and reports state-of-the-art, nanopore-based variant 
identification results11,19. An overview of this pipeline is presented here:
•	 PEPPER SNP: this finds SNPs from a read-to-reference alignment file using 

a recurrent neural network. First, PEPPER SNP generates nucleotide sum-
mary information for each position of the genome. Then the recurrent neural 
network takes the summary information as input and provides likelihood 
for observing alternative alleles at each position. Finally, the module reports 
potential SNP sites using the likelihood of observing alternative alleles11.

•	 Margin: this is a hidden Markov model (HMM)-based, haplotyping module 
that produces a haplotag for each read using the SNPs reported by PEPPER 
SNP. First, Margin extracts read substrings around SNP sites and generates 
alignment likelihoods between reads and alleles. Then it constructs an HMM 
to describe genotype and read bipartitions at each SNP site, enforcing consist-
ent partitioning between sites. Margin runs the forward–backward algorithm 
on the HMM, and then marginalizes over all genotypes to find the most likely 
assignment of alleles to haplotypes. Finally, Margin uses maximum likelihood 
estimation to determine which haplotype best matches the read and assigns 
the read a haplotag. If a read spans no variants or has equal likelihood between 
haplotypes, then the read gets no haplotag.

•	 PEPPER HP: this takes the haplotagged alignment file from Margin and pro-
duces a set of candidate variants. First, PEPPER HP generates nucleotide sum-
mary information at each position of the genome for each haplotype. Then, a 
recurrent neural network takes the input from each haplotype to produce the 
likelihood of observing a base at each location. Finally, PEPPER HP reports a 
set of candidate variants using the haplotype-specific allele likelihoods.

•	 DeepVariant: this produces the final genotype calls by using a convolutional 
neural network with the candidates from PEPPER HP. DeepVariant represents 
sequence data as a pile-up of reads spanning a 221-bp region of the genome, 
with features of sequence data as different channels and (six) bases differing 
from the reference. Each candidate is classified as a homozygous reference, 
or a heterozygous or homozygous variant, with the probability of each state 
determining the genotype quality of the variant.

We accelerated the PEPPER–Margin–DeepVariant by running the pipeline 
independently on each contig of the reference genome that allowed use of 14 
GPU-enabled compute instances on Google Cloud Platform (Supplementary Table 
5). Once alignment has been completed, each variant calling instance downloads 
the alignment files for the contig(s) for which it is configured, combines it into a 
single contig-wise alignment file, performs variant calling and finally uploads the 
output (VCF file) to a Google Cloud storage bucket (Fig. 1b). Once all the runs 
have been completed, we downloaded all contig-wise VCF files in one instance and 
merged them to have variant calls for the whole genome.

To speed the subsequent small-variant filtration and prioritization, variants 
were overlapped with the ‘AllHomopolymers_gt6bp_imperfectgt10bp_slop5’ 
regions36 of the GIAB, annotated ‘Homopolymer’. Variants overlapping 4- to 6-bp 
homopolymer regions were annotated ‘ShortHomopolymer’. As VCF represents 
insertions at the previous base, annotation regions were extended 1 bp to the 
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left. Negative scoring was also applied for homopolymer indel variants, because 
these variant types are the most redundant errors that we observed in ONT-based 
variant identification.

SV calling and annotation. SV calling. For SV calling we used Sniffles18. Sniffles 
scans each of the reads for split events and alignment events (cigar). The latter 
most often indicates short SVs (50–500 bp) whereas split reads indicate larger 
SVs, especially rearrangements. Subsequently, Sniffles clusters the individual read 
information together, based on the break-point locations per SV and per read.

SV selection and tier grouping. After the calling, we selected rare SVs by comparing 
the SV calls with public and in-house catalogs of SVs derived from both short-read 
and long-read sequencing studies. We used the sveval package37 to match SV calls 
with SVs in these databases. Briefly, SVs are matched if the reciprocal overlap is 
>50% for deletions, inversions or duplications, or if the size is 50% similar for 
insertions located at <100 bp from each other. We removed SVs that matched 
an SV in the gnomAD-SV with an allele frequency >1%. We also called SVs 
using Sniffles across 11 genomes sequenced using Oxford Nanopore9. Again, we 
filtered SVs with an allele frequency >1% in this in-house catalog. Once rare SVs 
had been selected, we created three tiers of variants. Using Gencode v.35 gene 
annotation, we placed coding SVs in tier 1 and SVs in UTRs, promoters or introns 
of protein-coding regions in tier 2. Finally, noncoding SVs overlapping conserved 
regions and regulatory elements were placed in the third tier. The conserved region 
annotation was the phastConsElements100way.txt.gz track downloaded from 
the UCSC Genome Browser. As predicted regulatory elements, we used DNase 
hypersensitivity sites (ENCFF509DLH) and CTCF-binding site (ENCFF415WKV) 
tracks downloaded from the ENCODE portal38,39. In each tier, SVs associated 
with a gene from the prioritized gene list was highlighted first. The SVs were also 
compared with the Database of Genomic Variants40 and known clinical SVs in 
dbVar41 (study nstd102).

SV fine-tuning using local assembly. SVs in tier 1 (that is, coding SVs) were also 
fine-tuned using local assembly because base-pair resolution is particularly 
relevant to interpret variants potentially creating frameshifts. Reads supporting the 
SV, reported by Sniffles, were assembled into contigs using the Shasta assembler9. 
The assembled contigs were then aligned to the reference with minimap2 (ref. 17) 
and the SVs called using svim-asm42.

Read coverage track. In addition to Sniffles, we deployed mosdepth43 to compute 
the coverage per genome in 10,000-bp windows. This read coverage metrics served 
as orthogonal evidence for large deletions or duplications. We also used this 
information to investigate potential aneuploidy.

The SV annotation pipeline, including the local assembly module and read 
coverage module, is available at https://github.com/jmonlong/sv-nicu.

SV-calling benchmark. The accuracy of the SV calling was measured on the  
HG002 sample using the GIAB benchmark15. We used two evaluation methods  
to estimate the precision, recall and F1 score on the high-confidence regions 
provided by the GIAB: truvari (https://github.com/spiralgenetics/truvari) and 
sveval (https://github.com/jmonlong/sveval). We report the performance overall 
for each SV type. We note that the SV calls were more accurate for deletions 
(Supplementary Fig. 2).

Local assembly benchmark. We further used the GIAB benchmark to test the 
gain in base-pair resolution provided by our local assembly of the SVs in tier 1 
(coding SVs). In the present study, we extracted all coding SVs in HG002 (that is, 
irrespective of their allele frequency) and ran the local assembly pipeline (above). 
The original SV calls and assembled calls were matched with the GIAB truthset 
using the sveval package37 as above. We then computed how many original SV calls 
and assembled SV calls matched the GIAB exactly, that is, having exactly the  
same positions and sizes. Out of the 56 deletions and 16 insertions in coding 
regions called by Sniffles, 23 deletions (41.1%) and 1 insertion (6.25%) matched 
exactly the SV in GIAB. After running our assembly pipeline, these numbers 
increased to 28 deletions (50%) and 7 insertions (43.8%). Hence, assembly of the 
SVs helps fine-tune the base-pair resolution of SV called by Sniffles, especially for 
insertions.

Variant filtration and prioritization. Small-variant. The customized Alissa 
classification tree, including filtration and variant scoring, was developed against 
15 clinical exome samples from our in-house genomics laboratory, the Stanford 
Clinical Genomics Program (CGP). The variants reported for these samples, 25 in 
total, included a wide variety of variant types, modes of inheritance and ACMG 
classifications of variant of uncertain significance (VUS), likely pathogenic or 
pathogenic. After iterative development and testing against these initial samples, 
the classification tree was validated against a separate set of clinical exome 
samples from CGP. As the objective of this analysis was to quickly flag clinically 
actionable, clearly pathogenic or likely pathogenic variants, a total of 15 exome 
samples with clinically positive reports of rare (minor allele frequency <1.0%) 
pathogenic or likely pathogenic variants (19 in total) were selected for validation. 

For the purposes of both development and validation, all samples were analyzed 
as proband cases, without gene target lists, even when the original clinical analyses 
included additional family members and/or gene target lists.

Iterative development against the initial test set of 15 samples ultimately 
produced a prioritization filtration scheme that assigned scores as follows: on 
average, 12 variants (range 6–16) per case received a score of ≥5; this included 12 
of 15 of the reported pathogenic/likely pathogenic variants and 0 of 10 manually 
classified VUSs. On average, 26 variants (range 18–38) per case received a score 
of ≥4; this included 14 of 15 reported pathogenic/likely pathogenic variants and 
3 of 10 manually classified VUSs. On average, 65 variants (range 51–85) per case 
received a score of ≥3; this included 15 of 15 of the reported pathogenic/likely 
pathogenic variants and 6 of 10 VUSs. The single likely pathogenic variant with 
a score of 3 was a missense change that has not been previously reported in the 
literature and is not predicted to be deleterious by in silico methods; our standard 
workflow was able to identify this variant only because the sample was originally 
analyzed as part of a trio, and this variant was identified as de novo and ultimately 
reported with partial clinical overlap. Based on these results, we chose a score  
of ≥4 as the cut-off most likely to flag pathogenic/likely pathogenic variants while 
still limiting the total pool of reviewed variants to a size compatible with a rapid 
time frame.

When validated against an additional 15 clinical exome samples, this rapid 
prioritization filtration scheme successfully identified 19 of 19 of the test variants 
(100%) with a score of ≥4, 16 of 19 (84%) with a score of ≥5 and 5 of 19 (26%) as 
the highest scoring variant in that analysis. Although possible values for scores 
ranged from 1 to 14, the highest score observed in this validation was 7.

Based on the performance of the customized Alissa classification tree with 
clinical exome data, our expectation was that application of this scheme to rapid 
genomic data would elevate pathogenic variants to a score of ≥4. The inclusion 
of target gene lists within the classification tree would be to increase scores of 
clinically significant variants (variable points can be awarded per case, based on the 
confidence of the patient-specific target list).

It should be noted that, although both systems utilize patient-specific target 
gene lists, neither system limits analysis to that list. However, the two systems are 
implemented in different ways: in the standard system, variants are limited to 
protein-coding variants before evaluation of the target gene lists, whereas in the 
rapid system the scores are assigned for the target gene list before evaluation of 
coding impact. As a result, the analysis included a number of variants that were 
scored as being on the target list, but that had no significant protein impact (for 
example, synonymous variants outside the intron–exon junction).

We also examined the differences between the standard and accelerated 
pipelines for the patient samples in more detail; variants were divided into 
ordered, exclusive groups based on the criterion that first triggered manual 
review in the standard system: variants that (1) have pathogenic or likely 
pathogenic classifications in ClinVar (Supplementary Table 16); (2) have HGMD30 
disease-causing mutation (DM) or DM? annotations (Supplementary Table 17); 
(3) are on the target list (Supplementary Table 18); (4) have recessive inheritance 
(Supplementary Table 19); and (5) have predicted deleterious protein impact 
(Supplementary Table 20). Each variant marked for review by the rapid system 
was also reviewed to determine the criteria that contributed to a final score of ≥4. 
Categories (1) (ClinVar annotations), (2) (HGMD annotations) and (4) (recessive 
inheritance) showed the anticipated result: the standard and rapid systems 
identified similar numbers of variants as candidates, but the rapid system marked 
only a subset for review. Categories (3) (target gene variants) and 5 (predicted 
deleterious protein impact) had a different result, in that the rapid system scored 
a larger number of variants than the standard system, but then marked a similar 
number for review.

Structural variation. Copy number and SVs were prioritized when they overlapped 
coding regions of genes or any region of a gene on the target panel. Regions were 
excluded from further consideration when concordant variants in the Database 
of Genomic Variants were identified. Genes that contained variants not excluded 
due to population variation were then examined for potential clinical overlap with 
patient’s reported features using OMIM, PubMed and HGMD.

Analysis of clinically relevant variants. Alissa filters were used to identify the 
annotated pathogenic or likely pathogenic variants in each sample. The QIAGEN 
HGMD Professional filter identified variants annotated as disease-causing 
mutations in the HGMD (QIAGEN HGMD Professional Database 2020.4). This 
filter mapped variants to HGMD based on genomic location, and those annotated 
with either high (DM) or low (DM?) confidence were treated as pathogenic/likely 
pathogenic.

The candidate ‘clinical’ variants were generated by passing all the variants from 
a sample through the Alissa filter, without any additional previous filtering. The 
benchmark consisted of the filtered GIAB HG002 v.4.2.1 variants. The variants 
generated from our pipeline for the nonbarcoded HG002 sample were compared 
with the PrecisionFDA Illumina sample variants (https://storage.googleapis.
com/brain-genomics-public/research/sequencing/grch37/vcf/novaseq/wgs_pcr_
free/30x/HG002.novaseq.pcr-free.30x.deepvariant-v1.0.grch37.vcf.gz). The analysis 
is provided in Supplementary Table 13.
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Hardware infrastructure. The stage-wise hardware requirements for the 
ultra-rapid pipeline, as implemented on the Google Cloud Platform, have been 
presented in Supplementary Table 21. The pipeline can be used with similar 
configurations on other cloud platforms. For base calling, our system requires 
a total of 64 NVIDIA V100 GPUs (the GPUs are mainly chosen based on the 
Guppy base calling implementation available; they might move to a different 
GPU type in the future; we used the state-of-the-art hardware). The hardware 
requirement is based on keeping up with the sequencing time for fresh flow 
cells. As the flow cells are reused, the rate of throughput decreases, which in 
turn reduces the compute requirement, specifically the number of GPUs for base 
calling. For small-variant calling, the system required a higher CPU:GPU ratio 
and, based on the configurations available in the cloud platform, we chose the 
NVIDIA P100 GPUs. Ideally, for local implementation, we would require a system 
with 64 NVIDIA V100 and around 96 CPU cores per GPU and NVME-based 
storage (which is very common in modern systems). With such a cluster (the 
node-wise configuration does not matter particularly, because our system allows 
for specifying the node-wise resource configuration), we use the same hardware for 
the near real-time base calling and alignment and fast small-variant calling. The 
hardware requirement for Sniffles is low and requires only 192 CPU cores. In terms 
of software, our system can easily be changed to accommodate a local deployment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We have made the data for the HG002 sample we sequenced available at the 
following links (fastq files): https://storage.googleapis.com/ur_wgs_public_data: 
(1) barcoded sample: HG002_BC04.fastq.gz; (2) nonbarcoded sample: HG002_
No_BC.fastq.gz. The nonbarcoded sample data were also used for the runtime and 
accuracy analysis presented in Results. We used the publicly available GRCh37 
human genome reference: https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz. The BED 
files with the regions for the small-variant call annotation is available at https://
storage.googleapis.com/ur_wgs_public_data/small_variant_annotation. (1) 
‘Homopolymer’: GRCh37_AllHomopolymers_gt6bp_imperfectgt10bp_slop5.bed.
gz; (2) ‘ShortHomopolymer’: grch37.4bp_to_6bp_homopolymers_left_pad_1bp.
bed. The gene lists used for the patient samples are available at: https://storage.
googleapis.com/ur_wgs_public_data. We used the following publicly available 
databases for variant filtration and prioritization: (1) NCBI ClinVar 2020-12; (2) 
OMIM 2021-01-06; (3) gnomAD release 2.0.2; (4) RefSeq Transcripts v.91 released 
9 November 2018 (accession no. NM_001001430.1 for patient 1). We also used 
the commercially available QIAGEN HGMD Professional Database 2020.4. The 
data for the patient samples cannot be shared under the restrictions placed by the 
institutional review board. Source data are provided with this paper.

Code availability
The scripts for running the pipeline along with the detailed instructions on 
running the test data are provided at https://github.com/gsneha26/urWGS.
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