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Sources of gene expression variation in a 
globally diverse human cohort

Dylan J. Taylor1, Surya B. Chhetri2,3, Michael G. Tassia1, Arjun Biddanda1, Stephanie M. Yan1, 
Genevieve L. Wojcik4, Alexis Battle2,5,6,7 & Rajiv C. McCoy1 ✉

Genetic variation that influences gene expression and splicing is a key source of 
phenotypic diversity1–5. Although invaluable, studies investigating these links in 
humans have been strongly biased towards participants of European ancestries, 
which constrains generalizability and hinders evolutionary research. Here to 
address these limitations, we developed MAGE, an open-access RNA sequencing 
dataset of lymphoblastoid cell lines from 731 individuals from the 1000 Genomes 
Project6, spread across 5 continental groups and 26 populations. Most variation in 
gene expression (92%) and splicing (95%) was distributed within versus between 
populations, which mirrored the variation in DNA sequence. We mapped associations 
between genetic variants and expression and splicing of nearby genes (cis-expression 
quantitative trait loci (eQTLs) and cis-splicing QTLs (sQTLs), respectively). We 
identified more than 15,000 putatively causal eQTLs and more than 16,000 putatively 
causal sQTLs that are enriched for relevant epigenomic signatures. These include  
1,310 eQTLs and 1,657 sQTLs that are largely private to underrepresented populations. 
Our data further indicate that the magnitude and direction of causal eQTL effects are 
highly consistent across populations. Moreover, the apparent ‘population-specific’ 
effects observed in previous studies were largely driven by low resolution or additional 
independent eQTLs of the same genes that were not detected. Together, our study 
expands our understanding of human gene expression diversity and provides an 
inclusive resource for studying the evolution and function of human genomes.

Genetic variation that affects gene expression and splicing accounts 
for a large proportion of phenotypic differences within and between 
species1. By correlating patterns of expression and splicing with vari-
ation at the level of DNA, past research has helped reveal the genetic 
basis of these molecular traits and their relationships with higher-order 
phenotypes2–5. Previous molecular association studies in humans 
have been strongly biased towards individuals of European ances-
tries, which potentially constrains generalizability and hinders our 
understanding of human gene expression diversity and evolution7–9. 
Research has also demonstrated that the inclusion of diverse samples 
breaks up linkage disequilibrium (LD), which improves resolution for 
identifying causal variants10.

Motivated by these points, several studies have profiled gene expres-
sion in geographically diverse samples11–13. These studies have gener-
ally observed that gene expression and splicing differences between 
populations are rare and that divergence in these molecular phenotypes 
does not clearly reflect patterns of population divergence. Studies 
have also revealed an abundance of genetic variants associated with 
levels of gene expression (termed eQTLs). Promoter proximal eQTLs 
possessed larger effects, on average, and tended to be shared across 
populations12. Although foundational, these studies were generally 

characterized by small sample sizes and/or assayed gene expression 
using microarrays. This limits statistical power and resolution for 
molecular QTL mapping and hinders integration and comparison with 
modern sequencing-based datasets. Meanwhile, recent work by con-
sortia such as MESA, GALA II and SAGE have generated RNA sequencing 
(RNA-seq) data from thousands of samples and include representa-
tion from African American and Latin American populations14,15, but 
their controlled access poses barriers to re-use, and in some cases are 
restricted to disease-related research.

To address this gap, here we developed MAGE, an open resource for 
multi-ancestry analysis of gene expression. MAGE comprises RNA-seq 
data from a large sample of lymphoblastoid cell lines (LCLs) derived 
from individuals across geographically diverse human populations. 
Using these data, we performed the following analyses: (1) quantified 
the distribution of gene expression and splicing diversity; (2) mapped 
genetic variation that influences gene expression and splicing at high 
resolution; and (3) examined the evolutionary forces that shape such 
variation and the causes of apparent heterogeneity in its effects across 
populations. Together, our work offers a more complete view of the 
magnitude, distribution and genetic sources of human gene expres-
sion and splicing diversity.
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A multi-ancestry RNA-seq resource
We performed RNA-seq of LCLs from 731 individuals from the 1000 
Genomes Project6 (1KGP), which represented 26 globally distributed 
populations (27–30 individuals per population) across 5 continental 
groups (Fig. 1a). Although we emphasize the greater genetic diversity 
within African populations—a point obscured by ADMIXTURE analy-
sis and principal component analysis (PCA)16—these visualizations 
demonstrate that our study includes data from several non-African 
ancestry groups that were poorly represented in previous studies 
(Fig. 1b–d and Supplementary Figs. 2 and 3; also see the African Func-
tional Genomics Resource (AFGR)17). All 731 samples were sequenced 

in a single laboratory across 17 batches, and sample populations were 
stratified across batches to avoid confounding between population 
and batch (Supplementary Fig. 5). We quantified gene expression levels 
using gene annotations from GENCODE (v.38) and used an annotation 
agnostic approach implemented by LeafCutter18 to quantify alternative 
splicing patterns (Supplementary Methods and Supplementary Fig. 4).

Gene expression and splicing diversity
The majority of variation in DNA sequence is distributed within as 
opposed to between human populations19,20. Previous studies have 
explored the extent to which this pattern holds for gene expression 
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Fig. 1 | A globally diverse transcriptomics dataset. a, RNA-seq data were 
generated from LCLs from 731 individuals from the 1KGP6, roughly evenly 
distributed across 26 populations and 5 continental groups. Populations 
included in MAGE are indicated in pink, whereas the Maasai population is in 
blue as it is present in the AFGR17 dataset (based on sequencing of HapMap57 
cell lines) but not in the 1KGP or MAGE. Full population descriptors can be 
found at https://catalog.coriell.org/1/NHGRI/About/Guidelines-for-Referring- 
to-Populations. b, Genotype principal component 1 (PC1) and PC2 comparing 
MAGE to other large studies with paired RNA and whole-genome sequencing 
data. Samples from the specified study (that is, MAGE, Geuvadis, GTEx and 
AFGR) are depicted with coloured points, whereas samples from other studies 
are depicted with grey points in each respective panel. c, Proportion of 
variance explained by the first ten PCs. d, ADMIXTURE58 results displaying 

proportions of individual genomes (columns) attributed to inferred ancestry 
components. For MAGE, Geuvadis4 and AFGR, samples are stratified according 
to population and continental group labels from the respective source projects, 
whereas GTEx26 does not include population labels. A subset of 1KGP samples 
are present across multiple RNA-seq studies and therefore appear in multiple 
panels, but these samples were not duplicated within the input to ADMIXTURE. 
Ancestry components are modelling constructs that do not directly correspond 
to true ancestral populations, and the results of ADMIXTURE analysis strongly 
depend on sampling characteristics of the input data. Although k = 7 minimizes 
the cross-validation error within this combined dataset (Supplementary Fig. 1), 
alternative choices of k reflect structure at different scales (Supplementary 
Fig. 2). Map in a adapted from the US CIA World Factbook, 2005.

https://catalog.coriell.org/1/NHGRI/About/Guidelines-for-Referring-to-Populations
https://catalog.coriell.org/1/NHGRI/About/Guidelines-for-Referring-to-Populations
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diversity, finding that population labels explain 3–25% of the total 
variation in gene expression4,13. However, these studies were limited 
by either sample size or diversity, motivating our analysis within MAGE.

To this end, we fit a linear model relating the expression level of each 
gene with continental group and population labels from the 1KGP. 
After regressing out sequencing batch and sex effects, continental 
group explained an average of 2.92% of variance in gene expression level 
across tested genes (s.d. = 3.18%), whereas population label explained 
an average of 8.40% of variance (s.d. = 4.43%; Fig. 2a). Although small, 
these proportions exceed null expectations assuming no population 
structure (one-tailed permutation test: Pcontinental group, Ppopulation < 1 × 10−3). 
Notably, the proportion of variance explained was smaller, on average, 
than reported in a previous study that included samples from the San 
population, whose ancestors diverged (with subsequent gene flow) 
from other populations in the dataset >100,000 years ago13,21.

We observed similar patterns for alternative splicing, whereby—after 
regressing out technical variation—continental group and popula-
tion explained an average of only 1.23% (s.d. = 1.93%) and 4.58% (s.d. =  
2.24%) of variance, respectively (Fig. 2c; one-tailed permutation test:  
Pcontinental group, Ppopulation < 1 × 10−3). The proportions of variance in gene 
expression and splicing explained by population label are not directly 
comparable because of differences in their units of measurement. 
However, our observations are qualitatively consistent with previous 
reports that expression level varies more between populations than 
splicing13.

Notably, we also observed that within-population variance in  
expression (one-tailed analysis of deviance: χ2 (4, N = 100,890) =  
17,623, P < 1 × 10−10) and splicing (one-tailed analysis of deviance:  
χ2 (4, N = 164,335) = 1550.6, P < 1 × 10−10) differed among continental 
groups. That is, there were higher average variances (across all tested 
genes) observed within the African continental group compared with 
the Admixed American continental group (Fig. 2b,d and Supplementary 
Fig. 7). These results are consistent with the demonstrated decline in 
genetic diversity resulting from serial founder effects during human 
global migrations22,23. Although significant, the magnitudes of these 
differences in variances were smaller than the magnitude of the decline 
in genetic diversity, which probably reflect the non-genetic environ-
mental and stochastic contributions to gene expression and splicing 
variance that similarly affect all samples.

Genetic effects on gene expression
Mapping eQTLs and sQTLs at high resolution
MAGE offers a valuable resource for uncovering the genetic factors 
that drive variation in gene expression and splicing, including genetic 
variation that is largely private to historically underrepresented popu-
lations. By intersecting published genotype data from the same set 
of samples24, we mapped cis-eQTLs and cis-sQTLs within 1 Mb of the 
transcription start site (TSS) of each gene. We define eGenes and sGenes 
as genes with an eQTL or sQTL, respectively, and eVariants and sVari-
ants as the individual genetic variants defining an eQTL or sQTL signal, 
respectively. We note that although we performed QTL mapping for 
genes on the autosomes and the X chromosome, we focus on results 
from the autosomes here owing to several methodological details 
that are specific to the X chromosome (Supplementary Methods). 
Across 19,539 autosomal genes that passed expression-level filtering 
thresholds (Supplementary Methods), we discovered 15,022 eGenes 
and 1,968,788 unique eVariants (3,538,147 significant eVariant–eGene 
pairs; 5% false discovery rate (FDR)). Additionally, across 11,912 auto-
somal genes that passed splicing-filtering thresholds, we discovered 
7,727 sGenes and 1,383,540 unique sVariants (2,416,177 significant 
sVariant–sGene pairs; 5% FDR).

The inclusion of genetically diverse samples in association studies 
reduces the extent of LD and improves mapping resolution8,10 (Sup-
plementary Fig. 11). With this advantage in mind, we used SuSiE25 to 

perform fine mapping for all eGenes and the introns of all sGenes to 
identify causal variants that drive each QTL signal. For each gene and 
intron, SuSiE identifies one or more credible sets, representing inde-
pendent causal eQTL and sQTL signals and whereby each credible set 
contains as few variants as possible while maintaining a high probability 
of containing the causal variant. To obtain a gene-level summary of the 
sQTL fine-mapping results, we collapsed intron-level credible sets into 
gene-level credible sets by iteratively merging intron-level credible 
sets for each sGene (Supplementary Methods). We identified at least 
one credible set for 9,807 (65%) eGenes and 6,604 (85%) sGenes, which 
we define as fine-mapped eGenes and sGenes, respectively. Consist-
ent with previous results4,26,27, we observed widespread allelic hetero-
geneity across fine-mapped genes, with 3,951 (40%) of fine-mapped 
eGenes and 3,490 (53%) of fine-mapped sGenes exhibiting more than 
one distinct credible set (Fig. 3a and Extended Data Fig. 2c). We also 
achieved high resolution in identifying putative causal variants that 
drive expression changes. That is, of 15,664 eQTL credible sets, 3,992 
(25%) contained a single variant (median 5 variants per credible set; 
mean = 15.8, s.d. = 65.7; Fig. 3b). Similarly, for sQTLs, 3,569 out of 16,451 
(22%) credible sets contained a single variant (median 7 variants per 
credible set; mean = 23.6, s.d. = 99.1; Extended Data Fig. 2d). For down-
stream analyses, we selected a single representative ‘lead QTL’ from 
each eGene and sGene gene-level credible set.

For each lead eQTL, we calculated its effect size using an implementa-
tion of the allelic fold change (aFC)28 statistic that quantifies eQTL effect 
sizes conditional on all other lead eQTLs for that gene (Supplemen-
tary Methods). We observed that 2,031 (13%) lead eQTLs had a greater 
than twofold effect on gene expression (median |log2(aFC)| = 0.30; 
mean = 0.51, s.d. = 0.64; Extended Data Fig. 1). This was a slightly smaller 
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proportion than previously reported by GTEx26, but we propose that this 
is partially explained by the small sample sizes in some GTEx tissues, 
which drives a stronger ‘winner’s curse’, whereby effects are systemati-
cally overestimated29.

Evidence of selective constraint
Previous studies of large population cohorts have identified sets of 
genes under strong mutational constraint, whereby negative selection 
has depleted loss-of-function point mutations and copy number vari-
ation30. One metric for quantifying mutational constraint on genes is 
the probability of intolerance to loss-of-function mutations (pLI)30. In 
our data, we observed that eGenes possessed significantly lower mean 
pLI scores (mean = 0.261, s.d. = 0.395) than non-eGenes (mean = 0.304, 
s.d. = 0.409; two-tailed Wilcoxon rank-sum test: W = 11,596,590, 
P = 3.89 × 10−7). Additionally, highly constrained eGenes (top 10% of 
pLI) tended to possess fewer credible sets (mean = 0.80, s.d. = 0.82) 
than other eGenes (mean = 1.12, s.d. = 1.04; two-tailed quasi-Poisson 
generalized linear model: β̂ = −0.354, P = 5.91 × 10−25; Fig. 3c). Moreover, 
the average effect size of lead eQTLs within highly constrained genes 
(mean |log2(aFC)|  = 0.25; s.d. = 0.36) was smaller than that of other 
genes (mean |log2(aFC)|  = 0.53; s.d. = 0.65; two-tailed Wilcoxon rank 
sum test: W = 3,789,053, P = 1.87 × 10−96; Fig. 3d). This difference was 
apparent regardless of whether the minor allele is associated with 
higher (Δmean |log2(aFC)|  = −0.277; two-tailed Wilcoxon rank-sum 
test: W = 928,592, P = 1.39 × 10−50) or lower expression (Δmean 
|log2(aFC) = −0.268; two-tailed Wilcoxon rank sum test: W = 967,228, 
P = 2.97 × 10−47), consistent with a model of stabilizing selection whereby 
gene expression is maintained within an optimal range. These results 
indicate an association between constraint against loss-of-function 
protein-coding sequence variation (that is, pLI) and constraint against 
expression-altering variation (that is, number of credible sets and eQTL 
effect sizes). This association held for several other metrics of 

mutational constraint that include intolerance to copy number varia-
tion (that is, pHaplo and pTriplo) as well as divergence-based estimates 
of sequence conservation in putative promoter elements (Extended 
Data Fig. 3). Together, our results are consistent with previous analyses 
demonstrating weak, but measurable, selection against expression- 
altering variation31.

Functional enrichment of QTLs
Taking advantage of the high resolution of putative causal signals, we 
quantified the enrichment of fine-mapped lead eQTLs in 15 predicted 
chromatin-state annotations across 127 reference epigenomes from 
the Roadmap Epigenomics chromHMM model32. Enrichment was most 
pronounced within promoter regions, specifically at active TSSs (TssA) 
and flanking regions (TssAFlnk), but modest enrichments were also 
apparent within enhancer regions (Enh and EnhG), especially for blood 
cell types (Fig. 4a and Supplementary Fig. 12B). Conversely, quiescent, 
repressive and heterochromatic regions were depleted of eQTLs. We 
further extended our analysis to primary DNase hypersensitivity site 
(DHS) annotations, and we observed a strong enrichment of lead eQTLs 
in DHSs of blood and T cell samples (Supplementary Fig. 12C).

Focusing on data from LCLs, we next explored the relationship 
between epigenomic enrichments and eQTL effect sizes (|log2(aFC)|). 
Promoter-associated enrichment was consistent across eQTL effect 
size deciles, and enrichment within poised regulatory regions such 
as bivalent TSS (TSSBiv) and bivalent enhancers (EnhBiv) was most 
apparent for eQTLs of large effect sizes (Supplementary Fig. 13A,B). 
By contrast, eQTLs located within chromatin states associated with 
transcribed regions (Tx, TxWk and TxFlnk) predominantly exhibited 
lower effect sizes (Supplementary Fig. 13C). These qualitative trends 
were replicated in other primary blood cell types (Supplementary 
Figs. 14–17). Using additional DHS-based annotations from Roadmap 
Epigenomics32, we observed larger median eQTL effect sizes in pro-
moter regions relative to enhancers and dyadic (that is, acting as both 
promoter and enhancer) regions (Fig. 4b). This pattern was similarly 
replicated across other primary blood-related cell types (Supplemen-
tary Figs. 14–17). Using chromatin immunoprecipitation followed by 
sequencing data from ENCODE33, we also observed that lead eQTLs 
were significantly enriched within 312 (92.30%; Bonferroni-adjusted 
P < 0.05) transcription factor (TF) binding sites, including canonical 
promoter-associated TFs such as POLR2A, TAF1, JUND, ATF2 and KLF5, 
as well as TFs such as HDACs, EP300 and YY1, which are typically associ-
ated with enhancers (Supplementary Fig. 12A).

We also investigated the genomic context of our fine-mapped 
cis-sQTLs. We observed strong enrichment of lead sQTLs in several key 
splicing-relevant annotations, including splice donor sites (log2(fold 
enrichment) = 6.07, 95% confidence interval (CI) = 4.09–8.04) splice 
acceptor sites (log2(fold enrichment) = 5.52, 95% CI = 3.54–7.50) and 
nearby regions (log2(fold enrichment) = 4.15, 95% CI = 3.70–4.62) at 
intron–exon boundaries (Fig. 4c). Despite their magnitude of enrich-
ment, variants in canonical splice sites and splice regions represented 
a minority of lead sQTLs, with a greater abundance of sQTLs falling 
within 5′ and 3′ untranslated regions (UTRs), as well as exons of both 
coding and noncoding genes. Although exhibiting weaker enrichments, 
these annotation categories together covered a much larger muta-
tional target size and may encompass splicing enhancers and cryptic 
splice sites. By contrast, intergenic regions were strongly depleted 
of lead sQTLs (log2(fold enrichment) = −2.51, 95% CI = −2.58 to −2.43). 
Together, these findings provide support for the biological validity of 
the fine-mapped cis-QTLs and insight into the mechanisms by which 
these variants affect gene expression and splicing.

Colocalization of eQTLs and sQTLs and GWAS hits
To explore the role of expression-associated genetic variation in 
human complex traits, we next sought to discover shared signals 
between fine-mapped MAGE cis-eQTLs and cis-sQTLs and results from 
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genome-wide association studies (GWAS). As a multi-ancestry resource, 
we anticipate that MAGE will facilitate the interpretation of GWAS from 
underrepresented populations. One such cohort is the Population 
Architecture using Genomics and Epidemiology (PAGE) study8, which 
comprises 49,839 non-European individuals, including large samples 
of individuals who self-reported as Hispanic/Latin American or African 
American, as well as smaller samples of individuals who self-reported as 
Asian, Native Hawaiian or Native American. We performed colocaliza-
tion analysis to identify shared signals between GWAS of 25 complex 
traits from PAGE and cis-eQTLs and cis-sQTLs from MAGE. PAGE GWAS 
data include quantitative biomedical traits such as platelet count and 
cholesterol levels, as well as diseases such as type 2 diabetes (see Sup-
plementary Table 1 for a full list of the traits included in this analysis).

Across these 25 traits, we identified 384 independent GWAS signals. 
For each independent GWAS signal, we tested for eQTL colocalization 
with each eGene within 500 kbp. We implemented this analysis using a 
combination of SuSiE25 and coloc34,35 to allow for multiple causal vari-
ants at each signal and to allow for different patterns of LD between 
the two datasets. We defined moderate colocalizations as those with 
posterior probabilities ≥ 0.5 and strong colocalizations as those with 
posterior probabilities ≥ 0.8.

Using this approach, we identified moderate colocalizations with 
MAGE cis-eQTLs for 39 independent GWAS signals across 14 traits 
and strong colocalizations for 25 independent GWAS signals across 
13 traits (Supplementary Fig. 18). These included 6 GWAS signals across 
6 traits for which the GWAS variant was rare (minor allele frequency 
(MAF) < 0.05) or unobserved in the European continental group in 
the 1KGP. Among these, one notable result involved colocalization 

(Pcoloc = 0.998) between a platelet count GWAS hit (sentinel variant 
rs73517714) and an eQTL hit of the tropomyosin gene TPM4, whereby the 
lead eQTL variant (rs143558304) falls within the 3′ UTR. Previous work 
has implicated rare missense variants in TPM4 with platelet abnormali-
ties and excessive bleeding36, findings that provide support for a role 
of this gene in platelet function. The MAGE lead eQTL and the GWAS 
sentinel variant were in strong LD (R2 = 0.874 in MAGE) and were rare 
(MAF < 0.05) in the European continental group of the 1KGP but more 
common in the African continental group.

We repeated this colocalization analysis for MAGE sQTLs. Across the 
same set of 384 GWAS signals, we identified moderate colocalizations 
with MAGE cis-sQTLs for 30 independent GWAS signals across 12 traits 
and strong colocalizations for 24 independent GWAS signals across 
10 traits (Supplementary Fig. 18). These included three GWAS signals 
across two traits for which the GWAS variant was rare or unobserved 
in the European continental group in the 1KGP. Together these results 
highlight the utility of paired globally diverse gene expression and WGS 
datasets like MAGE and 1KGP, respectively, in interpreting complex 
trait GWAS of non-European cohorts.

Population-specificity of QTLs
A fundamental question in association studies is the extent to which 
genetic associations replicate across human groups and the underly-
ing factors that drive heterogeneity between groups. Several previous 
studies have demonstrated that although QTL effects are strongly 
correlated across populations12,37, the predictive power of association 
study summary statistics (for example, polygenic scores) declines 
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when applied to groups whose ancestry does not match that of the 
discovery sample9,14. The underlying causes of such poor portability is a 
topic of active debate37,38, and several non-mutually exclusive explana-
tions have been proposed: (1) differences in the allele frequency (AF) of 
causal variants between groups can lead to differential statistical power;  
(2) differences in patterns of LD (either between a tag variant and a 
causal variant or between multiple causal variants) between groups 
can lead to nominal effect size heterogeneity; and (3) epistatic inter-
action between multiple causal variants, one or both of which vary 
in AF across groups can lead to nominal effect size heterogeneity. 
Gene-by-environment interactions may also drive effect size hetero-
geneity, but we anticipate that such interactions are less relevant to 
our data given the common conditions used for deriving and cultur-
ing immortalized LCLs, as well as the block-randomized nature of the 
experimental design (Supplementary Methods).

To gain insight into the relative importances of these phenomena, we 
identified and characterized two broad classes of population-specific 
QTLs: (1) QTLs for which AF differs between continental groups (which 
we term frequency differentiated QTLs (fd-QTLs)) and (2) QTLs that 
exhibit effect size heterogeneity between continental groups (which 
we term heterogeneous effect QTLs (he-QTLs)). We consider each class 
in turn in the subsequent sections.

Frequency differentiation of QTLs
We proposed that the diversity of our sample would facilitate discovery 
of new QTLs that are private to populations that were underrepresented 
in previous molecular association studies. To test this hypothesis, we 
evaluated the frequency distribution across continental groups of 
the 15,664 fine-mapped lead eQTLs in MAGE. We observed that 8,837 
(56.4%) lead eQTLs are ‘globally common’ (MAF > 0.05 in each conti-
nental group), a result consistent with the fact that statistical power 
for eQTL discovery scales with MAF and that most common variation is 
shared across human populations39,40 (Extended Data Fig. 4a,b). How-
ever, we also identified 1,310 (8.3%) lead eQTLs that are unobserved 
in the European continental group but present in one or more other 
continental groups (Extended Data Fig. 4c). An additional 115 (0.6%) 
lead eQTLs are unobserved in both European and African ancestry 
groups (Extended Data Fig. 4d). Qualitatively similar patterns were 
also apparent for sQTLs (Extended Data Fig. 5).

To further contextualize our results, we compared our eQTL fine- 
mapping data to that from GTEx, which largely comprises individu-
als of European ancestries and some African American individuals. 
To account for the multi-tissue nature of GTEx, we took the union 
of credible sets across tissues for a focal gene to compare with the 
credible sets for that same gene in MAGE (Supplementary Methods).  
Overall, we found that 8,069 MAGE credible sets (6,421 genes) repli-
cated in GTEx compared with 7,595 credible sets (5,545 genes) that did 
not replicate (Fig. 5a). We additionally identified 701 genes with at least 
one credible set in MAGE but no apparent credible set in GTEx. Notably, 
we observed that lead eQTLs in MAGE that did not replicate in GTEx 
tended to exhibit greater geographical differentiation, with higher 
frequencies outside Europe relative to variants that replicated between 
studies, which tended to be common across all populations (Fig. 5a). 
Moreover, the 79,915 GTEx lead eQTLs that were not replicated in MAGE 
(7,913 lead eQTLs replicated) are enriched for tissue-specific effects 
(two-tailed Mann–Whitney U-test: P < 10−10; Extended Data Fig. 6). 
This was despite showing qualitatively similar patterns of functional 
enrichment that support their biological validity (Supplementary 
Fig. 19). Together, these results highlight important aspects of experi-
mental design across multiple axes of diversity, such as ancestry and 
tissue composition, that shape the statistical findings of molecular 
QTL studies.

One example of a fd-eQTL that we identified was rs115070172, for 
which the T allele was common (AF > 0.05) only within the Admixed 
American continental group in MAGE and was at high frequency 

(AF = 0.63) in the Peruvian population (Fig. 5b). This variant was the 
lead eQTL for one of two credible sets of GSTP1, a tumour suppressor 
gene for which its expression has been implicated in breast cancer41–43. 
The T allele of the rs115070172 variant was significantly associated 
with lower expression of GSTP1 (Fig. 5c). Intersection with epigenomic 
data indicated that this fine-mapped lead eQTL lies within a putative 
enhancer region (Supplementary Fig. 20). Notably, the expression of 
GSTP1 was significantly lower in individuals from the Peruvian popula-
tion compared with other global populations (Fig. 5d), and we propose 
that this eQTL signal may explain this trend.

To more broadly examine the role of fd-eQTLs in driving differ-
ential gene expression between continental groups, we quantified 
FST values44 for each lead eQTL and intersected these values with 
the differential expression results for the respective eGene for each 
eQTL (Fig. 5e). Among continental groups, differentially expressed 
eGenes (FDR-adjusted P ≤ 0.05) possessed higher FST values than 
non-differentially expressed eGenes (two-tailed Mann–Whitney 
U-test: Z = 0.022 ± 0.001, 95% CI; P < 0.05). This result suggests that 
gene expression differences across populations can be attributed to 
frequency differentiation of causal eQTLs.

Consistency of eQTL effects
We sought to test for he-eQTLs in MAGE given recent debates about 
their prevalence and causes8,15,37,38,45. Because the genotypes are 
derived from high-coverage whole-genome sequencing in the 1KGP, 
MAGE should be robust to effect size heterogeneity resulting from 
population-specific LD patterns with untyped casual variants (which 
commonly affects microarray data), barring large structural variation 
that may escape detection with short-read sequencing. This enables 
investigation of other sources of effect size heterogeneity.

For each fine-mapped eGene, we first assessed whether its top nomi-
nal pass eQTL exhibited effect size heterogeneity between continental 
groups by fitting a model that included a genotype-by-continental 
group interaction term. Across 8,376 top nominal pass eQTLs that 
passed filtering (MAF ≥ 0.05 in at least two continental groups), 70 
(0.84%) exhibited a significant genotype-by-continental group inter-
action after Bonferroni correction (Fig. 5f). Notably, we observed 
that eGenes with more fine-mapped credible sets were more likely 
to exhibit significant interaction effects, which suggested that the 
additive effects of multiple causal variants may drive apparent inter-
action effects.

To test this hypothesis, we discovered he-eQTLs from among our 
fine-mapped eQTLs. For each fine-mapped eGene, we included the 
lead eQTL from each of its credible set (or sets) as predictors and 
tested for a genotype-by-continental group interaction effect for one 
lead eQTL at a time. Supporting our hypothesis, 64 (91%) of eGenes 
with a significant interaction effect had no significant interaction 
effects after controlling for the additive effects of multiple causal 
signals for that gene (Fig. 5f). The few remaining interaction effects 
(9 eQTLs; 0.07% of all eQTLs that passed filtering) may be driven by 
non-additive epistatic interactions between variants, by additional 
untested causal variants that did not meet nominal MAF thresholds 
or by population-specific LD patterns with untyped causal variants. 
Qualitatively similar patterns were observed when testing for interac-
tions between genotype and global genotype principal components 
(Extended Data Fig. 7).

An alternative approach based on stratified eQTL mapping and fine 
mapping within each continental group (Supplementary Methods) 
likewise indicated high consistency in effect sizes, such that 97.5–99.8% 
of credible sets had similar effect sizes between pairs of continental 
groups (Extended Data Fig. 8 and Supplementary Fig. 21). Together, 
these results indicate that effect size heterogeneity of eQTLs between 
populations is rare, and apparent heterogeneity may instead reflect 
the failure to control for the additive effects of multiple independent 
causal signals.

https://www.ncbi.nlm.nih.gov/snp/?term=rs115070172
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Discussion
Combined with existing whole-genome sequencing data from the same 
samples24, MAGE offers a large open-access dataset for studying the 
diversity and evolution of human gene expression and splicing. Our 
study also offers insight into the genetic sources of variation in these 
key molecular phenotypes, which may in turn mediate variation in 
organismal traits. By evenly spanning samples from all 26 populations 
of the 1KGP6, MAGE includes several ancestry groups that were poorly 
represented in previous molecular association studies7.

The scale and diversity of the dataset enabled the discovery of 
numerous potentially new genetic associations while offering high 
resolution for identifying putatively causal variants and elucidat-
ing their mechanisms of action. Our study also demonstrated that 
the effect sizes of eQTLs are highly consistent across populations, 
which implies that trans-genetic effects (driven by global ancestry 
patterns), if adequately controlled for, generally do not have a strong 
impact on the effects of causal variants in cis. Although addressing 
a point of recent debate within the field8,15,37,38,45,46, this conclusion 

is in agreement with several previous studies that used orthogonal 
approaches for evaluating effect size heterogeneity based on analysis 
of admixed individuals37,45. This finding is encouraging for predictive 
applications such as polygenic risk scores and transcriptome-wide 
association studies, as it suggests that models that focus on causal 
signals and do not make assumptions about the number of such sig-
nals may exhibit better portability between groups. The extent to 
which this conclusion applies to more polygenic complex traits is 
an open question, but a recent study that investigated effect size 
heterogeneity in admixed individuals across 38 complex traits found 
that nominal effect sizes are consistent across local ancestries37. Such 
consistency of genetic effects further motivates the use of diverse 
samples for association studies, as a common causal variant identified 
in one population may inform the effect of that variant in a popula-
tion in which the same variant is rare and association testing would 
be underpowered. Thus, all populations—not only underrepresented 
populations—benefit from the inclusion of greater diversity in genetic 
studies, which empowers more accurate and generalizable predictions 
for personalized medicine47.
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Intersection of eQTLs and sQTLs with data from GWAS may facilitate 
understanding of the molecular mechanisms that link genetic variation 
to organismal phenotypes. Using GWAS data from the PAGE study of 
ancestrally diverse individuals, we identified 54 GWAS signals that colo-
calize with eQTL and sQTL signals. Although informative and substantial 
in absolute number, these reflect a minority of all GWAS hits. Limited 
colocalization between molecular QTLs and GWAS hits is well described, 
largely stemming from distinct selective pressures shaping genetic 
variation that can be identified (with incomplete statistical power) in 
the two analyses48. GWAS hits tend to occur within genes under strong 
purifying selection, whereas molecular QTLs are most easily identified 
for genes under relaxed constraint. This is consistent with our finding 
that genes exhibiting strong signals of selection are depleted of MAGE 
eQTLs. Although inclusion of additional tissues and cell types modestly 
increases the rate of colocalization, these qualitative observations hold 
even for multi-tissue studies such as GTEx48. Despite these general limita-
tions of colocalization analyses, our results demonstrated instances in 
which MAGE facilitated the interpretation of GWAS results, particularly 
in underrepresented populations. We anticipate that this utility will 
further improve as GWAS continue to expand to more diverse cohorts.

By design, our study focused on a single cell type of LCLs, which offers 
a useful model for studying gene expression given their low somatic 
mutation rates and robust gene expression patterns encompassing 
key metabolic pathways49. Although this enabled us to mitigate the 
effects of environmental variation and to compare our results to related 
studies performed in the same cell lines4, future studies may seek to 
understand ancestry differences in expression across developmental, 
cellular and other environmental contexts, including with respect to 
dynamic QTLs for which effects vary based on those contexts50. Future 
studies of diverse cohorts may also leverage new technologies (such 
as long-read genome, cDNA or direct RNA-seq51–53) to achieve higher 
resolution for isoform detection as well as improved analysis of genes 
that occur within highly repetitive or structurally complex regions.

Finally, although geographically diverse, the sampling of the 1KGP is 
not without biases, for example, narrowly sampling the vast diversity 
within Africa and excluding indigenous populations from Oceania and 
the Americas, as well as countless other populations. Addressing these 
biases will require deeper community engagement and respect for the 
rights, interests and expectations of research participants from diverse 
human groups54. This expansion of diversity in functional genomics 
parallels efforts for improved representation of diversity in genome 
sequencing and assembly, including construction of pangenomes55,56. 
Although the current study was based on alignment to a linear repre-
sentation of the reference genome, given the maturity of software tools 
and annotations built on this paradigm, MAGE offers a valuable data 
resource for testing pangenomic methods over the coming decade as 
they are developed by the research community.

Our work provides a more complete picture of the links between 
genetic variation and genome function across diverse populations, as 
well as the evolutionary forces that have shaped this variation within 
our species. Complemented by existing high-coverage whole-genome 
sequencing data, we anticipate that this dataset will serve as a valuable 
resource to facilitate future research into the complex genetic basis of 
variation in human genome function.
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html). Colocalization analyses were conducted using data from the 
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TOPMED, dbGaP accession: phs001974.v5.p1).
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Extended Data Fig. 1 | Distribution of eQTL effect sizes. (A) Distribution of 
lead eQTL effect sizes from autosomal genes, measured as log2(aFC). This 
distribution is expected to be roughly symmetric as, for each variant, the sign 
of the effect is entirely dependent on which allele is denoted the reference allele. 
Vertical dotted lines denote a two-fold change to expression (log2(aFC) = ±1). 

Most eQTLs have a relatively small effect on expression level. (B) Cumulative 
distribution of the absolute value of effect size across lead eQTLs from autosomal 
genes. Only 2031 (13%) lead eQTLs had greater than a twofold effect on gene 
expression (median |log2(aFC)| = 0.30).



Extended Data Fig. 2 | Mapping of high-resolution sQTLs. (A) Number of 
credible sets per sIntron, where we define sIntrons as all introns (that passed 
filtering) for autosomal genes identified as sGenes in the FastQTL permutation 
pass. We ran SuSiE separately for each sIntron. (B) Resolution of sIntron fine- 
mapping, defined as the number of variants per credible set. (C) After fine- 
mapping, overlapping intron-level credible sets were iteratively merged to 

produce gene-level credible sets. Panel C shows the number of merged credible 
sets per sGene. (D) The resolution of sGene fine-mapping, defined as the number 
of variants per merged credible set. These results demonstrate evidence of 
widespread allelic heterogeneity whereby multiple causal variants independently 
modulate splicing patterns of the same genes.
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Extended Data Fig. 3 | Evidence of negative selection on expression-altering 
variation across a range of mutational constraint metrics. (A) Top row: 
number of credible causal sets for genes in (pink) and outside (blue) the top 
decile of various gene-level constraint metrics (pLI, LOEUF, pHaplo, pTriplo, hs, 
RVIS) obtained from the literature. P-values are two-tailed and based on quasi- 
Poisson generalized linear models that include mean expression level as a 

covariate. Bottom row: effect sizes (|log2(aFC)|) of lead eQTLs within (pink)  
and outside (blue) the same categories. P-values are two-tailed and based on 
Wilcoxon rank sum tests. (B) Same as panel A, but for mean PhyloP scores 
summarizing conservation among genome sequence alignments of 447 
mammals within putative promoter elements, defined based on intervals 
around the TSS ([−1000, 1000] bp, [−500, 0] bp, [−50, 0] bp).



Extended Data Fig. 4 | Population stratification of eQTLs. Geographic 
frequencies of autosomal lead eQTLs found in MAGE across (A) all lead eQTLs, 
(B) excluding variants with allele frequencies > 5% across all continental groups, 
(C) only including variants unobserved in the European continental group, and 
(D) only including variants unobserved in both the European and African 

continental groups. The geographic distributions are sorted with the most 
common at the bottom and rarest at the top. Allele frequencies are categorized 
as unobserved (U), rare variants with allele frequencies <5% (R), and common 
variants (C) with allele frequencies ≥5%.
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Extended Data Fig. 5 | Population stratification of sQTLs. Geographic 
frequencies of autosomal lead sQTLs found in MAGE across (A) all lead sQTLs, 
(B) excluding variants with allele frequency > 5% across all continental groups, 
(C) only including variants unobserved in the European continental group, and 

(D) only including variants unobserved in both the European and African 
continental groups. Allele frequencies are categorized as unobserved (U),  
rare variants with allele frequencies <5% (R), and common variants (C) with 
allele frequencies ≥5%.



Extended Data Fig. 6 | GTEx DAP-G fine-mapping signals that do not 
replicate in MAGE are largely tissue-specific. Comparison of number of 
tissues contained by 79,915 cross-tissue merged credible sets (ctmCS) from 

GTEx that do not replicate in MAGE against 7,913 ctmCS that replicate in MAGE. 
The number of tissues is defined as the number of tissues across all variants 
included in a ctmCS.



Article

Extended Data Fig. 7 | Results of eQTL genotype-by-principal component 
interaction test. Analogous to Fig. 5f, the number of significant genotype-by- 
principal component interactions at varying p-value thresholds (dashed line 
denotes Bonferroni threshold) for a model that considers a single causal variant 
for each gene (left panel) versus a model that jointly considers multiple potential 

causal variants per gene (right panel). Genotype-by-principal component 
interactions were included for each of the top 5 global genotype principal 
components. Results are stratified by the number of credible sets for the gene 
(from one to five or greater). As in Fig. 5f, p-values are one-tailed and are obtained 
from an F-test comparing a model with an interaction term to one without.



Extended Data Fig. 8 | High concordance in credible set effect sizes across 
continental groups. (A) Heatmap showing the fraction of shared causal 
signals where log2(aFC) is not significantly different in pairs of continental 
groups after Bonferroni correction. n represents the total number of shared 
causal signals in each pair of continental groups. (B) Scatterplots comparing 

log2(aFC) within pairs of continental groups. Points are colored by whether the 
effect sizes are significantly different. The black line plots y = x (i.e., theoretical 
identical effect sizes). The gray line plots the best fit linear trendline. Significance 
is based on Bonferroni-corrected p-values (two-tailed) from a Welch’s t-test of 
log2(aFC) values in each pair of continental groups.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis All scripts and commands used to prepare and analyze the data can be found in a public GitHub repository (https://github.com/mccoy-lab/
MAGE) and stable Zenodo repository (doi: 10.5281/zenodo.10072080) and are described in the Methods section. 
 
The data analysis packages/tools used in this manuscript are as follows: 
* ADMIXTURE tool (version 1.3.0) 
* Plink tool (version 1.90b6.21) 
* Salmon tool (version 1.5.2) 
* tximport R package (version 1.18.0 and 1.24.0) 
* STAR tool (version 2.7.10a) 
* Leafcutter tool (version 0.2.9) 
* regtools tool (version 0.5.2) 
* MANTA R package (version 1.0.0) 
* car R package (verzion 3.1-2) 
* DESeq2 R package (version 1.36.0) 
* stats R package (version 4.3.0) 
* lme4 R package (version 1.1-34) 
* EdgeR R package (version 3.32.1) 
* peertool tool (version 1.0) 
* FastQTL tool (version 2.184_gtex) 
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* susieR R package (version 0.12.16) 
* aFC-n tool (version 1.0.0 modified in-house, available here: https://github.com/dtaylo95/aFCn) 
* GenomicRanges R package (version 1.38.0) 
* bedtools tool (version 2.29.2) 
* GREGOR tool (version 1.3.1) 
* Ensembl Variant Effect Predictor (VEP) tool (version 109) 
* LOFTEE plug-in for VEP (version 1.0.2) 
* coloc R package (version 5.2.3) 
* geovar python package (version 1.0.2) 
* vcflib tool (version 1.0.0_rc2) 
* statsmodels python package (version 0.14.0)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All sequencing data is available from the NCBI Sequence Read Archive (Accession: PRJNA851328). Processed gene expression matrices and QTL mapping results are 
available on Zenodo (doi: 10.5281/zenodo.10535719). 
 
External datasets used: 
* GRCh38 reference genome (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_000001405.15/) 
* Sample genotypes from the New York Genome Center (NYGC) high-coverage WGS of the 1000 Genomes Project (1KGP; https://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/; https://www.internationalgenome.org/data-portal/data-collection/30x-
grch38) 
* Sex, continental group, and population labels for 1KGP samples (filtered to 30x GRCh38 samples; https://www.internationalgenome.org/data-portal/sample) 
* Sample genotypes for GTEx v9 (dbGaP accession phs000424.v9.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v9.p2) 
* Transcript sequences and gene annotations from GENCODE v38 (https://www.gencodegenes.org/human/release_38.html) 
* pLI and LOEUF (https://gnomad.broadinstitute.org/downloads#v4-constraint) 
* pHaplo and pTriplo (https://zenodo.org/records/6347673) 
* hs (https://github.com/agarwal-i/loss-of-function-fitness-effects) 
* RVIS (https://doi.org/10.1371/journal.pgen.1003709.s002) 
* PhyloP (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phyloP447way/) 
* ENCODE TF binding sites (https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38&g=encRegTfbsClustered) 
* Roadmap Epigenomics chromHMM and DHS annotations (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html) 
* GWAS Catalog harmonized GWAS summary statistics from the PAGE study  (https://www.ebi.ac.uk/gwas/publications/31217584) 
* Variant calls for samples in the PAGE study are part of TOPMED (dbGaP accession: phs001974.v5.p1; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs001974.v5.p1) 
* GTEx v8 eQTL DAPG fine-mapping results (https://www.gtexportal.org/home/downloads/adult-gtex/qtl) 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex (as reported previously by the 1000 Genomes Project) was used as a covariate in all QTL mapping analyses. However, all 
samples are considered together, regardless of sex, for all analyses (i.e., analyses are not sex-stratified, but are sex-adjusted).

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Samples were previously assigned to 1) populations and 2) continental groups (which comprise multiple populations) by the 
1000 Genomes Project based on sampling location and expected patterns of genetic ancestry. We used these same 
continental group and population labels in this study. 
 
For most analyses, samples were analyzed together, regardless of population label. For QTL mapping, the top 5 genotype PCs 
(which are found to correlate with population and continental group labels) were used as covariates to control for trans 
effects driven by global ancestry proportions.

Population characteristics Initial sample collection was performed previously by the 1000 Genomes Project. All individuals were reported to be healthy 
adults at the time of sample collection. Blood was collected from each sample and was EBV-transformed to establish 
lymphoblastoid cell lines. 30x whole genome sequencing for each of these cell lines is available from the New York Genome 
Center, and we generated RNA-seq data from these cell lines in this study.

Recruitment N/A - Recruitment performed as part of earlier study by the 1000 Genomes Consortium.

Ethics oversight The Johns Hopkins Homewood IRB deemed this work not to meet the definition of human subjects research (HIRB00009187).
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was chosen based on previous results by the GTEx consortium that demonstrated high power to detect eQTL associations at low 
MAF with 750 samples. We chose to sequence 780 libraries from 732 cell lines, such that we could sequence 24 cell lines in triplicate. The 732 
cell lines were selected as evenly as possible from the 26 populations in the 1000 Genomes project. One library failed sequencing, leaving us 
with 779 total libraries across 731 unique cell lines.

Data exclusions No data were excluded.

Replication As described above, 24 cell lines were sequenced in triplicate. Library preparation and sequencing was successful for all replicates. Each of the 
replicated cell lines were sequenced twice in one sequencing batch, and a third time in a separate sequencing batch, to quantify within vs. 
between batch variation. We found that across the replicate libraries, the cell line that the library was generated from explained more 
variance in both expression level and splicing than the library batch (see Supplementary Information).

Randomization Sequencing libraries were randomized across sequencing batches in a stratified manner: libraries were stratified across batches based on the 
population label of the cell line, to reduce confounding between sequencing batch and population.

Blinding Not applicable: blinding was not relevant to experimental design or analysis. This is not a clinical study; there are no treatment or control 
groups. We are analyzing RNA-sequencing data from lymphoblastoid cell lines.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) All cell lines are lymphoblastoid cell lines (LCLs) procured from the Coriell Insitute for Medical Research. Cell line sex is 
previously reported by the 1000 Genomes Project.

Authentication Quality control procedures were performed according to standard practices of the NHGRI Repository at Coriell. Cell line 
identity was confirmed using a multiplex PCR assay for six autosomal microsatellite markers.

Mycoplasma contamination At Coriell, cultures are tested and found free of mycoplasma, bacteria, and fungi during expansion, at the time of frozen 
storage, and after recovery of stock for distribution from liquid nitrogen.

Commonly misidentified lines
(See ICLAC register)

Not applicable
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Novel plant genotypes Not applicable

Seed stocks Not applicable

Authentication Not applicable
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