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Structure of the human dopamine 
transporter and mechanisms of inhibition

Dushyant Kumar Srivastava1, Vikas Navratna1,7, Dilip K. Tosh2, Audrey Chinn1, 
Md Fulbabu Sk3,4,5, Emad Tajkhorshid3,4,5, Kenneth A. Jacobson2 ✉ & Eric Gouaux1,6 ✉

The neurotransmitter dopamine has central roles in mood, appetite, arousal and 
movement1. Despite its importance in brain physiology and function, and as a target 
for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and 
mechanisms by which it is inhibited by small molecules and Zn2+ are without a high- 
resolution structural context. Here we determine the structure of hDAT in a tripartite 
complex with the competitive inhibitor and cocaine analogue, (–)-2-β-carbomethoxy- 
3-β-(4-fluorophenyl)tropane2 (β-CFT), the non-competitive inhibitor MRS72923 and 
Zn2+ (ref. 4). We show how β-CFT occupies the central site, approximately halfway 
across the membrane, stabilizing the transporter in an outward-open conformation. 
MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the 
extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and 
adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement 
of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward- 
facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific 
insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits 
transport activity.

Dopamine and the dopaminergic circuits in the brain are intimately 
involved in mood, reward, motivation and movement5. Outside the 
brain, dopamine participates in signalling in the eye, cardiovascular 
system and pancreas6. Within the central nervous system, dopamine 
is produced by a small number of neurons located in the midbrain that 
project throughout the brain, acting as vehicles of dopamine release 
to diverse regions, including the striatum, limbic system and neocor-
tex7, thus explaining the profound effect of dopaminergic signalling 
on brain function. Dysfunction of dopaminergic signalling underpins 
Parkinson’s disease8 and multiple psychological disorders9, and illicit 
and therapeutic drugs, including medications used to treat attention 
deficit hyperactivity disorder, modulate dopaminergic signal transduc-
tion10. Widely used therapeutic or illicit drugs, such as methylphenidate, 
amphetamines or cocaine, target the human dopamine transporter 
(hDAT), perturbing or inhibiting dopamine transport and thus disrupt-
ing dopaminergic signalling11.

The hDAT is a member of the neurotransmitter sodium symporter 
(NSS) family of transporters, which in turn belong to the larger family 
of SLC6 transporters12, integral membrane proteins that harness ion 
gradients to achieve concentrative reuptake of small molecules by 
way of an alternating access mechanism13. The hDAT uses Na+ and Cl− 
gradients to enable substrate uptake, with K+ promoting the return of 
the transporter to the extracellular-facing conformation, following 
unbinding of substrate and ions within the cytoplasm14. The activity of 
hDAT is distinct from its biogenic amine transporter relatives, however, 

in that transport activity is inhibited by physiologically related levels4 
of Zn2+, which is co-released with neurotransmitters15, as well as by 
synthetic small molecules, such as KM822 and MRS7292, which target 
largely uncharacterized, allosteric site(s)3,16,17. Although studies on a 
transport-inactive Drosophila dopamine transporter (dDAT) illumi-
nated its overall structure and the mechanism by which substrates 
and inhibitors bind to the central site18–20, the molecular structure 
of functionally active hDAT and the mechanisms of small molecules 
and ions acting on allosteric sites, and at the central site, remain unre-
solved. Here we define the binding site and non-competitive inhibition 
mechanism of MRS72923, elaborate a structure-based mechanism for 
Zn2+ modulation of transport, and map the binding site of β-CFT, a 
high-affinity cocaine analogue.

Overall architecture of ∆-hDAT complex
To facilitate expression and purification, we removed 56 residues from 
the N terminus that are predicted to be unstructured, and used the point 
mutant I248Y, which provided modest thermostability21, together yield-
ing the Δ-hDAT construct. Δ-hDAT exhibits dopamine transport (Fig. 1a) 
and [3H]WIN35428 binding (Fig. 1b) activities similar to the full-length, 
wild-type transporter22,23. Following expression in mammalian cells, 
detergent solubilization and purification in the presence of MRS7292 
and β-CFT, we obtained monodisperse and homogenous Δ-hDAT 
(Extended Data Fig. 1a,b) for cryo-electron microscopy (cryo-EM) 
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grid preparation. Inclusion of both MRS7292 and β-CFT yields a highly 
stable complex, facilitating transporter isolation and single-particle 
cryo-EM studies21. Collection of a large single-particle cryo-EM data-
set and extensive image processing (Extended Data Fig. 2a), which 
included ab initio-based 3D classification followed by non-uniform 
refinement, ultimately yielded a cryo-EM reconstruction of Δ-hDAT at 
3.19 Å (Extended Data Fig. 2b–e). The resulting density map allowed for 
fitting of nearly the entire polypeptide chain, the placement of most 
side chains (Extended Data Fig. 3), the positioning of bound ligands, 
a Zn2+ and a Na+ ion, as well as the definition of multiple detergent or 
lipid molecules. Both in the single-particle classifications and in the bio-
chemical analysis of the transporter, we observe detergent-solubilized 
Δ-hDAT as a monomer, although many previous studies find that dopa-
mine transporters and related NSSs exist as dimers or higher-ordered 

oligomers24. Further experiments are required to understand how to 
retain oligomeric species upon membrane solubilization.

The overall structure of Δ-hDAT adheres to the canonical LeuT fold25, 
a conserved architecture among the SLC6 transporters, with trans-
membrane helices TM1–5 related to TM6–10 by a pseudo two-fold 
axis of symmetry, aligned approximately parallel to the membrane 
(Fig. 1c). The Δ-hDAT structure resolved here, bound with multiple 
inhibitory small molecules and ions, adopts an outward-open confor-
mation (Fig. 1d) where the central ligand binding site, also known as 
the S1 site, is accessible to bulk solvent via the extracellular vestibule. 
In accord with the outward-open conformation, the distance between 
two conserved residues of the extracellular gate, F320 on TM6b and 
Y156 on TM3, is approximately 13 Å. The cytoplasmic gate is closed, 
consistent with an outward-open state, with TM1a residing within the 
protein core (Fig. 1c), interacting extensively with TM5, TM6b and TM7. 
The C-terminal ‘latch’, which caps the cytoplasmic face of the trans-
porter, is—to our knowledge—the most extensive cytoplasmic motif 
observed to date in an NSS (Extended Data Fig. 4a), and includes three 
short C-terminal helices (CT1, CT2 and CT3) that cover the cytoplasmic 
termini of TM3, TM10 and TM12 (Extended Data Fig. 4b), further stabi-
lizing the closed conformation of the cytoplasmic gate.

The activity of hDAT and related NSSs is modulated by lipids and 
cholesterol26–28 and, accordingly, we find multiple lipid or lipid-like 
density features that we have modelled as either linear alkyl chains or 
cholesteryl hemisuccinate (CHS) molecules (Extended Data Fig. 5a). 
We observe densities consistent with either CHS or cholesterol in the 
Δ-hDAT structure that are equivalent to sites in dDAT18,19 (Extended 
Data Fig. 5b) and near to a cholesterol site in the human serotonin 
transporter29 (hSERT) (Extended Data Fig. 5c). We also find density 
for CHS at an additional site, in a groove formed by TM4, TM5 and TM8 
(Extended Data Fig. 5d). Covalent modification of extracellular-exposed 
surfaces, by way of N-linked glycosylation at N181, N188 and N205, all on 
EL2, confers maximal transport activity upon hDAT and, when ablated, 
alters the potency of cocaine-like drugs30. For the Δ-hDAT expressed 
in GnTI− cells, a line that yields core N-linked carbohydrate similar to 
HEK293 cells31, we observe prominent density for glycosylation at N188, 
whereas density for modification at N181 and N205 is too weak to model.

Central site pharmacology
There is a high degree of amino acid sequence conservation between 
the monoamine transporters (MATs)—hDAT, human noradrenaline 
transporter (hNET) and hSERT. Nevertheless, decades of pharmacologi-
cal studies have led to the development of transporter-selective small 
molecule inhibitors that bind to the central site. β-CFT (Fig. 1e,f), which 
is used in the present structure determination, has modest selectivity 
for binding to hDAT over hNET and hSERT32, whereas reboxetine prefers 
hNET over hDAT and hSERT33, a selectivity that is conferred by residues 
both within and outside of the central site34. The classic selective sero-
tonin reuptake inhibitor S-citalopram shows a strong preference for 
binding to hSERT over hDAT and hNET35. Inspection of the complex of 
β-CFT with Δ-hDAT enables us to visualize key interactions between the 
transporter and ligand and to define the overall transporter conforma-
tion, thus providing information on how residues within the binding 
site may sculpt transporter selectivity. The role(s) of residues outside 
of the central binding site in modulating ligand selectivity will require 
further investigation.

β-CFT occupies the central site of Δ-hDAT (Fig. 1g), consistent with 
its action as a competitive inhibitor of dopamine uptake36. Using the 
‘A, B and C’ representation of the central site37, the tropane moiety of 
β-CFT is positioned toward subsite A, facing D79 and A81 on TM1b, 
F76 on TM1a and G323 on TM6. The fluorophenyl moiety of β-CFT is in 
subsite B, near residues on TM3, TM6 and TM8. V152, S422 and Y156 par-
ticipate in van der Waals contacts, and F326 on the TM6a–TM6b linker 
forms an edge-to-face contact with the phenyl ring of the fluorophenyl 
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Fig. 1 | Function and architecture of inhibitor-bound ∆-hDAT. a, Saturation 
uptake of [3H]dopamine in HEK293 GnTI− cells expressing ∆-hDAT (black) and 
full-length hDAT (blue). Uptake in the presence of 10 µM MRS7292 is shown in 
orange and pink for ∆-hDAT and full-length hDAT, respectively. The Michaelis 
constant (Km) values for [3H]dopamine uptake by ∆-hDAT and full-length hDAT 
were 0.55 ± 0.07 and 0.56 ± 0.13 μM, and reaction rate at infinite substrate 
concentration (Vmax) values were 342.8 ± 11.7 and 190.9 ± 10.7 fmol min−1 per well, 
respectively. Data were analysed using a Michaelis–Menten kinetics model. 
The uptake assay was performed in n = 3 biological replicates, with each in 
technical triplicate. Data are mean ± s.d. b, Scintillation proximity assay  
(SPA) using [3H]WIN35428 and purified His-tagged ∆-hDAT. The dissociation 
constant (Kd) for [3H]WIN35428 binding by ∆-hDAT was 6.5 ± 0.91 nM. Data are 
mean ± s.d. Assays were done in n = 3 independent replicates, each with 
technical triplicates. c, Structure of ∆-hDAT showing β-CFT in the central site 
and MRS7292 in the allosteric site. NAG represents an N-acetylglucosamine 
modification at N188. d, Slab view of ∆-hDAT in a surface representation showing 
how the transporter adopts an outward-open conformation. e, Chemical 
structure of β-CFT (prepared using ChemDraw 18.2). f, Density associated  
with β-CFT, contoured at 10σ, within 2 Å of the ligand atoms. g, Close-up 
representation of β-CFT bound to the central site. Hydrogen-bonding 
interactions are shown as black, dashed lines.
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group (Fig. 1g). Akin to the dDAT–β-CFT complex19, the carbomethoxy 
group protrudes toward the base of the extracellular gate25,38, yet does 
not disturb the critical hydrogen-bonding interaction between Y156 
and D7939,40. Subsite B residues M427 and G153, when introduced into 
the corresponding positions in dDAT, enhance β-CFT binding19 and, in 
hSERT, these same residues are leucine and alanine, respectively29,41. 
These differences in subsite B residue composition may contribute to 
the selectivity of Δ-hDAT for β-CFT.

Subsite C residues in MATs are involved in accommodating chemical 
moieties of bulky inhibitor molecules, as seen in the S-citalopram–
hSERT complex29, in which T497 and V501 provide a mixed polar and 
non-polar surface for accommodating the cyano group of S-citalopram 
(Extended Data Fig. 6a). T497 is an alanine in both hDAT and hNET; 
thus, differential residue composition in subsite C can explain in 
part the selectivity of S-citalopram for hSERT. The superposition of 
β-CFT-bound ∆-hDAT with the cocaine-bound, native, porcine SERT 
(pSERT) (Protein Data Bank (PDB): 8DE342) and β-CFT-bound dDAT 
(PDB: 4XPG) structures shows overall α-carbon root mean-square devia-
tion (r.m.s.d.) values of 1.05 and 1.08 Å, respectively, with the central 
site being well superimposed (Extended Data Fig. 6b). The central site 
in Δ-hDAT is solvent-accessible via the extracellular vestibule, as a con-
sequence of the swung-out position of F320 (Extended Data Fig. 6c), 
similar to the dDAT complex with β-CFT19. Of note, in the complex of 
pSERT with the β-CFT analogue cocaine42 (PDB: 8DE3), the side chain of 
the equivalent phenylalanine residue is swung-in, covering the central 
site and occluding the ligand from the extracellular solution (Extended 
Data Fig. 6c).

Molecular dynamics simulations and analysis further support the 
binding pose of β-CFT at the central site in the ∆-hDAT cryo-EM struc-
ture (Supplementary Fig. 2). Analysis of the fluctuation of β-CFT moie-
ties revealed more stable tropane and fluorophenyl groups compared 
to the greater fluctuations and solvent exposure for the carbomethoxy 
group (Supplementary Fig. 3). The per-residue contact analysis (Sup-
plementary Fig. 4) revealed that residues F76, A77, D79, A81, F320 and 
G323 from subsite A frequently interact with the tropane moiety, and 
residues V152, G153, Y156, F326, S422, A423 and G426 interact with 
the fluorophenyl moiety, which probably aids in stabilizing β-CFT. 
Additionally, consistent hydrogen bonding (Supplementary Fig. 5a) 
between the acidic side chain of D79 and the tropane moiety (via the 
tropane nitrogen atom) and comparison of each simulated binding 
mode with the cryo-EM model (Supplementary Fig. 6), as well as the 
measurement of the in silico density of spatial sampling of β-CFT (Sup-
plementary Fig. 7) support stable binding across all simulated replicas 
(Extended Data Fig. 7d).

A density feature adjacent to β-CFT, and indicative of a bound ion, 
parallels the Na2 site in LeuT43, dDAT18, and hSERT29, suggesting the 
presence of a similar Na+-coordinating site in ∆-hDAT (Extended Data 
Fig. 7e). The Na+ ion is coordinated with the main chain oxygens of V78 
and L418 on TM1 and TM8, respectively, and side chains of D421 and 
S422 on TM8, with a mean coordination distance of 2.3 Å.

MRS7292 sculpts an allosteric site
The N-methanocarba nucleoside analogue MRS7292 slows the unbind-
ing of the central site ligand β-CFT21, acts as a non-competitive inhibitor 
of dopamine transport, and has a chemical structure unlike previously 
characterized hDAT ligands3,16. To understand how MRS7292 inhibits 
dopamine transport and slows the dissociation of ligands from the 
central site, we determined the structure of Δ-hDAT in complex with 
MRS7292 and β-CFT (Fig. 2a). The density is located underneath EL4, 
adjacent to TM1b, and about 13 Å above the central binding site, where 
β-CFT is found (Fig. 2b,c). In accord with the largely non-polar character 
of MRS7292, the associated binding pocket is primarily hydrophobic 
and lined by aromatic and aliphatic amino acid residues (Fig. 2a). The 
MRS7292-binding site is spatially distinct from the hSERT allosteric 

site (Extended Data Fig. 7a) defined by the binding of citalopram29, 
vilazodone44 or the allosterically bound serotonin molecule41. The 
allosteric site ligands in hSERT and Δ-hDAT are at least 13 Å distant 
from the central site, consistent with the conclusion that the allosteric 
ligands do not directly contact the ligand bound to the central site.

The MRS7292 compound is inserted deeply into Δ-hDAT with only a 
small amount of surface area exposed to the solution (Fig. 2a). Buried 
underneath EL4 and sandwiched between TM1b and a short helix of 
EL4a, the MRS7292-binding site (MRS site) can be divided into three 
subsites: the ring clasp (I), the adenosine sandwich (II) and the thienyl 
anchor (III) (Fig. 2a). The hydroxyl-decorated, rigid methanocarba ring 
is in subsite I, clasped underneath the turn in EL4, making extensive 
van der Waals interactions. The terminal alkyl group of the methyl 
ester is in close proximity to a hydrophobic groove formed by I159 and 
W162 on TM3, F391 on EL4b and F472 on TM10 (Extended Data Fig. 7b). 
The carbonyl oxygen of the methyl ester may interact with D476 via a 
water-mediated hydrogen bond, leaving the secondary hydroxyl groups 
as the major solvent-exposed portions of the ligand.

Gripping the MRS7292 ligand is a sandwich-like interaction between 
the adenine group and the indole moiety of W84 on one side, and the 
polypeptide main chain of residues 388–389 on the other side (Fig. 2a). 
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Testament to the crucial role of W84 in subsite II, mutation to alanine 
or cysteine severely compromises the potency of MRS7292 (Extended 
Data Fig. 7c,d). By contrast, the W84C mutant increases the potency of 
KM822, a small molecule inhibitor of hDAT that is structurally distinct 
from MRS729217, thus suggesting distinction in binding site(s) between 
MRS7292 and KM822. Near the indole NH group of W84, and possibly 
interacting with the N1 nitrogen of MRS7292 via a water molecule, 
is D385. Consistent with the importance of the aspartate, mutation 
to an alanine leads to almost 50% reduction in MRS7292-mediated 
inhibition of dopamine transport (Fig. 2d). Substitution of D385 by 
an asparagine retained potency of MRS7292 as evident by a similar 
inhibition curve to ∆-hDAT (Fig. 2d). This suggests that asparagine is 
able to form a water-mediated hydrogen bond with the N1 of MRS7292 
like its aspartate counterpart in the parental ∆-hDAT. Two hydrogen 
bonds augment the sandwich of subsite II, one involving the exocyclic 
NH group of the adenine moiety and the main chain carbonyl oxygen 
of K384 (EL4) and the second between the hydroxyl of Y394 and the N5 
atom on the adenine ring. The latter interaction is important because 
substitution of the N5 with a CH yields a compound that no longer 
inhibits hDAT transport activity16. The alkyne group links the adenine 
and thienyl moieties, in an axle-like fashion, and is surrounded by L80, 
V364, I390 and Y394, which together act like a bushing for the linear, 
carbon-carbon triple bond. In accord with the relevance of Y394, we 
find that substitution of Y to F diminishes the potency of MRS7292, 
thus substantiating the importance of the hydrogen bond between 
the hydroxyl group of Y394 and the N5 atom of the MRS7292 adenine 
ring (Extended Data Fig. 7c,d).

The 5-chlorothien-2-yl entity is deeply buried in subsite III, sur-
rounded by a constellation of non-polar amino acids that include L280, 
V364, Y394, F411 and M414 (Extended Data Fig. 7e). The aromatic resi-
dues participate in edge-to-face interactions with the five-membered 
thienyl ring, while the aliphatic amino acids supply van der Waals con-
tacts. M414 has a relatively flexible yet non-polar side chain, and to 
probe its role in the interactions with the thienyl moiety, we prepared 
the ∆-hDAT(M414L) variant. Notably, the M414L mutant showed an 
enhanced potency for MRS7292, as evidenced by an approximately 
threefold decrease in the half-maximal inhibitory concentration (IC50) 
value compared with ∆-hDAT (Fig. 2d and Extended Data Fig. 7d). We 
speculate that the smaller leucine side chain creates a larger pocket to 
accommodate the thienyl moiety, thereby reducing steric hindrance 
and enhancing MRS7292-mediated inhibition of dopamine trans-
port. Most of the residues interacting with MRS7292 are conserved 
in related NSSs yet the hDAT orthologues, including hNET and hSERT, 
are less sensitive to inhibition of uptake activity by MRS729219. Of the 
non-conserved residues, V364 is an isoleucine in hNET and hSERT 
(Fig. 2e). Surprisingly, mutation of V364 to isoleucine enhanced appar-
ent MRS7292 affinity, resulting in a nearly fourfold decrease in the IC50 
value compared with the wild-type-like parent (Fig. 2d and Extended 
Data Fig. 7d). To mimic a more hSERT-like MRS7292-binding pocket in 
Δ-hDAT, we generated a double mutant with an additional substitution 
of I390 to leucine in the V364I background. The double mutant showed 
enhanced potency towards MRS7292 with a corresponding approxi-
mately threefold decrease in IC50 value, similar to the V364I mutant. 
However, I390L alone resulted in a modest increase in the IC50 value, 
indicated by the marginal shift of the curve compared with ∆-hDAT. 
Taken together, and reminiscent of the determinants of central site 
ligand selectivity, the mechanism by which MRS7292 exhibits selectivity 
for ∆-hDAT over hNET and hSERT is partially dependent upon residues 
outside of the immediate binding site.

Molecular dynamics-based r.m.s.d. analysis showed stable position-
ing of MRS7292 across five simulation replicas (Supplementary Fig. 2), 
with marginal atomic fluctuations (Fig. 2f). The hydroxyl-decorated 
methanocarba (pseudo-ribose) moiety exhibited slightly higher fluc-
tuations compared to the adenine and thienyl rings (Supplementary 
Fig. 3). The radial distribution function shows solvent exposure for the 

pseudo-ribose moiety of MRS7292 (Supplementary Fig. 3). Further-
more, analysis of the per-residue contact probability (Supplementary 
Fig. 4) showed that the 15 highest coordinating residues from Δ-hDAT 
stabilized MRS7292 within its cryo-EM pose. Moreover, the adenine 
ring of MRS7292 and the indole ring of W84 maintained a stacking-like 
interaction more than 99% of the time (Supplementary Table 1 and 
Supplementary Figs. 4 and 8). Hydrogen bond analysis (Supplementary 
Figs. 4 and 5) indicated stable interactions with key groups, such as the 
exocyclic NH group (N2 atom) of the adenine ring and the backbone car-
bonyl oxygen (O) of K384 (in EL4), as well as the hydroxyl group of Y394 
and the N5 atom of the adenine ring. Additionally, the five-membered 
thienyl ring exhibited stabilization through hydrophobic interactions 
with L280, V363, V364, F411 and M414. Overlay of the MRS7292-binding 
site from all the simulation replicas with the cryo-EM pose is shown in 
Supplementary Fig. 9.

MRS7292 binds to Δ-hDAT by way of an induced-fit mechanism. 
Although we do not yet have a structure of Δ-hDAT in the absence of 
MRS7292, and thus cannot visualize its binding site in an apo state, by 
comparing the MRS site of Δ-hDAT to the equivalent region of a closely 
related hSERT structure (PDB: 7LIA), we speculate that the binding of 
MRS7292 to Δ-hDAT results in substantial conformational changes. 
Compared with hSERT, we estimate that MRS7292 binding displaces 
TM1b and TM6a by 1.9 and 2.1 Å and leads to their reorientations by 3.1 
and 3.8°, respectively (Extended Data Fig. 7f). Compared with dDAT, 
TM1b and TM6a are displaced by 2.6 and 2.8 Å and reoriented by 9.0 and 
3.2°, respectively (Extended Data Fig. 7g). We suggest that MRS7292 
binding also readjusts the conformation of EL4a, as well as the turn 
between EL4a and EL4b, to sculpt the polypeptide chain for optimal 
interactions with the N-methanocarba and adenine rings of MRS7292.

In the context of MATs, the allosteric site of hSERT has been the 
most well characterized, beginning from when it was first suggested 
by ligand-unbinding studies to more recently, when it has been struc-
turally defined in complexes of hSERT with inhibitors, including 
S-citalopram29 and vilazodone44, and with the substrate serotonin41. 
Comparison of the location of the allosteric site in hSERT to the allos-
teric ‘MRS site’ in Δ-hDAT shows that they are entirely distinct loca-
tions on extracellular-facing regions of the transporters (Extended 
Data Fig. 7a). Whereas the allosteric site in hSERT is largely formed by 
residues from TM10, TM11 and TM12, including the di-proline motif 
(P560-P561) in EL6 and P499 on TM10, the allosteric site in Δ-hDAT 
largely involves EL4 and TM1b, together with residues from TM5, TM7 
and TM8. Further inspection of the region of Δ-hDAT that is equivalent 
to the allosteric site in hSERT provides a structural explanation for 
why Δ-hDAT is not sensitive to the same allosteric ligand as hSERT. 
As examples, structural superposition shows that P561 in hSERT is 
substituted by an arginine in hDAT, and the equivalent proline residue 
in the di-proline motif (P546) in Δ-hDAT is situated at a Cα–Cα dis-
tance of 5.9 Å from hSERT P561 (Extended Data Fig. 8a). Furthermore, 
P499 in hSERT is not conserved in Δ-hDAT and is substituted by T482. 
Similarly, the non-polar pocket formed by TM6a, TM10 and TM11 that 
accommodates the fluorophenyl moiety of S-citalopram in hSERT is 
distinct in comparison to Δ-hDAT (Extended Data Fig. 8b). The equiva-
lent region in Δ-hDAT is more polar in nature with T316, T482, S539 in 
place of A331, P499 and F556, respectively, in Δ-hDAT and hSERT. Taken 
together, although Δ-hDAT retains the overall structural motif of the 
hSERT allosteric site, differences in amino acid composition mean that 
hSERT allosteric ligands probably do not bind to Δ-hDAT. Neverthe-
less, the site may still be a target for suitably tailored small molecules.

Zinc restrains extracellular loops
Zn2+ is packaged in vesicles and released upon vesicle fusion with the 
presynaptic membrane45, modulating the activities of synaptic neu-
rotransmitter receptors and transporters. Since the discovery of Zn2+ 
inhibition of dopamine transport decades ago, several key residues 
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involved in Zn2+ binding have been identified4. In the absence of a 
high-resolution structure, proposed mechanisms of inhibition have 
been developed through analysis of hDAT topology, mutagenesis stud-
ies and computational modelling4,46. A previous study showed that 
Zn2+ coordination by H193, H375 and E396 inhibits translocation of 
dopamine while potentiating WIN35428 binding at the central site by 
restraining EL2 and EL447. In agreement with these findings, examina-
tion of the Δ-hDAT cryo-EM density map shows the presence of nearly 
continuous density between a cluster of histidine residues, a glutamate, 
and the aspartate D191 on EL2 and EL4, suggestive of the presence of a 
bound ion. Although we have not supplemented the buffers with Zn2+ 
salts or ions during Δ-hDAT purification, elemental analysis of the puri-
fied Δ-hDAT protein revealed the presence of around 3.9 μM of Zn2+, 
probably from the lysed cells or from the cell growth medium, the latter 
of which contains about 4.1 µM Zn2+. Fitting of a Zn2+ ion to the density 
yielded reasonable coordination geometry (Fig. 3a and Extended Data 
Fig. 9a). The Zn2+ ion is coordinated by H193 on EL2 and H375 at the 
juncture of EL4a and TM7, with Zn2+-to-nitrogen interaction distances 
of 2.3 Å (Fig. 3a). E396 on EL4b defines a third ligand to the Zn2+ ion with 
an interaction distance of 2.1 Å (Fig. 3a). D191 was previously proposed 
to stabilize Zn2+ coordination through hydrogen bonding with H193, 
and mutation of this residue to an asparagine resulted in an apparent 
threefold decrease in Zn2+ affinity47; however, our cryo-EM density map 
shows that D191 is in close proximity to the Zn2+ site, with a carboxylate 
oxygen to Zn2+ distance of 2.3 Å (Fig. 3a). Analysis of the binding site 
geometry is further consistent with a bound Zn2+ ion. A computational 
modelling study proposed D206 on EL2 as a fourth Zn2+-coordinating 
residue46. However, in the current structure of Δ-hDAT, D206 is nearly 
15 Å from the Zn2+ site.

Mutation of the residues involved in Zn2+ coordination or the 
introduction of the same residues at equivalent sites in related 
NSSs (Extended Data Fig. 9b) ablates or introduces Zn2+ sensitivity, 

respectively4. Thus, when H193 is mutated to lysine, the capacity for 
Zn2+ to inhibit transport is compromised4. Similarly, when a histidine 
is introduced at the equivalent site in the Zn2+-insensitive hNET, the 
resulting K189H variant of hNET becomes sensitive to Zn2+ inhibition 
of noradrenaline transport4. hSERT is not sensitive to Zn2+, probably 
because the residues equivalent to H193 and H375 are phenylalanine 
and arginine, respectively, in hSERT (Extended Data Fig. 9b).

Zn2+ coordination in Δ-hDAT restrains EL2 in a distinct conformation 
compared with members of the related NSS transporters hSERT, GlyT1 
and GAT1 (Extended Data Fig. 9c–e). Structures of hSERT through dif-
ferent states of its transport cycle have revealed that movement of 
EL4 relative to EL2 accompanies the transition from outward-open to 
inward-facing conformations42. By analysing the structure of Δ-hDAT 
in the context of the transport mechanism of hSERT, we speculate that 
coordination of Zn2+ inhibits transport by restricting movement of EL4, 
thus preventing the conformational change from the outward-open to 
the inward-facing state (Fig. 3b).

Further inspection of the Zn2+ site revealed a nearby residue, T211 
(Fig. 3a), that itself is not within coordination distance of the Zn2+ but, 
we hypothesized, when mutated to either a glutamate or histidine, 
the respective carboxyl or imidazole groups would be close enough to 
interact favourably with the ion (Extended Data Fig. 9f,g). To increase 
Zn2+ potency in uptake experiments, we conducted assays at pH 8.5, 
thus favouring the deprotonated state of the coordinating histidine 
residues. Indeed, we found that the IC50 values for Zn2+ in the T211E and 
T211H mutants were around 100-fold and 20-fold lower, respectively, 
than that of ∆-hDAT (Fig. 3c). The high sensitivity of T211E to Zn2+ made 
it difficult to obtain a full inhibition curve under the same conditions 
used for ∆-hDAT and T211H, and for this reason, a second set of IC50 
measurements was taken at pH 7.5 for the T211E mutant (Extended 
Data Fig. 9h). We suggest that the two mutants bind Zn2+ with higher 
affinity than Δ-hDAT, thus bolstering the identification of the Zn2+ site.

Conclusion
Despite the overarching role of dopamine and dopaminergic signals 
in brain development, function and disease, and the importance of 
drugs in modulating the activity of hDAT, a structural understand-
ing of transporter mechanism and allosteric inhibition has proved 
elusive. By elucidating the structure of Δ-hDAT bound with a trifecta 
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of antagonistic agents, we show how β-CFT occupies the central bind-
ing site, arresting the transporter in an outward-open conformation, 
adjacent to a sodium ion bound at the Na2 site. The allosteric inhibitor, 
MRS7292, binds above the central site and underneath EL4, immediately 
adjacent to TM1b, via an induced-fit mechanism, occupying a binding 
pocket that is not present in the closely related hSERT protein. Binding 
of MRS7292 displaces TM1b toward TM6a, and we speculate that the 
allosteric ligand locks these key helices in place, together with EL4, 
thus preventing isomerization of the transporter to an inward-facing 
state. Although mutants of residues in contact with MRS7292 reduce 
potency of MRS7292, swapping of non-conserved residues between 
hSERT and hDAT suggests that amino acids outside of immediate con-
tact with MRS7292 also confer selective binding of MRS7292 to hDAT. 
A Zn2+ ion occupies a binding site immediately above the MRS7292 
ligand, coordinated by residues on both EL2 and EL4. By tethering EL4 
to EL2, the bound Zn2+ ion may restrict movement of EL4 upon trans-
porter rearrangement to inward-facing conformations, thus providing 
insight into how Zn2+ inhibits transport activity (Fig. 4). All together, 
these bound agents restrict the conformational mobility of Δ-hDAT, 
preventing isomerization to occluded or inward-facing states, and 
more generally, they provide fresh insights into how small molecules 
and ions can modulate structure and activity of MATs.
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Methods

Plasmid and constructs
The hDAT cDNA (UniProt ID Q01959) was cloned into the pEG-BacMam 
vector48 with an N-terminal His-StrepII–eGFP tag and a 3C protease 
site (LEVLFQGP) between the eGFP tag and the start of the hDAT 
protein-coding sequence. This construct also harboured an N-terminal 
deletion of the proteolytically labile 56 amino acids and included a 
thermostabilizing mutation (I248Y) as previously described21 and will 
be referred to as Δ-hDAT throughout. Point mutations were introduced 
using site-directed mutagenesis verified by DNA sequencing.

Protein expression and purification
Baculovirus-mediated expression of Δ-hDAT was performed follow-
ing standard protocol48, as previously described21, with minor modi-
fications. In brief, HEK293 GnTI− (Ric-15) cells31 at a density of 3.5 to 
4.0 × 106 cells per ml were transduced with Δ-hDAT P2 virus at a multi-
plicity of infection of 2.5 and cultured in Erlenmeyer flasks at 37 °C with 
8% CO2 for 12 h, followed by the addition of 10 mM sodium butyrate48. 
Subsequently, the transduced cultures were shifted to 30 °C and incu-
bated for a total of 48 h. The cells were collected by centrifugation at 
4,000 rpm for 15 min (TX 1000 rotor, Thermo Scientific), washed in 
ice-cold phosphate buffered saline, flash frozen in liquid nitrogen, 
and stored at −80 °C until further use. Cell pellets were thawed on ice 
and resuspended in a resuspension buffer composed of 50 mM HEPES 
pH 7.8, 200 mM NaCl, and 20% glycerol supplemented with 0.8 μM 
aprotonin, 2 μg ml−1 leupeptin, 2 μM pepstatin A and 1 mM phenyl-
methylsulfonyl fluoride (PMSF). The cells were lysed by sonication 
and centrifuged at 40,000 rpm for 60 min (Type 45 Ti rotor) to pellet 
the membrane fraction. Membrane pellets were resuspended using 
a Dounce homogenizer in resuspension buffer in which the glycerol 
concentration was raised to 30%, flash frozen, and stored at −80 °C. All 
centrifugation steps were carried out at 4 °C, unless otherwise stated.

Frozen membranes from 4.8 l of culture were thawed on ice and solu-
bilized in a solution of 10 mM lauryl maltose neopentyl glycol (LMNG), 
2 mM CHS, 50 mM HEPES pH 7.8, 200 mM NaCl, 10 μM MRS7292, 2 μM 
β-CFT, 0.8 μM aprotonin, 2 μg ml−1 leupeptin, 2 μM pepstatin A, and 
1 mM PMSF by constant stirring for about 3 h at 4 °C. The resulting 
solution was clarified by ultracentrifugation at 40,000 rpm for 60 min 
(Type 45 Ti rotor). Meanwhile, green fluorescent protein-nanobody 
(GNB) resin49, prepared by coupling the GFP-nanobody protein to CNBr 
Sepharose resin at a concentration of 1 mg ml−1, was equilibrated in 
0.1 mM LMNG, 0.02 mM CHS, 50 mM HEPES pH 7.8, 200 mM NaCl, 
25 μM palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 
10% glycerol. The pre-equilibrated GNB resin was added to the solubi-
lized membrane supernatant for binding in batch mode on a 3D shaker 
at 4 °C for 3 h. The protein-bound GNB resin was then packed into a 
gravity column and washed with a total of 12 column volumes of wash 
buffer consisting of 0.06% digitonin, 0.006% CHS, 50 mM HEPES pH 
7.8, 200 mM NaCl, 25 μM POPC, 10% glycerol, 10 μM MRS7292, 2 μM 
β-CFT. The tag-free Δ-hDAT protein was eluted overnight in wash 
buffer containing 3C protease, concentrated, and further purified by 
size-exclusion chromatography (SEC) in 0.02% digitonin, 0.002% CHS, 
50 mM HEPES pH 7.8, 200 mM NaCl, 4 μM MRS7292, 500 nM β-CFT 
and 25 μM POPC.

Cryo-EM sample, grid preparation and data collection
SEC-purified Δ-hDAT protein was concentrated to about 7 mg ml−1 
using a 100 kDa cutoff filter and used immediately for preparation 
of cryo-EM grids. Holey grids (Quantifoil R 1.2/1.3 Au 200 mesh) were 
rendered hydrophilic by glow-discharge at 15 mA for 30 s and were used 
immediately. A solution of 3 μl of concentrated Δ-hDAT was applied to 
the grid and blotted for 3 s with no wait time, single blotting in 100% 
humidity at 15 °C, followed by plunge freezing in liquid ethane using 
a Vitrobot Mark IV vitrification system (Thermo Scientific). Cryo-EM 

data were collected using a Titan Krios (300 keV) microscope fitted 
with a Falcon4i direct electron detector and a Selectris X Energy filter 
(Thermo Scientific) and SerialEM v4.1.0 beta24 software. The images 
were recorded in electron event representation (EER) format using a 
defocus range of −1.0 to −2.5 µM, a total dose of 50 e− Å−2, a physical 
pixel size of 0.743 Å, and an energy filter slit width of 6 eV.

Cryo-EM image processing
A total of 14,460 cryo-EM images in EER50 format were imported into 
CryoSparc, versions 4.2.1 and 4.4.051 and motion corrected using patch 
motion correction followed by contrast transfer function (CTF) estima-
tion and curation of the micrographs. Micrographs with poor CTF fits 
were discarded, leaving a total of 14,277 micrographs for further image 
processing. Particles were picked by reference-free blob picking using 
elliptical blobs with 80 Å and 150 Å minor and major axes, respectively. 
A total of 7,117,202 particles were picked initially. Particles were then 
extracted with a box size of 256 pixels, Fourier cropped to 64 pixels, and 
subjected to multiple rounds of 2D classification. The 2D classes show-
ing promising transmembrane helix features were selected in three 
rounds of 2D classification, followed by ab initio-based 3D reconstruc-
tion and classification52. In brief, four ab initio classes were generated 
in duplicate jobs with the following parameters: initial batch size: 300; 
final batch size: 1,000; number of final iteration: 500; max alignment 
resolution: 8 Å; and initial alignment resolution: 20 Å. Particles from 
the best class with distinct transmembrane helices were pooled from 
both replicates, and duplicates were removed. Next, particles were 
re-extracted with the same box size as above with Fourier cropping by a 
factor of two. Subsequent 2D classification followed by ab initio-based 
3D reconstruction–classification was repeated as described above, but 
with maximum and minimum alignment resolutions of 6 Å and 12 Å, 
respectively. The best class was then selected, and particles were pooled 
as previously described. Finally, the particles were re-extracted without 
any Fourier cropping with a box size of 384 pixels, and ab initio-based 
classification was carried out as previously described with initial and 
maximum alignment resolutions of 8 Å and 4.5 Å, respectively, and final 
iteration set at 350. Classes with the most well-defined Δ-hDAT features 
were selected for pooling particles. After removal of duplicates, the 
particles were used for non-uniform refinement53, with initial low-pass 
resolution of 12 Å, followed by four additional passes of refinement 
with the minimize over per-particle scale parameter on. Non-uniform 
refinement resulted in a 3D reconstruction of a Δ-hDAT map at a resolu-
tion of 3.19 Å, based on a Fourier shell correlation (FSC) cutoff of 0.143 
with 177,494 particles.

Model building and refinement
The final cryo-EM map of Δ-hDAT was interpreted by fitting an 
AlphaFold-derived model54 (AF-Q01959-F1) of hDAT in ChimeraX55 
using rigid body fitting. The N-terminal 56 residues were truncated 
in the AlphaFold model of Δ-hDAT. The fitted model and map were 
then manually adjusted using COOT (v0.9.8.6)56 and then further 
refined in Phenix v1.20.1-448757 using real space refinement58 in an 
iterative manner. The restraints for the MRS7292 compound were 
generated using the elbow program in Phenix and used in subsequent 
refinement steps. MolProbity59 was used to assess the quality of the 
refined model with respect to geometric restraints, all atom clash 
score, and Ramachandran statistics, and Check My Metal was used 
to assess Zn2+ and Na+ site stereochemistry60. The comprehensive 
validation program in Phenix was used to obtain the final refinement 
statistics (Extended Data Table 1). In order to assess overfitting dur-
ing refinement, the FSCwork and FSCfree curves were compared61,62. 
∆-hDAT coordinates were shaken using PDB tools in Phenix with ran-
dom shifts of 0.5 r.m.s.d. The resultant model was superposed, using 
α-carbon atoms, with the input model to confirm the change in r.m.s.d. 
This shaken model was refined against one of the two half-maps and 
the resultant model-versus-map FSC curve was termed as FSCwork. 
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A map-versus-model curve with this shaken-refined model and the 
other half-map, which was not used in any refinement, was obtained 
using the comprehensive cryo-EM validation tool in Phenix. This FSC 
curve was termed as FSCfree. The FSCwork and FSCfree curves were plot-
ted and analysed for overfitting. Structural figures and illustrations 
were prepared using PyMOL (The PyMOL Molecular Graphics System, 
version 2.5.5, Schrödinger) and ChimeraX v1.6.155.

Model of inward-open ∆-hDAT
The model of an inward-open conformation was generated using 
the SWISS model server63 and the inward-open structure of hSERT 
(PDB:7LI6) as a template.

Dopamine uptake assay
HEK293 GnTI− cells were transduced with Δ-hDAT and full-length hDAT 
P2 viruses, propagated in SF9 cells using standard methods as described 
in ‘Protein expression and purification’, at a cell density of 2.5 – 3.0 × 106 
cells per ml, followed by incubation at 37 °C for 6 h. After 6 h, sodium 
butyrate was added to a final concentration of 10 mM, and the cells 
were transferred to 30 °C with 8% CO2 for 6 h. The transduced cells were 
seeded into 96-well poly-d-lysine coated Isoplates (Perkin Elmer) at a 
density of 100,000 cells per well. The plates were then incubated at 
30 °C for 12–16 h before the uptake assay was initiated. The cells were 
initially washed with 37 °C uptake assay buffer composed of 25 mM 
HEPES pH 7.4, 120 mM NaCl, 5 mM KCl, 1.2 mM CaCl2, 1.2 mM MgSO4, 
5 mM d-glucose, 1 mM ascorbic acid, and 1 µM Ro 41-0960, followed 
by incubation in 50 µl of the same buffer for 10 min. Replicates with 
10 µM of GBR12909 in the uptake assay buffer were used to measure 
background. For assessing the effect of MRS7292 on uptake, 10 µM of 
MRS7292 was added to the uptake buffer. Cells were then incubated 
with 50 µl of [3H]dopamine with a specific activity of 45.6 Ci mmol−1 
(hot:cold ratio of 1:100) in uptake assay buffer at a concentration range 
from 30 to 0.0137 µM for 10 min. The uptake reaction was stopped by 
adding 100 µl of chilled inhibition buffer, uptake assay buffer supple-
mented with 2.5 µM GBR12909. Two consecutive washes with 100 µl 
of inhibition buffer were carried out, followed by resuspension of 
cells in 100 µl of 1% Triton X-100. Finally, 100 µl of liquid scintillation 
cocktail was added to each well and [3H] counts were measured using 
a MicroBeta2 (Perkin Elmer). Background counts from three replicates 
were averaged and subtracted from total counts. Data were fit to the 
Michaelis–Menten equation to determine the kinetic parameters of 
dopamine uptake from three independent experiments (n = 3 biological 
replicates starting from transduction), each with triplicate measure-
ments.

For [3H]dopamine uptake experiments on ∆-hDAT mutants, HEK293 
GnTI− cells were transduced and incubated as described above. For IC50 
measurements of the MRS7292 compound, cells expressing ∆-hDAT 
and ∆-hDAT with W84A, W84C, D385A, D385N, V364I, Y394F, M414L, 
I390L and V364I/I390L mutations were washed with uptake buffer 
and then incubated with 25 µl of uptake buffer containing MRS7292 at 
concentrations ranging from 30 to 0.0411 µM (10 to 0.0137 µM for the 
M414L mutant) for 20 min. Replicates containing 10 µM of GBR12909 
were used to measure background. To initiate uptake, 25 µl of 50 nM 
[3H] dopamine (35.5 Ci mmol−1) was added, and the cells were incubated 
for 10 minutes. Uptake was quenched by adding 50 µl of ice-cold inhibi-
tion buffer. Subsequent washing steps and radioactivity measurements 
were carried out as previously described.

For IC50 measurements of Zn2+, uptake assays were carried out as 
described for MRS7292 with the following alterations. The uptake 
buffer contained EPPS at pH 8.5 in place of HEPES. Cells were washed 
once with uptake buffer containing 1 mM ethylenediaminetetraacetic 
acid (EDTA) to chelate ambient Zn2+ from the cell growth medium, 
followed by second wash without EDTA. Cells were then incubated 
for 15 min in uptake buffers containing 0.3–300 µM added Zn2+ for 
∆-hDAT, 0.1–100 µM added Zn2+ for T211H, and 0.03–30 µM added 

Zn2+ for T211E. Measurements of [3H]dopamine uptake in the absence 
of added Zn2+ were obtained using buffer with 1 mM EDTA to chelate 
ambient Zn2+. The IC50 of Zn2+ for the T211E mutant was also measured at 
pH 7.5 to obtain a more complete inhibition curve. Elemental analysis of 
the uptake buffer revealed ambient Zn2+ present at about 100 nM. The 
estimated ‘free’ Zn2+ concentrations are used in the IC50 plots, where 
following the 1 mM EDTA wash we assume that there is ‘zero’ Zn2+ and 
in the subsequent Zn2+ concentrations we estimate that there is about 
100 nM ambient Zn2+, from the uptake buffer, in addition to the added 
Zn2+ concentrations.

Specific counts were obtained by subtracting background counts 
(averaged from technical triplicates) from total counts. The specific 
uptake activity as percentages of the control was plotted against  
either MRS7292 or Zn2+ concentrations using GraphPad Prism v7.05.  
Specific uptake activity in 1 pM MRS7292 and 1 mM EDTA was set to  
100% for the MRS7292 and Zn2+ IC50 measurements, respectively.  
The data points were fitted using nonlinear regression models  
in GraphPad Prism v7.05: [inhibitor] versus normalized response  
with variable slope: y x= 100/(1 + ( /IC ))Hill slope

50
Hill slope  for analysis of  

inhibition by MRS7292 and [inhibitor] versus response with varia
ble slope: y x= bottom + (top − bottom)/(1 + ( /IC ))Hill slope

50
Hill slope  for 

analysis of inhibition by Zn2+. Data were collected from three inde-
pendent experiments (n = 3 biological replicates starting from trans-
duction), each performed with three technical replicates.

Scintillation proximity assay
For SPA64, His-tagged ∆-hDAT protein was purified as described in ‘Pro-
tein expression and purification’ but with Strep-tactin resin, utilizing 
the Twin strep affinity tag, and without β-CFT (WIN35428). The various 
buffer systems were unchanged. YSi-Cu SPA beads at 1 mg ml−1 were 
added to ∆-hDAT (30 nM) in SEC buffer (0.02% digitonin, 0.002% CHS, 
50 mM HEPES pH 7.8, 200 mM NaCl, 25 µM POPC and 4 µM MRS7292). 
[3H]-WIN35428 (82.8 Ci mmol−1) in 20 mM HEPES pH 7.8 and 100 mM 
NaCl was used at concentration points ranging from 0 to 150 nM. For 
background measurement, 100 µM of GBR12909 was added to the 
assay buffer. Reactants were added to a 96-well isoplate, briefly mixed 
on a shaker at room temperature, and [3H] counts were recorded using 
a MicroBeta2. Data were collected from three independent experi-
ments (n = 3), each performed in technical triplicate, using the same 
purified protein sample. Background subtracted counts were plotted 
and analysed by a single-site binding model via nonlinear regression 
analysis in GraphPad Prism v7.05.

Molecular dynamics simulation
Simulation setup. The Δ-hDAT cryo-EM structure was used to prepare 
the simulation systems, after removing all unwanted molecular species 
except for the ligands (β-CFT and MRS7292) and the Zn2+ ion. A missing 
disordered region (EL2) was modelled using the Schrödinger Prime 
module65 (Schrödinger release 2023-2: Prime, Schrödinger), and the 
protein-prepared wizard66 was used to assign the protonation states 
of titratable residues. All histidine residues were assigned as neutral 
(HID) except for His129, which was protonated (HIP). A disulfide bond 
was introduced between Cys180 and Cys189. The protein was internally 
hydrated using the DOWSER plugin67,68 of VMD69. The CHARMM-GUI 
Membrane-Builder70 was then used to construct the initial lipid bilayer 
for embedding the protein. The protein’s orientation in the bilayer was 
derived from the Orientations of Proteins in Membranes (OPM) data-
base71. Subsequently, the structure was inserted into a heterogeneous 
lipid bilayer, and sterically clashing lipid molecules were removed. The 
bilayer consisted of POPC and cholesterol (CHL) at a percentage ratio 
of 3:2. Slabs of 40-Å TIP3P water molecules were placed above and 
below the bilayer. Na+ and Cl– counterions were added to neutralize the 
systems to a total salt concentration of 0.15 M, resulting in the entire 
simulation unit cell (102 Å × 102 Å × 134 Å) containing approximately 
122,000 atoms. LEaP was utilized to assign force field parameters for 
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all the molecular species in the system. The Δ-hDAT protein, lipids, Na+ 
and Cl– ions, and TIP3P waters were described using AMBER ff19SB72, 
Lipid2173, and monovalent ion parameters for TIP3P water74, respec-
tively. The Zn2+ ion was described using the Li–Merz parameters75 
for highly charged metal ions. CUFIX corrections76 were applied to 
nonbonded interactions between specific pairs of charged chemical 
moieties. LigPrep with the OPLS4 force field77 was used to minimize the 
β-CFT and MRS7292 structures. In addition, the ionized state of these 
ligands was realized by Epik78 at a pH value of 7.0 ± 2.0. AMBER force 
field 2 (GAFF2)79,80 parameter sets were used for the ligands (β-CFT and 
MRS7292). A typical system setup is depicted in Supplementary Fig. 2.

Simulation conditions. All simulations were performed using the 
Amber2081 suite and pmemd.cuda module. To eliminate bad contacts 
between solute and solvent water molecules in the system, energy 
minimization and equilibration simulations were conducted in three 
stages prior to the production runs. Firstly, energy minimization was 
performed while applying harmonic restraints on the lipid and sol-
ute heavy atoms (k = 10 kcal mol–1 Å–2). The entire system was then 
minimized for 10,000 steps, followed by an additional 5,000 steps 
of energy minimization using the Steepest Descent algorithm and 
the conjugate gradient method. Secondly, a two-step equilibration 
simulation was carried out. The system was first heated from 0 K to 
approximately 100 K, and then gradually to 310 K with the protein 
and lipid restrained over 100 ps in the NVT ensemble. Subsequently, 
all simulated complexes underwent 10 repeats of unconstrained NPT 
dynamics (5 ns, each) at 310 K and 1 atm. Finally, a 1.0 µs production 
simulation was conducted for each complex within the NPT ensem-
ble at 310 K and 1 atm, using periodic boundary conditions. The tem-
perature and pressure were maintained using a Langevin thermostat82 
and a Monte Carlo barostat83, respectively. Electrostatic interactions 
were calculated with a distance cutoff of 10 Å, using the particle mesh 
Ewald (PME)84 method. The SHAKE algorithm85 was used to maintain 
all constraints for bonds involving hydrogens, and the time step was 
set to 2.0 fs. In total, we conducted five independent replicas, lead-
ing to a cumulative sampling of 5 µs (5 runs × 1 µs each) and storing  
500,000 frames.

Trajectory analysis. For visualization and analysis, we used VMD69 and 
AmberTools2286,87 along with in-house scripts. To quantify the stacking 
of hDAT:W84 and MRS7292, we established a threshold for when their 
two rings form a stacking interaction as follows. The threshold is based 
on the distance between the heavy atom centres of masses (COMs) of 
the indole ring of W84 (atoms: CG, CD1, NE1, CE2, CZ2, CH2, CZ3, CE3 
and CD2) and the adenine ring of MRS7292 (atoms: N3, C4, N1, C3, C5, 
N4, C6, N5 and C2). We considered MRS7292 and W84 molecules to be 
stacked if their COM distance was ≤5 Å and the angle between their ring 
normals was ≤45°. The per-residue contact profile was calculated using 
an in-house tcl script in VMD69. For each snapshot within each run, the 
distance between every heavy atom pair, from the ligands and the pro-
tein, respectively, was computed, and distances ≤4 Å were considered 
a contact. Across the entire trajectory, if a residue exhibited contacts 
with ligands for more than 40% of the total time, it was designated as 
having a stable contact.

Cell line statement
Sf9 cells for generation of baculovirus and expression of recombinant 
antibody fragment are from Thermo Fisher (12659017, lot 421973). The 
cells were not authenticated experimentally for these studies. The 
cells were tested negative for Mycoplasma contamination using the 
CELLshipper Mycoplasma Detection Kit M-100 from Bionique.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The cryo-EM maps and coordinates for the ∆-hDAT structure have 
been deposited in the Electron Microscopy Data Bank (EMDB) under 
accession number EMD-43128 and in the Protein Data Bank (PDB) 
under accession code 8VBY. All molecular dynamics trajectories gen-
erated for this study and simulation input files have been deposited in 
a Zenodo repository and are freely available at https://doi.org/10.5281/
zenodo.11391489 (ref. 88).  Source data are provided with this paper.
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Extended Data Fig. 1 | Biochemical characterization of ∆-hDAT. (a) Fluorescence-detection size-exclusion chromatography (FSEC) of purified ∆-hDAT protein. 
(b) SDS-PAGE analysis of the FSEC sample was done once and visualized by silver staining. See Supplementary Fig. 1 for gel.



Extended Data Fig. 2 | Cryo-EM image processing and analysis. (a) Cryo-EM 
workflow. A detailed description of the image processing steps and parameters 
is included in the Methods section. Scale bar = 50 nm. (b) Local resolution map 

along with (c) the gold standard Fourier shell correlation (GSFSC) curve and  
(d) angular sampling of the cryo-EM reconstruction. (e) FSCwork/FSCfree and map 
versus model curve.
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Extended Data Fig. 3 | Density associated with transmembrane helices, EL4, and the C-terminal latch. Isomesh map features are contoured at 8 σ and within 
2 Å of the atoms associated with each feature.



Extended Data Fig. 4 | C-terminal latch of ∆-hDAT and structural 
comparison with other NSS transporters. (a) Comparison of the C-terminal 
latch of ∆-hDAT with the human serotonin transporter (hSERT; PDB: 7LIA), 
human GABA transporter (GAT1; PDB: 7SK2), and human glycine transporter 

(GlyT1, PDB: 6ZBV). The structures were aligned using α-carbon atoms. (b) Close 
up view of the C-terminal latch of ∆-hDAT showing the proximity of TM12, TM3, 
and TM10.
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Extended Data Fig. 5 | Lipid and lipid-like features in the ∆-hDAT 
reconstruction. (a) Overall distribution of lipid-like features in the cryo-EM 
reconstruction of ∆-hDAT. CHS and alkyl chains of possible lipid molecules  
are represented as orange and magenta sticks, respectively. The associated 
cryo-EM density features are shown in isomesh map representation contoured 
at 8 σ within 2 Å of the atoms of putative CHS and alkyl chain molecules.  

(b) Structural alignment of ∆-hDAT with dDAT (PDB: 4XPG) and (c) with hSERT 
(PDB: 5I73) showing the positions of CHS or cholesterol molecules in the 
proximity of lipid molecules in ∆-hDAT. Structural superposition was done 
using α-carbon atoms of the whole structures. (d) Additional putative CHS 
molecule in a groove formed by TMs 4, 5 and 8.
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Extended Data Fig. 6 | Central binding site of ∆-hDAT and comparison with 
related transporters. (a) Overlay of the central binding pockets of S-citalopram- 
bound hSERT (5I73) and β-CFT-bound ∆-hDAT. The structural alignment was 
done using α-carbon atoms of TM3 and TM8 of ∆-hDAT. (b) Superposition of  
the central sites occupied by β-CFT in dDAT (PDB: 4XPG), cocaine in pSERT 
(PDB: 8DE3) and β-CFT in ∆-hDAT. (c) Key phenylalanines ‘above’ the central 
sites in pSERT (PDB: 8DE3) and dDAT (PDB: 4XPG) that participate in defining 
the occluded or outward open states. The gray sphere represents the center of 

mass of β-CFT in ∆-hDAT. (d) (d) Superposition of the central site showing the 
relative pose of β-CFT in the cryo-EM reconstruction of ∆-hDAT and five replicas 
of MD simulation derived poses. All structural superpositions in (b)-(d) were 
done using α-carbon atoms of whole structures. (e) Coordination of a Na+ ion at 
the Na2 site. The distances between the Na+ ion and the coordinating oxygen 
atoms of the likely interacting residues are shown in yellow dashed lines and 
represented in Å.
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Extended Data Fig. 7 | The MRS7292 site in ∆-hDAT and structural 
comparison with hSERT and dDAT. (a) The locations of allosteric sites for the 
respective transporter complexes. The allosteric ligands are shown in sphere 
representation, and the central site molecules are shown as sticks. (b) Illustration 
of the MRS site showing the position of the methyl ester moiety (dashed circle). 
(c) Effect of MRS7292 on [3H]dopamine uptake in ∆-hDAT mutants. Data was 
plotted and fitted using a non-linear regression model as described in ‘Methods’. 
Data from n = 3 biological replicates, each performed in technical triplicate,  
are represented as mean values +/− standard deviation. (d) Total, specific  
[3H]dopamine uptake for ∆-hDAT and ∆-hDAT mutant controls from the IC50 

experiments. Data from n = 3 biological replicates, each performed in  
technical triplicate, are represented as mean values +/− standard deviation.  
(e) Accommodation of the thienyl moiety (dashed circle) into the MRS subsite. 
(f) Alignment of the MRS7292 (shown as teal sticks) binding pocket with the 
binding pocket of hSERT in complex with serotonin (7LIA) and (g) dDAT in 
complex with β-CFT (4XPG). Superposition of structures was performed using 
α-carbon atoms of TM3 and TM8 of ∆-hDAT. The superposition shows how TMs 
1b and 6a are displaced and reoriented whereas TMs 1a and 6b superimpose 
relatively well.



Extended Data Fig. 8 | Allosteric site in hSERT and comparison to ∆-hDAT. 
(a) Structural superposition of the allosteric binding pocket for serotonin 
(5-HT) (PDB: 7LIA) with the equivalent region in ∆-hDAT. The α-carbon to 
α-carbon distance (yellow dashed line) is indicated in Å. (b) Superposition of 

the S-citalopram (CIT) (PDB: 5I73) binding pocket with the equivalent region in 
∆-hDAT. Superpositions were done using α-carbon atoms of TM3 and TM8. 
Selected residues and the allosteric molecules are represented as sticks.
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Extended Data Fig. 9 | Zinc site analysis and alignments with other NSSs.  
(a) Isomesh map representation of coulomb density associated with the Zn2+ 
site in the ∆-hDAT cryo-EM reconstruction, contoured at 8 σ within 2.0 Å of the 
atoms associated with the structural feature. (b) Alignment of the amino acid 
sequence encompassing the Zn2+ binding region of ∆-hDAT with the equivalent 
sequences of related transporters. Residues that directly coordinate Zn2+ in 
∆-hDAT are outlined in red. (c)-(e) Alignment of the zinc binding site of ∆-hDAT 
with the equivalent regions in hSERT (PDB:7LIA), the human glycine transporter 
(GlyT1; PDB:6ZBV), and the human GABA transporter (GAT1; PDB:7SK2) 

demonstrates the unique position of EL2 in Zn2+-bound ∆-hDAT compared to 
related transporters. All structural alignments used α-carbon atoms of TM3 
and TM8 of ∆-hDAT. (f,g) Simple models of T211E and T211H were created  
by substituting the mutated residue for T211 and selecting rotamers with 
favorable chi1 and chi2 angles to estimate distances to the zinc ion (Å).  
(h) Inhibition curve for T211E at pH 7.5. Data was analyzed using a nonlinear 
regression model as described in ‘Methods’. Data from n = 3 biological replicates, 
each performed in technical triplicate, are represented as mean values +/− 
standard deviation.
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Extended Data Table 1 | Cryo-EM data collection and refinement statistics
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