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Nanopore sequencing technology and its applications in basic 
and applied research have undergone substantial growth 
since Oxford Nanopore Technologies (ONT) provided the 

first nanopore sequencer, MinION, in 2014 (refs. 1,2). The technol-
ogy relies on a nanoscale protein pore, or ‘nanopore’, that serves as 
a biosensor and is embedded in an electrically resistant polymer 
membrane1,3 (Fig. 1). In an electrolytic solution, a constant voltage 
is applied to produce an ionic current through the nanopore such 
that negatively charged single-stranded DNA or RNA molecules are 
driven through the nanopore from the negatively charged ‘cis’ side 
to the positively charged ‘trans’ side. Translocation speed is con-
trolled by a motor protein that ratchets the nucleic acid molecule 
through the nanopore in a step-wise manner. Changes in the ionic 
current during translocation correspond to the nucleotide sequence 
present in the sensing region and are decoded using computational 
algorithms, allowing real-time sequencing of single molecules. In 
addition to controlling translocation speed, the motor protein has 
helicase activity, enabling double-stranded DNA or RNA–DNA 
duplexes to be unwound into single-stranded molecules that pass 
through the nanopore.

In this review, we first present an introduction to the technology 
development of nanopore sequencing and discuss improvements in 
the accuracy, read length and throughput of ONT data. Next, we 
describe the main bioinformatics methods applied to ONT data. We 
then review the major applications of nanopore sequencing in basic 
research, clinical studies and field research. We conclude by con-
sidering the limitations of the existing technologies and algorithms 
and directions for overcoming these limitations.

Technology development
Nanopore design. The concept of nanopore sequencing emerged 
in the 1980s and was realized through a series of technical advances 
in both the nanopore and the associated motor protein1,4–8. 
α-Hemolysin, a membrane channel protein from Staphylococcus 
aureus with an internal diameter of ~1.4 nm to ~2.4 nm (refs. 1,9), 
was the first nanopore shown to detect recognizable ionic current 
blockades by both RNA and DNA homopolymers10–12. In a cru-
cial step toward single-nucleotide-resolution nanopore sequenc-
ing, engineering of the wild-type α-hemolysin protein allowed 

the four DNA bases on oligonucleotide molecules to be distin-
guished, although complex sequences were not examined in these 
reports13–15. Similar results were achieved using another engineered 
nanopore, Mycobacterium smegmatis porin A (MspA)16,17, that has a 
similar channel diameter (~1.2 nm)18,19.

A key advance in improving the signal-to-noise ratio was the 
incorporation of processive enzymes to slow DNA translocation 
through the nanopore20–22. In particular, phi29 DNA polymerase was 
found to have superior performance in ratcheting DNA through the 
nanopore23,24. Indeed, this motor protein provided the last piece of 
the puzzle; in February 2012, two groups demonstrated processive 
recordings of ionic currents for single-stranded DNA molecules 
that could be resolved into signals from individual nucleotides by 
combining phi29 DNA polymerase and a nanopore (α-hemolysin24 
and MspA25). In contrast to the previous DNA translocation tests 
that were poorly controlled13–17, the addition of the motor protein 
reduced the fluctuations in translocation kinetics, thus improving 
data quality. In the same month, ONT announced the first nanopore 
sequencing device, MinION26. ONT released the MinION to early 
users in 2014 and commercialized it in 2015 (ref. 2) (Fig. 2a). There 
have been several other nanopore-based sequencing ventures, such 
as Genia Technologies’s nanotag-based real-time sequencing by 
synthesis (Nano-SBS) technology, NobleGen Biosciences’s optipore 
system and Quantum Biosystems’s sequencing by electronic tunnel-
ing (SBET) technology27,28. However, this review focuses on ONT 
technology as it has been used in most peer-reviewed studies of 
nanopore sequencing, data, analyses and applications.

ONT has continually refined the nanopore and the motor pro-
tein, releasing eight versions of the system to date, including R6 
(June 2014), R7 (July 2014), R7.3 (October 2014), R9 (May 2016), 
R9.4 (October 2016), R9.5 (May 2017), R10 (March 2019) and R10.3 
(January 2020) (Fig. 2a). The original or engineered proteins used in 
the R6, R7, R7.3, R10 and R10.3 nanopores have not been disclosed 
by the company to date. R9 achieved a notable increase in sequenc-
ing yield per unit of time and in sequencing accuracy (~87% (ref. 29)  
versus ~64% for R7 (ref. 30)) by using the nanopore Curlin sigma 
S-dependent growth subunit G (CsgG) from Escherichia coli (Fig. 2b  
and Supplementary Table 1). This nanopore has a translocation rate 
of ~250 bases per s compared to ~70 bases per s for R7 (ref. 31). 
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Subsequently, a mutant CsgG and a new motor enzyme (whose ori-
gin was not disclosed) were integrated into R9.4 to achieve higher 
sequencing accuracy (~85–94% as reported in refs. 32–36) and faster 
sequencing speeds (up to 450 bases per s). R9.5 was introduced to 
be compatible with the 1D2 sequencing strategy, which measures a 
single DNA molecule twice (see below). However, the R9.4 and R9.5 
have difficulty sequencing very long homopolymer runs because 
the current signal of CsgG is determined by approximately five con-
secutive nucleotides. The R10 and R10.3 nanopores have two sens-
ing regions (also called reader heads) to aim for higher accuracy 
with homopolymers37,38, although independent studies are needed 
to assess this claim.

Additional strategies to improve accuracy. Beyond optimizing the 
nanopore and motor protein, several strategies have been developed 
to improve accuracy. Data quality can be improved by sequenc-
ing each dsDNA multiple times to generate a consensus sequence, 
similar to the ‘circular consensus sequencing’ strategy used in the 
other single-molecule long-read sequencing method from Pacific 
Biosciences (PacBio)39. Early versions of ONT sequencing used a 
2D library preparation method to sequence each dsDNA molecule 
twice; the two strands of a dsDNA molecule are ligated together by 
a hairpin adapter, and a motor protein guides one strand (the ‘tem-
plate’) through the nanopore, followed by the hairpin adapter and 
the second strand (the ‘complement’)40–42 (Fig. 3d, left). After remov-
ing the hairpin sequence, the template and complement reads, called 
the 1D reads, are used to generate a consensus sequence, called the 
2D read, of higher accuracy. Using the R9.4 nanopore as an example, 
the average accuracy of 2D reads is 94% versus 86% for 1D reads33 
(Fig. 2b). In May 2017, ONT released the 1D2 method together with 
the R9.5 nanopore; in this method, instead of being physically con-
nected by a hairpin adapter, each strand is ligated separately to a 
special adapter (Fig. 3d, right). This special adapter provides a high 
probability (>60%) that the complement strand will immediately be 
captured by the same nanopore after the template strand, offering 
similar consensus sequence generation for dsDNA as the 2D library. 
The average accuracy of 1D2 reads is up to 95% (R9.5 nanopore)43 

(Fig. 2b). Unlike the 2D library, the complement strand in the 1D2 
library is not guaranteed to follow the template, resulting in imper-
fect consensus sequence generation. However, ONT no longer offers 
or supports the 2D and 1D2 libraries. Currently, for DNA sequenc-
ing, ONT only supports the 1D method in which each strand of 
a dsDNA is ligated with an adapter and sequenced independently 
(Fig. 3d, middle).

In parallel, accuracy has been improved through new base-calling 
algorithms, including many developed through independent 
research32,44 (see below). Taking the R7.3 nanopore as an example, 
the 1D read accuracy was improved from 65% by hidden Markov 
model (HMM)45 to 70% by Nanocall46 and to 78% by DeepNano47.

Extending read length. Although the accuracy of ONT sequenc-
ing is relatively low, the read length provided by electrical detec-
tion has a very high upper bound because the method relies on 
the physical process of nucleic acid translocation48. Reads of up to 
2.273 megabases (Mb) were demonstrated in 2018 (ref. 49). Thus, 
ONT read lengths depend crucially on the sizes of molecules in the 
sequencing library. Various approaches for extracting and purify-
ing high-molecular-weight (HMW) DNA have been reported or 
applied to ONT sequencing, including spin columns (for example, 
Monarch Genomic DNA Purification kit, New England Biolabs), 
gravity-flow columns (for example, NucleoBond HMW DNA 
kit, Takara Bio), magnetic beads (for example, MagAttract HMW 
DNA kit, QIAGEN), phenol–chloroform, dialysis and plug extrac-
tion50 (Fig. 3a). HMW DNA can also be sheared to the desired size 
by sonication, needle extrusion or transposase cleavage (Fig. 3a). 
However, overrepresented small fragments outside the desired 
size distribution may decrease sequencing yield because of higher 
efficiencies of both adapter ligation and translocation through 
nanopores than long fragments. To remove overrepresented small 
DNA fragments, various size selection methods (for example, the 
gel-based BluePippin system of Sage Science, magnetic beads and 
the Short Read Eliminator kit of Circulomics) have been used to 
obtain the desired data distribution and/or improve sequencing  
yield (Fig. 3a).
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Fig. 1 | Principle of nanopore sequencing. A MinION flow cell contains 512 channels with 4 nanopores in each channel, for a total of 2,048 nanopores used 
to sequence DNA or RNA. The wells are inserted into an electrically resistant polymer membrane supported by an array of microscaffolds connected to a 
sensor chip. Each channel associates with a separate electrode in the sensor chip and is controlled and measured individually by the application-specific 
integration circuit (ASIC). Ionic current passes through the nanopore because a constant voltage is applied across the membrane, where the trans side is 
positively charged. Under the control of a motor protein, a double-stranded DNA (dsDNA) molecule (or an RNA–DNA hybrid duplex) is first unwound, 
then single-stranded DNA or RNA with negative charge is ratcheted through the nanopore, driven by the voltage. As nucleotides pass through the 
nanopore, a characteristic current change is measured and is used to determine the corresponding nucleotide type at ~450 bases per s (R9.4 nanopore).
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With improvements in nanopore technology and library prepa-
ration protocols (Figs. 2a and 3a), the maximum read length has 
increased from <800 kb in early 2017 to 2.273 Mb in 2018 (ref. 49) 
(Fig. 2c). The average read length has increased from a few thou-
sand bases at the initial release of MinION in 2014 to ~23 kb (ref. 51)  
in 2018 (Fig. 2c), primarily due to improvements in HMW DNA 
extraction methods and size selection strategies. However, there is a 
trade-off between read length and yield; for example, the sequenc-
ing yield of the HMW genomic DNA library is relatively low.

Sequencing RNA. ONT devices have been adapted to directly 
sequence native RNA molecules52. The method requires special 
library preparation in which the primer is ligated to the 3′ end 
of native RNA, followed by direct ligation of the adapter without 
conventional reverse transcription (Fig. 3c). Alternatively, a cDNA 

strand can be synthesized to obtain an RNA–cDNA hybrid duplex, 
followed by ligation of the adapter. The former strategy requires less 
sample manipulation and is quicker and thus is good for on-site 
applications, whereas the latter produces a more stable library for 
longer sequencing courses and therefore produces higher yields. 
In both cases, only the RNA strand passes through the nanopore, 
and therefore direct sequencing of RNA molecules does not gen-
erate a consensus sequence (for example, 2D or 1D2). Compared 
to DNA sequencing, direct RNA sequencing is typically of lower 
average accuracy, around 83–86%, as reported by independent  
research53,54.

Like conventional RNA sequencing, ONT can be used to perform 
cDNA sequencing by utilizing existing full-length cDNA synthesis 
methods (for example, the SMARTer PCR cDNA Synthesis kit of 
Takara Bio and the TeloPrime Full-Length cDNA Amplification kit 
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2,273 kb, rescued by correcting an error in the software MinKNOW49. The DNA extraction and purification methods used in these independent studies 
are summarized in Supplementary Table 1. Read lengths are reported for 1D reads. d, Yield per flow cell (in log10 scale for y axis). Yields are reported for 
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Supplementary Table 1.
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of Lexogen) followed by PCR amplification42,55 (Fig. 3b). ONT also 
offers a direct cDNA sequencing protocol without PCR amplifica-
tion, in contrast to many existing cDNA sequencing methods. This 
approach avoids PCR amplification bias, but it requires a relatively 
large amount of input material and longer library preparation time, 
making it unsuitable for many clinical applications. A recent bench-
marking study demonstrated that ONT sequencing of RNA, cDNA 
or PCR-cDNA for the identification and quantification of gene iso-
forms provides similar results56.

Increasing throughput. In addition to sequencing length and 
accuracy, throughput is another important consideration for ONT 
sequencing applications. To meet the needs of different project 
scales, ONT released several platforms (Box 1). The expected data 
output of a flow cell mainly depends on (1) the number of active 

nanopores, (2) DNA/RNA translocation speed through the nano-
pore and (3) running time.

Early MinION users reported typical yields of hundreds of 
megabases per flow cell, while current throughput has increased 
to ~10–15 gigabases (Gb) (Fig. 2d, solid line) for DNA sequenc-
ing through faster chemistry (increasing from ~30 bases per s by 
R6 nanopore to ~450 bases per s by R9.4 nanopore) and longer run 
times with the introduction of the Rev D ASIC chip. Subsequent 
devices, such as PromethION, run more flow cells with more nano-
pores per flow cell. An independent study reported a yield of 153 Gb 
from a single PromethION flow cell with an average sequencing 
speed of ~430 bases per s (ref. 57) (Fig. 2d, dashed line). By con-
trast, direct RNA sequencing currently produces about 1,000,000 
reads (1–3 Gb) per MinION flow cell due in part to its relatively low 
sequencing speed (~70 bases per s).

HMW DNA
extraction

Sonication
(<20 kb)

Needle
extrusion
(60 kb)

Transposase
cleavage
(100 kb)

Fragmentation
(optional)

Size selection
(optional)

+

Electrophoresis Bead SRE

Full-length cDNA synthesis

Loading and sequencing

DNA repair and adapter ligation

First-strand synthesis

Template switching

PCR amplification
(optional)

Full-length poly(A)+ RNA Full-length poly(A)+ RNA

Full-length cDNA

Primer annealing

Reverse transcription
(optional)           

Direct RNA sequencing

a

b    c

Cells

HMW DNA

d

Adapter
2D 1D 1D2

Adapter
Dual tether

Adapter ligation

Motor protein

CCC

CCC
GGG

CCC
GGG

AAA
T

A
T

A
T

A
T

A
T

Adapter

–

+

–

Dialysis
(200 kb)

Phenol–chloroform
(150 kb)

Magnetic bead
(150 kb)

Gravity-flow column
(100 kb)

Spin column
(60 kb)

Plug extraction
(>1 Mb)

Special
adapter

Special
adapter

Hairpin
adapter

Template

Complement

Adapter

Tether

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

T T T T T

AAAAAAA

A
T

A
T

A
T

A
T

A
T

A
T

A
T

Fig. 3 | Library preparation workflow for ONT sequencing. a, Special experimental techniques for ultralong genomic DNA sequencing, including HMW 
DNA extraction, fragmentation and size selection. b, Full-length cDNA synthesis for direct cDNA sequencing (without a PCR amplification step) and 
PCR-cDNA sequencing (with a PCR amplification step). c, Direct RNA-sequencing library preparation with or without a reverse transcription step, where 
only the RNA strand is ligated with an adapter and thus only the RNA strand is sequenced. d, Different library preparation strategies for DNA/cDNA 
sequencing, including 2D (where the template strand is sequenced, followed by a hairpin adapter and the complement strand), 1D (where each strand is 
ligated with an adapter and sequenced independently) and 1D2 (where each strand is ligated with a special adapter such that there is a high probability 
that one strand will immediately be captured by the same nanopore following sequencing of the other strand of dsDNA); SRE, short read eliminator kit 
(Circulomics).

Nature Biotechnology | VOL 39 | November 2021 | 1348–1365 | www.nature.com/naturebiotechnology 1351

http://www.nature.com/naturebiotechnology


Review Article NATuRe BioTechnology

Data analysis
Bioinformatics analysis of ONT data has undergone continued 
improvement (Fig. 4). In addition to in-house data collection and 
specific data formats, many ONT-specific analyses focus on bet-
ter utilizing the ionic current signal for purposes such as base 
calling, base modification detection and postassembly polishing. 
Other tools use long read length while accounting for high error 
rate. Many of these, such as tools for error correction, assembly and 
alignment, were developed for PacBio data but are also applicable to 
ONT data (Table 1).

Because ONT devices do not require high-end computing 
resources or advanced skills for basic data processing, many labora-
tories can run data collection themselves. MinKNOW is the oper-
ating software used to control ONT devices by setting sequencing 
parameters and tracking samples (Fig. 4, top left). MinKNOW also 
manages data acquisition and real-time analysis and performs local 
base calling and outputs the binary files in fast5 format to store 
both metadata and read information (for example, current mea-
surement and read sequence if base calling is performed). The fast5 
format organizes the multidimensional data in a nested manner, 
allowing the piece-wise access/extraction of information of inter-
est without navigating through the whole dataset. Previous versions 
of MinKNOW output one fast5 file for each single read (named 
single-fast5), but later versions output one fast5 file for multiple 
reads (named multi-fast5) to meet the increasing throughput. Both 
fast5 and fastq files are output if the base-calling mode is applied 
during the sequencing experiment. In addition to official ONT tools 
(for example, ont_fast5_api software for format conversion between 
single-fast5 and multi-fast5 and data compression/decompression), 
several third-party software packages40,58–62 have been developed 
for quality control, format conversion (for example, NanoR63 for 
generating fastq files from fast5 files containing sequence infor-
mation), data exploration and visualization of the raw ONT data  
(for example, Poretools64, NanoPack65 and PyPore66) and for after 
base-calling data analyses (for example, AlignQC42 and BulkVis49) 
(Fig. 4, top right).

Base calling. Base calling, which decodes the current signal to 
the nucleotide sequence, is critical for data accuracy and detec-
tion of base modifications (Fig. 4, top center). Overall, method 
development for base calling went through four stages32,44,58,67,68: 
(1) base calling from the segmented current data by HMM at the 
early stage and by recurrent neural network in late 2016, (2) base 
calling from raw current data in 2017, (3) using a flip–flop model 
for identifying individual nucleotides in 2018 and (4) training 
customized base-calling models in 2019. ONT developed new 
base callers as ‘technology demonstrator’ software (for exam-
ple, Nanonet, Scrappie and Flappie), which were subsequently 
implemented into the officially available software packages (for 
example, Albacore and Guppy). Albacore development is now 
discontinued in favor of Guppy, which can also run on graphics 
processing units in addition to central processing units to acceler-
ate base calling.

ONT devices take thousands of current measurements per second. 
Processive translocation of a DNA or RNA molecule leads to a charac-
teristic current shift that is determined by multiple consecutive nucle-
otides (that is, k-mer) defined by the length of the nanopore sensing 
region1. The raw current measurement can be segmented based on 
current shift to capture individual signals from each k-mer. Each cur-
rent segment contains multiple measurements, and the corresponding 
mean, variance and duration of the current measurements together 
make up the ‘event’ data. The dependence of event data on neighbor-
ing nucleotides is Markov chain-like, making HMM-based methods 
a natural match to decode current shifts to nucleotide sequence, such 
as early base callers (for example, cloud-based Metrichor by ONT 
and Nanocall46). The subsequent Nanonet by ONT (implemented 
into Albacore) and DeepNano47 implemented a recurrent neural net-
work algorithm to improve base-calling accuracy by training a deep 
neural network to infer k-mers from the event data. In particular, 
Nanonet used a bidirectional method to include information from 
both upstream and downstream states on base calling.

However, information may be lost when converting raw current 
measurement into event data, potentially diminishing base-calling 
accuracy. Raw current data were first used for classifying ONT 
reads into specific species69. Later, ONT’s open-source base caller 
Scrappie (implemented into both Albacore and Guppy) and the 
third-party software Chiron70 adopted neural networks to directly 
translate the raw current data into DNA sequence. Subsequently, 
ONT released the base caller Flappie, which uses a flip–flop model 
with a connectionist temporal classification decoding architecture 
and identifies individual bases instead of k-mers from raw cur-
rent data. Furthermore, the software Causalcall uses a modified 
temporal convolutional network combined with a connectionist 
temporal classification decoder to model long-range sequence 
features35. In contrast to generalized base-calling models, ONT 
introduced Taiyaki (implemented into Guppy) to train custom-
ized (for example, application/species-specific) base-calling mod-
els by using language processing techniques to handle the high 
complexity and long-range dependencies of raw current data. 
Additionally, Taiyaki can train models for identifying modified 
bases (for example, 5-methylcytosine (5mC) or N6-methyladenine 
(6mA)) by adding a fifth output dimension. The R10 and R10.3 
nanopores with two sensing regions may result in different signal 
features compared to previous raw current data, which will likely 
drive another wave of method development to improve data accu-
racy and base modification detection. To date, Guppy is the most 
widely used base caller because of its superiority in accuracy and 
speed32 (Table 1).

Detecting DNA and RNA modifications. ONT enables the direct 
detection of some DNA and RNA modifications by distinguishing 
their current shifts from those of unmodified bases52,71–74 (Fig. 4, 
middle center), although the resolution varies from the bulk level 
to the single-molecule level. A handful of DNA and RNA modifica-
tion detection tools have been developed over the years (Table 1).  
Nanoraw (integrated into the Tombo software package) was 

Box 1 | ONT devices

•	 MinION is a flow cell containing 512 channels, with four nanopores per channel. Only one nanopore in each channel is measured at 
a time, allowing concurrent sequencing of up to 512 molecules.

•	 GridION, for medium-scale projects, has five parallel MinION flow cells.
•	 PromethION, a high-throughput device for large-scale projects, has 24 or 48 parallel flow cells (up to 3,000 channels per flow cell).
•	 Flongle, for smaller projects, is a flow cell adapter for MinION or GridION with 126 channels.
•	 VolTRAX is a programmable device for sample and library preparation.
•	 MinIT is a data analysis device that eliminates the need for a computer to run MinION.
•	 SmidgION is a smartphone-compatible device under development.
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the first tool to identify the DNA modifications 5mC, 6mA and 
N4-methylcytosine (4mC) from ONT data74. Several other DNA 
modification detection tools followed, including Nanopolish 
(5mC)75, signalAlign (5mC, 5-hydroxymethylcytosine (5hmC) and 
6mA)71, mCaller (5mC and 6mA)76, DeepMod (5mC and 6mA)76, 
DeepSignal (5mC and 6mA)77 and NanoMod (5mC and 6mA)78. 
Nanpolish, Megalodon and DeepSignal were recently bench-
marked and confirmed to have high accuracy for 5mC detection 
with single-nucleotide resolution at the single-molecule level79,80. 
Compared to PacBio, ONT performs better in detecting 5mC but 
has lower accuracy in detecting 6mA68,75,81.

The possibility of directly detecting N6-methyladenosine (m6A) 
modifications in RNA molecules was demonstrated using PacBio 
in 2012 (ref. 82), although few follow-up applications were pub-
lished. Recently, ONT direct RNA sequencing has yielded robust 
data of reasonable quality, and several pilot studies have detected 
bulk-level RNA modifications by examining either error distribu-
tion profiles (for example, EpiNano (m6A)73 and ELIGOS (m6A 
and 5-methoxyuridine (5moU))83) or current signals (for example, 
Tombo extension (m6A and m5C)74 and MINES (m6A)84). However, 
detection of RNA modifications with single-nucleotide resolution at 
the single-molecule level has yet to be demonstrated.
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Table 1 | Computational tools and experimental assays for ONT data analysis and applications

Computational tools for ONT data analysis

Data analysis Computational tool

Base calling ONT’s (https://github.com/nanoporetech/) Guppy, Metrichor, Nanonet, Albacore, Scrappie, Flappie, Taiyaki, Bonito

Third party Nanocall46, Chiron70, Causalcall35, DeepNano47, DeepNano-blitz246, 
basecRAWller247, WaveNano248, MinCall249, URnano250, CATCaller251, 
SACall252, Halcyon253, Fast-Bonito254

Quality control Prealignment NanoPack65, LongQC255, PycoQC256, MinIONQC257, RabbitQC258, NanoR63, 
poRe60, pyPore66

Postalignment AlignQC42, SQANTI3259, NanoOK61, pyPore

Processing and 
visualization

Processing Tombo (https://github.com/nanoporetech/tombo), Poretools64, HPG 
pore62

Visualization SquiggleKit260, BulkVis49, Methylartist261, NanoMethViz262, Methplotlib263

DNA modification 
detection

5mC (CpG) Nanopolish75, Megalodon (https://github.com/nanoporetech/
megalodon), DeepSignal77, Tombo, Guppy, DeepMod76, SignalAlign71, 
NanoMod78

5mC (GpC) Nanopolish, NP-SMLR72

6mA Guppy, Tombo, mCaller174, NanoMod, DeepMod, DeepSignal

5hmC, 4mC SignalAlign (5hmC), Tombo (4mC)

RNA modification 
detection

m6A EpiNano73, xPore264, MINES84, Nanocompore265, Nanom6A266, 
Yanocomp267, ELIGOS83, DRUMMER268, Tombo

Pseudouridine (Ψ), m5C nanoRMS (Ψ)104, Tombo (m5C)

Error correction Hybrid (graph based) FMLRC93, LoRDEC91, Jabba269, ECTools270, HG-ColoR271, NaS272, Ratatosk273

Hybrid (alignment based) pacBioToCA274, LSC90, Nanocorr45, proovread275, Hercules276, PBcR274

Hybrid (dual alignment/graph based) HALC92, ColorMap277

Self Canu88, daccord278, LoRMA89, MECAT279, pbdagcon280, FLAS281, 
MARVEL282, NanoReviser283

Splice-aware TALC (hybrid)284, iSONcorrect (self)285

Genome alignment Minimap2 (ref. 96), GraphMap95, NGMLR98, LAST97, BWA-MEM286, BLAST94, LRA287, Winnowmap2 (ref. 288), MashMap2 (ref. 289), 
NanoBLASTer290, mapAlign291, GraphAligner292, smsMap293, lordFAST294, S-conLSH295, QAlign296

Splice-aware Minimap2, GraphMap2 (ref. 102), GMAP100, STAR101, deSALT103, 
Magic-BLAST297, Deep-Long298, uLTRA299

Genome assembly Canu, Miniasm107, Flye110, Redbean/wtdbg2 (ref. 111), 
Falcon-Unzip300, Shasta164, Raven301, NextDenovo 
(https://github.com/Nextomics/NextDenovo), 
Peregrine302, HINGE303, TULIP304, NECAT305

Metagenome tailored metaFlye306, OPERA-MS (hybrid)106

Haplotype-aware Hifiasm307

Genome polishing Nanopolish, Racon308, Medaka (https://github.com/nanoporetech/medaka), NeuralPolish309, PEPPER-Margin-DeepVariant310, 
NextPolish (https://github.com/Nextomics/NextPolish), POLCA311, HomoPolish38

SV detection Sniffles98, SVIM312, NanoSV112, Picky33, NanoVar113, Dysgu313, SENSV314, cuteSV315

SNV detection LongShot116, DeepVariant310, iGDA316, Nanopanel2 (ref. 317), Clair318

Haplotyping WhatsHap117, Medaka, HapCUT2 (ref. 319), flopp320, DR2S321, Nanopanel2, iGDA, Clair

Repetitive element 
analysis

Non-reference transposable element detection TLDR118, PALMER322, TELR (https://github.com/bergmanlab/TELR)

Tandem repeat TRiCoLOR119, STRique323, NanoSatellite207

Transcriptome 
construction and 
quantification

De novo RATTLE129, CARNAC-LR324, isONclust325, IDP-denovo (hybrid)128

Reference genome guide IDP (hybrid)127, TALON126, FLAIR123, StringTie2 (ref. 125), FLAMES326

Quantification only LIQA327, AERON328, Mili (https://github.com/Augroup/Mili)

Transcriptome 
characterization

Alternative splicing FLAIR

Gene fusion IDP-fusion (hybrid)329, JAFFAL330, AERON, LongGF331

Circular RNA CIRI-long170

Poly(A) tail length Nanopolish

Allele-specific expression IDP-ASE (hybrid)332, LORALS333

Continued
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Error correction. Although the average accuracy of ONT sequenc-
ing is improving, certain subsets of reads or read fragments have 
very low accuracy, and the error rates of both 1D reads and 2D/1D2 
reads are still much higher than those of short reads generated by 
next-generation sequencing technologies. Thus, error correction 
is widely applied before many downstream analyses (for example, 
genome assembly and gene isoform identification), which can rescue 
reads for higher sensitivity (for example, mappability85) and improve 
the quality of the results (for example, break point determination at 
single-nucleotide resolution86). Two types of error correction algo-
rithms are used85,87 (Fig. 4, middle right, and Table 1): ‘self-correction’ 
uses graph-based approaches to produce consensus sequences among 
different molecules from the same origins (for example, Canu88 and 
LoRMA89) in contrast to 2D and 1D2 reads generated from the same 
molecules, and ‘hybrid correction’ uses high-accuracy short reads 
to correct long reads by alignment-based (for example, LSC90 and 
Nanocorr45), graph-based (for example, LorDEC91) and dual align-
ment/graph-based algorithms (for example, HALC92). Recently, two 
benchmark studies demonstrated that the existing hybrid error cor-
rection tools (for example, FMLRC93, LSC and LorDEC) together 
with sufficient short-read coverage can reduce the long-read error 
rate to a level (~1–4%) similar to that of short reads85,87, whereas 
self-correction reduces the error rate to ~3–6% (ref. 87), which may be 
due to non-random systematic errors in ONT data.

Aligners for error-prone long reads. Alignment tools have been 
developed to tackle the specific characteristics of error-prone long 
reads (Table 1). Very early aligners (for example, BLAST94) were 
developed for small numbers of long reads (for example, Sanger 
sequencing data). More recently, there has been considerable growth 
in alignment methods for high-throughput accurate short reads (for 
example, Illumina sequencing data) in response to the growth in 
next-generation sequencing. Development of several error-prone 
long-read aligners was initially motivated by PacBio data, and they 
were also tested on ONT data. In 2016, the first aligner specifi-
cally for ONT reads, GraphMap, was developed95. GraphMap pro-
gressively refines candidate alignments to handle high error rates 
and uses fast graph transversal to align long reads with high speed 
and precision. Using a seed–chain–align procedure, minimap2 
was developed to match increases in ONT read length beyond 
100 kb (ref. 96). A recent benchmark paper revealed that minimap2 
ran much faster than other long-read aligners (that is, LAST97, 
NGMLR98 and GraphMap) without sacrificing the accuracy99.  

In addition, minimap2 can perform splice-aware alignment for 
ONT cDNA or direct RNA-sequencing reads.

In addition to minimap2, GMAP, published in 2005 (ref. 100), 
and a new mode of STAR, which was originally developed for 
short reads101, have been widely used in splice-aware alignment 
of error-prone transcriptome long reads to genomes. Other align-
ers have also been developed, such as Graphmap2 (ref. 102) and 
deSALT103, for ONT transcriptome data. Especially for ONT direct 
RNA-sequencing reads with dense base modifications, Graphmap2 
has a higher alignment rate than minimap2 (ref. 104).

Hybrid sequencing. Many applications combine long reads and short 
reads in the bioinformatics analyses, termed hybrid sequencing. In 
contrast to hybrid correction of long reads for general purposes, many 
hybrid sequencing-based methods integrate long reads and short 
reads into the algorithms and pipeline designs to harness the strengths 
of both types of reads to address specific biological problems. The 
long-read length is well suited to identifying large-range genomic 
complexity with unambiguous alignments, whereas the high accuracy 
and high throughput of short reads is useful for characterizing local 
details (for example, splice site detection with single-nucleotide reso-
lution) and improving quantitative analyses. For example, genome105, 
transcriptome42 and metagenome106 assemblies have shown supe-
rior performance with hybrid sequencing data compared to either 
error-prone long reads alone or high-accuracy short reads alone.

De novo genome assembly. Error-prone long reads have been 
used for de novo genome assembly. Assemblers (Table 1) such as 
Canu88 and Miniasm107 are based on the overlap–layout–consensus 
algorithm, which builds a graph by overlapping similar sequences 
and is robust to sequencing error58,67,108 (Fig. 4, middle center). 
To further remove errors, error correction of long reads and pol-
ishing of assembled draft genomes (that is, improving accuracy 
of consensus sequences using raw current data) are often per-
formed before and after assembly, respectively. In addition to the 
genome-polishing software Nanopolish109, ONT released Medaka, a 
neural network-based method, aiming for improved accuracy and 
speed compared to Nanopolish (Table 1).

These approaches take into account not only general assembly 
performance but also certain specific aspects, such as complex 
genomic regions and computational intensity. For example, Flye 
improves genome assembly at long and highly repetitive regions 
by constructing an assembly graph from concatenated disjoint 

Computational tools for ONT data analysis

Experimental assays for ONT applications

Application Experimental assay

Genomics Amplicon sequencing NanoAmpli-seq334, Dual-UMI-tagging335

Targeted genome sequencing nCATS336, CATCH197

Epigenomics DNA methylation and chromatin accessibility MeSMLR-seq72, SMAC-seq175, nanoNOMe176

Nucleosome occupancy MeSMLR-seq

Histone modification DiMeLo-seq181, BIND&MODIFY182

3D genome structure Pore-C180

Protein–DNA interaction mapping DiMeLo-seq, Nanopore-DamID337

DNA replication (replication fork detection) D-Nascent179, FORK-seq338

Single-cell transcriptome ScCOLOR-seq339, ScISOr-Seq340, scNaUmi-seq341, FLT-seq326

Epitranscriptomics (RNA secondary structure) PORE-cupine184, SMS-seq342

RNA metabolism (nascent RNA detection) Nano-ID186, nano-COP343

3D, three dimensional; SNV, single nucleotide variation.

Table 1 | Computational tools and experimental assays for ONT data analysis and applications (continued)
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genomic segments110; Miniasm uses all-versus-all read self-mapping 
for ultrafast assembly107, although postassembly polishing is neces-
sary for higher accuracy. The recently developed assembler wtdbg2 
runs much faster than other tools without sacrificing contiguity and 
accuracy111.

SVs and repetitive regions. When a reference genome is available, 
ONT data can be used to study sample-specific genomic details, 
including SVs and haplotypes, with much higher precision than 
other techniques. A few SV detection tools have been developed (for 
example, NanoSV112, Sniffles98, Picky33 and NanoVar113) (Fig. 4, bot-
tom center, and Table 1). Picky, in addition to detecting regular SVs, 
also reveals enriched short-span SVs (~300 bp) in repetitive regions, 
as long reads cover the entire region including the variations. Given 
that single long reads can encompass multiple variants, including 
both SNVs and SVs, it is possible to perform phasing of multiploid 
genomes as well as other haplotype-resolved analyses112,114,115 with 
appropriate bioinformatics software, such as LongShot116 for SNV 
detection and WhatsHap117 for haplotyping/phasing.

Several tools have also been developed to investigate highly 
repetitive genomic regions by ONT sequencing, such as TLDR for 
identifying non-reference transposable elements118 and TRiCoLOR 
for characterizing tandem repeats119 (Table 1).

Transcriptome complexity. When used in transcriptome analyses, 
ONT reads can be clustered and assembled to reconstruct full-length 
gene isoforms or aligned to a reference genome to characterize 
complex transcriptional events42,120–123 (Fig. 4, bottom right). In 
particular, several transcript assemblers have been developed spe-
cifically for error-prone long reads, such as Traphlor124, FLAIR123, 
StringTie2 (ref. 125) and TALON126 as well as several based on hybrid 
sequencing data (for example, IDP127). In particular, IDP-denovo128 
and RATTLE129 can perform de novo transcript assembly by long 
reads without a reference genome. More recently, ONT direct RNA 
sequencing has made transcriptome-wide investigation of native 
RNA molecules feasible52,130,131. However, development of corre-
sponding bioinformatics tools, especially for quantitative analyses, 
remains inadequate.

Applications of nanopore sequencing
The long read length, portability and direct RNA sequencing capa-
bility of ONT devices have supported a diverse range of applications 
(Fig. 5). We review 11 applications that are the subject of the most 
publications since 2015.

Closing gaps in reference genomes. Genome assembly is one of the 
main uses of ONT sequencing (~30% of published ONT applica-
tions; Fig. 5). For species with available reference genomes, ONT 
long reads are useful for closing genome gaps, especially in the 
human genome. For example, ONT reads have been used to close 
12 gaps (>50 kb for each gap) in the human reference genome and 
to measure the length of telomeric repeats132 and also to assemble 
the centromeric region of the human Y chromosome133. Moreover, 
ONT enabled the first gapless telomere-to-telomere assembly of 
the human X chromosome, including reconstruction of a ~2.8 Mb 
centromeric satellite DNA array and closing of all remaining 29 
gaps (totaling 1.1 Mb)134. The Telomere-to-Telomere Consortium 
reported the first complete human genome (T2T-CHM13) of the 
size 3.055 Gb (ref. 135).

The Caenorhabditis elegans reference genome has also been 
expanded by >2 Mb through accurate identification of repeti-
tive regions using ONT long reads136. Similar progress has been 
achieved in other model organisms and closely related species (for 
example, Escherichia coli109, Saccharomyces cerevisiae137, Arabidopsis  
thaliana138 and 15 Drosophila species139) as well as in non-model 
organisms, including characterizing large tandem repeats in the 
bread wheat genome140 and improving the continuity and com-
pleteness of the genome of Trypanosoma cruzi (the parasite causing 
Chagas disease)141.

Building new reference genomes. ONT long reads have been 
used extensively to assemble the initial reference genomes of many 
non-model organisms. For instance, ONT data alone were used 
to assemble the first genome of Rhizoctonia solani (a pathogenic 
fungal species that causes damping-off diseases in a wide range of 
crops)142, and hybrid sequencing data (ONT plus Illumina) were 
used to assemble the first draft genomes of Maccullochella peelii 
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(Australia’s largest freshwater fish)143 and Amphiprion ocellaris (the 
common clown fish)144. In more complicated cases, ONT long reads 
have been integrated with one or more other techniques (for exam-
ple, Illumina short reads, PacBio long reads, 10x Genomics linked 
reads, optical mapping by Bionano Genomics and spatial distance 
by Hi-C) to assemble the initial reference genomes of many spe-
cies, such as Maniola jurtina (the meadow brown butterfly, a model 
for ecological genetics)145, Varanus komodoensis (the largest extant 
monitor lizard)146, Pavo cristatus (the national bird of India)147, 
Panthera leo (the lion)148 and Eumeta variegate (a bagworm moth 
that produces silk with potential in biomaterial design)149. In addi-
tion, ONT direct RNA sequencing has been used to construct RNA 
viral genomes while eliminating the need for the conventional 
reverse transcription step, including Mayaro virus150, Venezuelan 
equine encephalitis virus150, chikungunya virus150, Zika virus150, 
vesicular stomatitis Indiana virus150, Oropouche virus150, influenza 
A53 and human coronavirus86. For small DNA/RNA viral genomes 
(for example, the 27-kb human coronavirus genome86), the assem-
bly process is not required given the long read length.

In the SARS-CoV-2 pandemic151, ONT sequencing was used to 
reconstruct full-length SARS-CoV-2 genome sequences via cDNA 
and direct RNA sequencing152–155, providing valuable information 
regarding the biology, evolution and pathogenicity of the virus.

The increasing yield, read length and accuracy of ONT data 
enable much more time- and cost-efficient genome assembly of all 
sizes of genomes, from bacteria of several megabases109, fruit fly139,156, 
fish143,144,157, blood clam158, banana159, cabbage159 and walnut160,161, all 
of whose genomes are in the hundreds of megabases, as well as the 
Komodo dragon146, Steller sea lion162, lettuce (https://nanoporetech.
com/resource-centre/tip-iceberg-sequencing-lettuce-genome) 
and giant sequoia163, with genomes of a few gigabases, to coast 
redwood (https://www.savetheredwoods.org/project/redwood- 
genome-project/) and tulip (https://nanoporetech.com/resource- 
centre/beauty-and-beast), with genomes of 27–34 Gb. Only three 
PromethION flow cells were required to sequence the human 
genome, requiring <6 h for the computational assembly164.

Identifying large SVs. A powerful application of ONT long reads 
is to identify large SVs (especially from humans) in biomedi-
cal contexts, such as the breast cancer cell line HCC1187 (ref. 33), 
individuals with acute myeloid leukemia113, the construction of the 
first haplotype-resolved SV spectra for two individuals with con-
genital abnormalities112 and the identification of 29,436 SVs from a 
Yoruban individual NA19240 (ref. 165).

Characterizing full-length transcriptomes and complex tran-
scriptional events. A comprehensive examination of the feasibility 
of ONT cDNA sequencing (with R7 and R9 nanopores) in tran-
scriptome analyses demonstrated its similar performance in gene 
isoform identification to PacBio long reads, both of which are supe-
rior to Illumina short reads42. With ONT data alone, there remain 
drawbacks in estimating gene/isoform abundance, detecting splice 
sites and mapping alternative polyadenylation sites, although recent 
improvements in accuracy and throughput have advanced these 
analyses. Nevertheless, ONT cDNA sequencing was also tested 
in individual B cells from mice120 and humans122,166. Furthermore, 
ONT direct RNA sequencing has been used to measure the poly(A) 
tail length of native RNA molecules in humans131, C. elegans167, A. 
thaliana168 and Locusta migratoria169, corroborating a negative cor-
relation between poly(A) tail length and gene expression167,168. In 
addition, the full-length isoforms of human circular RNAs have 
been characterized by ONT sequencing following rolling circle 
amplification170,171.

Characterizing epigenetic marks. As early as 2013, independent 
reports demonstrated that methylated cytosines (5mC and 5hmC) 

in DNA could be distinguished from native cytosine by the char-
acteristic current signals measured using the MspA nanopore172,173. 
Later, bioinformatics tools were developed to identify three kinds 
of DNA modifications (6mA, 5mC and 5hmC) from ONT data71,75. 
Recently, ONT was applied to characterize the methylomes from 
different biological samples, such as 6mA in a microbial reference 
community174 as well as 5mC and 6mA in E. coli, Chlamydomonas 
reinhardtii and human genomes76.

Mapping DNA modifications using ONT sequencing in com-
bination with exogenous methyltransferase treatment (inducing 
5mC at GpC sites) led to the development of an experimental and 
bioinformatics approach, MeSMLR-seq, that maps nucleosome 
occupancy and chromatin accessibility at the single-molecule level 
and at long-range scale in S. cerevisiae72 (Table 1). Later, another 
method, SMAC-seq adopted the same strategy with the addi-
tional exogenous modification 6mA to improve the resolution of 
mapping nucleosome occupancy and chromatin accessibility175. 
Similarly, multiple epigenetic features, including the endogenous 
5mC methylome (at CpG sites), nucleosome occupancy and chro-
matin accessibility, can be simultaneously characterized on single 
long human DNA molecules by MeSMLR-seq (K.F.A., unpublished 
data, and ref. 176). Such epigenome analyses can be performed in a 
haplotype-resolved manner and thus will be informative for discov-
ering allele-specific methylation linked to imprinted genes as well as 
for phasing genomic variants and chromatin states, even in hetero-
geneous cancer samples.

Similarly, several other methods have combined various bio-
chemical techniques with ONT sequencing (Table 1). For example, 
the movement of DNA replication forks on single DNA molecules 
has been measured by detection of nucleotide analogs (for example, 
5-bromodeoxyuridine (5-BrdU)) using ONT sequencing177–179, and 
the 3D chromatin organization in human cells has been analyzed by 
integrating a chromatin conformation capture technique and ONT 
sequencing to capture multiple loci in close spatial proximity by 
single reads180. Two other experimental assays, DiMeLo-seq181 and 
BIND&MODIFY182, use ONT sequencing to map histone modifica-
tions (H3K9me3 and H3K27me3), a histone variant (CENP-A) and 
other specific protein–DNA interactions (for example, CTCF bind-
ing profile). They both construct a fusion protein of the adenosine 
methyltransferase and protein A to convert specific protein–DNA 
interactions to an artificial 6mA profile, which is subsequently 
detected by ONT sequencing.

Detecting RNA modifications. Compared to existing antibody- 
based approaches (which are usually followed by short-read 
sequencing), ONT direct RNA sequencing opens opportunities 
to directly identify RNA modifications (for example, m6A) and 
RNA editing (for example, inosine), which have critical biological 
functions. In 2018, distinct ionic current signals for unmodified 
and modified bases (for example, m6A and m5C) in ONT direct 
RNA-sequencing data were reported52. Since then, epitranscriptome 
analyses using ONT sequencing have progressed rapidly, including 
detection of 7-methylguanosine (m7G) and pseudouridine in 16S 
rRNAs of E. coli183, m6A in mRNAs of S. cerevisiae73 and A. thali-
ana168 and m6A130 and pseudouridine104 in human RNAs. Recent 
independent research (K.F.A., unpublished data, and refs. 184,185) 
has revealed that it is possible to probe RNA secondary structure 
using a combination of ONT direct RNA sequencing and artificial 
chemical modifications (Table 1). The dynamics of RNA metabo-
lism were also analyzed by labeling nascent RNAs with base analogs 
(for example, 5-ethynyluridine186 and 4-thiouridine187) followed by 
ONT direct RNA sequencing (Table 1).

Cancer. ONT sequencing has been applied to many cancer types, 
including leukemia188–192, breast33,176,193, brain193, colorectal194, pancre-
atic195 and lung196 cancers, to identify genomic variants of interests,  
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especially large and complex ones. For example, ONT amplicon 
sequencing was used to identify TP53 mutations in 12 individu-
als with chronic lymphoblastic leukemia188. Likewise, MinION 
sequencing data revealed BCR-ABL1 kinase domain mutations in 
19 individuals with chronic myeloid leukemia and 5 individuals 
with acute lymphoblastic leukemia with superior sensitivity and 
time efficiency compared to Sanger sequencing189. Additionally, 
ONT whole-genome sequencing was used to rapidly detect chro-
mosomal translocations and precisely determine the breakpoints in 
an individual with acute myeloid leukemia192.

A combination of Cas9-assisted target enrichment and ONT 
sequencing has characterized a 200-kb region spanning the breast 
cancer susceptibility gene BRCA1 and its flanking regions despite 
a high repetitive sequence fraction (>50%) and large gene size 
(~80 kb)197. This study provided a template for the analysis of full 
variant profiles of disease-related genes.

The ability to directly detect DNA modifications using ONT data 
has enabled the simultaneous capture of genomic (that is, copy num-
ber variation) and epigenomic (that is, 5mC) alterations using only 
ONT data from brain tumor samples193. The whole workflow (from 
sample collection to bioinformatics results) was completed in a single 
day, delivering a multimodal and rapid molecular diagnostic for can-
cers. In addition, same-day detection of fusion genes in clinical speci-
mens has also been demonstrated by MinION cDNA sequencing198.

Infectious disease. Because of its fast real-time sequencing capabili-
ties and small size, MinION has been used for rapid pathogen detec-
tion, including diagnosis of bacterial meningitis199, bacterial lower 
respiratory tract infection200, infective endocarditis201, pneumonia202 
and infection in prosthetic joints203. In the example of bacterial men-
ingitis, 16S amplicon sequencing took only 10 min using MinION 
to identify pathogenic bacteria in all six retrospective cases, making 
MinION particularly useful for the early administration of antibi-
otics through timely detection of bacterial infections199. Likewise, 
clinical diagnosis of bacterial lower respiratory tract infection using 
MinION was faster (6 h versus >2 d) and had higher sensitivity than 
existing culture-based ‘gold standard’ methods200.

In addition to pathogen detection, ONT sequencing can accel-
erate profiling antibiotic/antimicrobial resistance in bacteria and 
other microbes. For example, MinION was used to identify 51 
acquired resistance genes directly from clinical urine samples (with-
out culture) of 55 that were detected from cultivated bacteria using 
Illumina sequencing204, and a recent survey of resistance to colistin 
in 12,053 Salmonella strains used a combination of ONT, PacBio 
and Illumina data205. Indeed, ONT sequencing is useful for detect-
ing specific species and strains (for example, virulent ones) from 
microbiome samples given the unambiguous mappability of longer 
reads, which provides accurate estimates of microbiome composi-
tion compared to the conventional studies relying on 16S rRNA and 
DNA amplicons57,206.

Genetic disease. ONT long reads have been applied to character-
ize complex genomic rearrangements in individuals with genetic 
disorders. For example, ONT sequencing of human genomes 
revealed that an expansion of tandem repeats in the ABCA7 gene 
was associated with an increased risk of Alzheimer’s disease207. ONT 
sequencing was also used to discover a new 3.8-Mb duplication in 
the intronic region of the F8 gene in an individual with hemophilia 
A208. Other examples cover a large range of diseases and conditions, 
including autism spectrum disorder209, Temple syndrome210, con-
genital abnormalities112, glycogen storage disease type Ia (ref. 211),  
intellectual disability and seizures212, epilepsy213,214, Parkinson’s 
disease215, Gaucher disease215, ataxia-pancytopenia syndrome and 
severe immune dysregulation114.

In another clinical application, human leukocyte antigen  
genotyping benefited from the improved accuracy of the R9.5  

nanopore216–218. MinION enabled the detection of aneuploidy in 
prenatal and miscarriage samples in 4 h compared to 1–3 weeks 
with conventional techniques219.

Outbreak surveillance. The portable MinION device allows in-field 
and real-time genomic surveillance of emerging infectious diseases, 
aiding in phylogenetic and epidemiological investigations such as 
characterization of evolution rate, diagnostic targets, response to 
treatment and transmission rate. In April 2015, MinION devices 
were shipped to Guinea for real-time genomic surveillance of the 
ongoing Ebola outbreak. Only 15–60 min of sequencing per sample 
was required220. Likewise, a hospital outbreak of Salmonella was 
monitored with MinION, with positive cases identified within 2 h 
(ref. 221). MinION was also used to conduct genomic surveillance 
for Zika virus222, yellow fever virus223 and dengue virus224 outbreaks 
in Brazil.

With the increasing throughput of ONT sequencing, real-time 
surveillance has been applied to pathogens with larger genomes 
over the years, ranging from viruses of a few kilobases (for example, 
Ebola virus220, 18–19 kb; Zika virus222, 11 kb; Venezuelan equine 
encephalitis virus225, 11.4 kb; Lassa fever virus226, 10.4 kb and 
SARS-CoV-2 coronavirus151, 29.8 kb) to bacteria of several mega-
bases (for example, Salmonella221, 5 Mb; N. meningitidis227, 2 Mb and 
K. pneumoniae228, 5.4 Mb) and to human fungal pathogens with 
genomes of >10 Mb (for example, Candida auris229, 12 Mb).

Other on-site applications. Portable ONT devices have also been 
used for on-site metagenomics research. MinION characterized 
pathogenic microbes, virulence genes and antimicrobial resistance 
markers in the polluted Little Bighorn River, Montana, United 
States230. MinION and MinIT devices were brought to farms in 
sub-Saharan Africa for early and rapid diagnosis (<3 h) of plant 
viruses and pests in cassava231. In forensic research, a portable strat-
egy known as ‘MinION sketching’ was developed to identify human 
DNA with only 3 min of sequencing232, offering a rapid solution to 
cell authentication or contamination identification during cell or 
tissue culture.

The portability of the MinION system, which consists of the 
palm-sized MinION, mobile DNA extraction devices (for exam-
ple, VolTRAX and Bento Lab) and real-time onboard base calling 
with Guppy and other offline bioinformatics tools, enables field 
research in scenarios where samples are hard to culture or store or 
where rapid genomic information is needed233. Examples include 
the International Space Station, future exploration of Mars and the 
Moon involving microgravity and high levels of ionizing radia-
tion69,234,235, ships236, Greenland glaciers at subzero temperatures237, 
conservation work in the Madagascar forest238 and educational 
outreach238.

Outlook
Nanopore sequencing has enabled many biomedical studies by pro-
viding ultralong reads from single DNA/RNA molecules in real time. 
Nonetheless, current ONT sequencing techniques have several limi-
tations, including relatively high error rates and the requirement for 
relatively high amounts of nucleic acid material. Overcoming these 
challenges will require further breakthroughs in nanopore technol-
ogy, molecular experiments and bioinformatics software.

The principal concern in many applications is the error rate, 
which, at 6–15% for the R9.4 nanopore, is still much higher than 
that of Illumina short-read sequencing (0.1–1%). Despite substan-
tial improvements in data accuracy over the past 7 years, there 
may be an intrinsic limit to 1D read accuracy. The sequencing of 
single molecules has a low signal-to-noise ratio, in contrast to bulk 
sequencing of molecules as in Illumina sequencing. Indeed, the 
same issue arises in the other single-molecule measurement tech-
niques, such as Helicos, PacBio and BioNano Genomics. There 
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is currently no theoretical estimation of this limit, but for refer-
ence, Helicos managed to reduce error rates to 4% (ref. 239). Future 
improvements in accuracy can be expected through optimization of 
molecule translocation ratcheting and, in particular, through engi-
neering existing nanopores or discovering new ones. Indeed, many 
studies have been exploring new biological or non-biological nano-
pores with shorter sensing regions to achieve context-independent 
and high-quality raw signals. For example, graphene-based nano-
pores are capable of DNA sensing and have high durability and insu-
lating capability in high ionic strength solutions240–242, where their 
thickness (~0.35 nm) is ideal for capturing single nucleotides243. 
Because such context-independent signals minimize the complex 
signal interference between adjacent modified bases, they could 
also make it possible to detect base modifications at single-molecule 
and single-nucleotide resolutions. Another approach for improv-
ing 1D read accuracy is to develop base-calling methods based on 
advanced computational techniques, such as deep learning.

Repetitive sequencing of the same molecule, for example, using 
2D and 1D2 reads, was helpful in improving accuracy. However, 
both of these approaches were limited in that each molecule could 
only be measured twice. By contrast, the R2C2 protocol involves the 
generation and sequencing of multiple copies of target molecules122. 
It may also be possible to increase data accuracy by recapturing 
DNA molecules into the same nanopore244 or by using multilayer 
nanopores for multiple sequencing of each molecule.

Improved data accuracy would advance single-molecule omics 
studies. Haplotype-resolved genome assembly has been demon-
strated for PacBio data245, which could likely be achieved using ONT 
sequencing. Methods are being developed to characterize epig-
enomic and epitranscriptomic events beyond base modifications 
at the single-molecule level, such as nucleosome occupancy and 
chromatin accessibility72,175,176 and RNA secondary structure184,185. 
These approaches would allow investigation of the heterogene-
ity and dynamics of the epigenome and epitranscriptome as well 
as analysis of allele-specific and/or strand-specific epigenomic and 
epitranscriptomic phenomena. They would require specific experi-
mental protocols (for example, identifying chromatin accessibility 
by detecting artificial 5mC footprints72,175,176) rather than the simple 
generation of long reads.

Although the ultralong read length of ONT data remains its 
principal strength, further increases in read length would be ben-
eficial, further facilitating genome assembly and the sequencing 
of difficult to analyze genomic regions (for example, eukaryotic 
centromeres and telomeres). Once read lengths reach a certain 
range, or even cover entire chromosomes, genome assembly would 
become trivial, requiring little computation and having superior 
completeness and accuracy. Personalized genome assembly would 
become widely available, and it would be possible to assemble the 
genomes of millions of species across the many Earth ecosystems. 
Obtaining megabase-scale or longer reads will require the develop-
ment of HMW DNA extraction and size selection methods as well 
as protocols to maintain ultralong DNA fragments intact.

The other key experimental barrier to be addressed is the large 
amount of input DNA and RNA required for ONT sequencing, 
which is up to a few micrograms of DNA and hundreds of nano-
grams of RNA. PCR amplification of DNA is impractical for very 
long reads or impermissible for native DNA/RNA sequencing. 
Reducing the sample size requirement would make ONT sequenc-
ing useful for the many biomedical studies in which genetic mate-
rial is limited. In parallel, ONT sequencing will benefit from the 
development of an end-to-end system. For example, the integra-
tion and automation of DNA/RNA extraction systems, sequencing 
library preparation and loading systems would allow users without 
specific training to generate ONT sequencing data. More robust 
and user-friendly bioinformatics software, such as cloud storage 
and computing and real-time analysis, will provide a further boost 

to ONT sequencing applications, ultimately moving the technology 
beyond the lab and into daily life.
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