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Single-cell multiregion dissection of 
Alzheimer’s disease

Hansruedi Mathys1,2,3,4,13, Carles A. Boix5,6,7,13, Leyla Anne Akay1,2,13, Ziting Xia1,2,8, 
Jose Davila-Velderrain9, Ayesha P. Ng1,2, Xueqiao Jiang1,2, Ghada Abdelhady3, 
Kyriaki Galani5,6, Julio Mantero5,6, Neil Band5,6,12, Benjamin T. James5,6, Sudhagar Babu3, 
Fabiola Galiana-Melendez1,2, Kate Louderback1,2, Dmitry Prokopenko10, Rudolph E. Tanzi10, 
David A. Bennett11, Li-Huei Tsai1,2,6 ✉ & Manolis Kellis5,6 ✉

Alzheimer’s disease is the leading cause of dementia worldwide, but the cellular 
pathways that underlie its pathological progression across brain regions remain 
poorly understood1–3. Here we report a single-cell transcriptomic atlas of six  
different brain regions in the aged human brain, covering 1.3 million cells from  
283 post-mortem human brain samples across 48 individuals with and without 
Alzheimer’s disease. We identify 76 cell types, including region-specific subtypes of 
astrocytes and excitatory neurons and an inhibitory interneuron population unique 
to the thalamus and distinct from canonical inhibitory subclasses. We identify 
vulnerable populations of excitatory and inhibitory neurons that are depleted in 
specific brain regions in Alzheimer’s disease, and provide evidence that the Reelin 
signalling pathway is involved in modulating the vulnerability of these neurons. We 
develop a scalable method for discovering gene modules, which we use to identify 
cell-type-specific and region-specific modules that are altered in Alzheimer’s disease 
and to annotate transcriptomic differences associated with diverse pathological 
variables. We identify an astrocyte program that is associated with cognitive resilience 
to Alzheimer’s disease pathology, tying choline metabolism and polyamine 
biosynthesis in astrocytes to preserved cognitive function late in life. Together, our 
study develops a regional atlas of the ageing human brain and provides insights into 
cellular vulnerability, response and resilience to Alzheimer’s disease pathology.

Alzheimer’s disease (AD) is characterized by pathological protein 
aggregation in a stereotyped pattern across multiple brain regions1,4. 
Post-mortem diagnosis of AD is staged by the severity and distribu-
tion of these pathological hallmarks: extracellular amyloid-β deposits 
and intracellular neurofibrillary tangles (NFTs) in neurons. Tangles 
are first seen in the entorhinal cortex (EC) (Braak stages I–II), then 
the hippocampus and thalamus (Braak stages III–IV) and finally 
the neocortex (Braak stages V–VI), a sequence that is typically syn-
chronous with cognitive decline from mild cognitive impairment 
to severe dementia1,2,4–7. Understanding the cellular architecture 
of affected brain regions has important implications for early and 
region-specific therapeutic interventions and may shed light on 
the molecular mechanisms underlying the regional progression of 
pathology. Although some brain regions relevant to AD have been 
studied individually at scale or jointly in samples from a few individu-
als8–16, a comprehensive molecular characterization of region-specific 
differences in AD is currently lacking and could capture differences 
in regional molecular architecture17–24 and region-specific neuronal 

and glial subtype alterations in AD and in cognitive resilience to AD 
pathology3,25–27.

Here we present a transcriptomic atlas of the human brain span-
ning six distinct anatomical regions from persons with and without 
Alzheimer’s dementia as a basis for understanding disease-associated 
differences. We profile the transcriptomes of over 1.3 million nuclei 
from the EC, hippocampus (HC), anterior thalamus (TH), angular gyrus 
(AG), midtemporal cortex (MT) and prefrontal cortex (PFC) from 48 
individuals, 26 of whom have a pathologic diagnosis of AD. We anno-
tate region-specific neuronal and glial subtype diversity, present an 
online resource for navigating this atlas (http://compbio.mit.edu/ 
ad_multiregion) and provide mechanistic insights into cellular vulner-
ability, response and resilience to AD.

A multiregion atlas of AD
To characterize cellular diversity in the human brain, and the genes, 
pathways and cell types that underlie AD progression across brain 

https://doi.org/10.1038/s41586-024-07606-7

Received: 20 June 2022

Accepted: 24 May 2024

Published online: 24 July 2024

Open access

 Check for updates

1Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA. 2Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA. 3University of Pittsburgh Brain Institute, University 
of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 4Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 5Computer Science and Artificial 
Intelligence Laboratory, MIT, Cambridge, MA, USA. 6Broad Institute of MIT and Harvard, Cambridge, MA, USA. 7Computational and Systems Biology Program, MIT, Cambridge, MA, USA. 
8Harvard-MIT Health Sciences and Technology Program, MIT, Cambridge, MA, USA. 9Human Technopole, Milan, Italy. 10Genetics and Aging Research Unit, McCance Center for Brain Health, 
Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. 11Rush Alzheimer’s Disease Center, Chicago, IL, USA. 12Present address: Department of 
Computer Science, Stanford University, Stanford, CA, USA. 13These authors contributed equally: Hansruedi Mathys, Carles A. Boix, Leyla Anne Akay. ✉e-mail: lhtsai@mit.edu; manoli@mit.edu

http://compbio.mit.edu/ad_multiregion
http://compbio.mit.edu/ad_multiregion
https://doi.org/10.1038/s41586-024-07606-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-07606-7&domain=pdf
mailto:lhtsai@mit.edu
mailto:manoli@mit.edu


Nature  |  Vol 632  |  22 August 2024  |  859

regions, we performed single-nucleus RNA-sequencing (snRNA-seq) 
analysis of nuclei isolated from 283 post-mortem brain samples across 
six brain regions from 48 participants in the Religious Order Study 
(ROS) or the Rush Memory and Aging Project (MAP)28 (together, ROS-
MAP; Fig. 1a). We selected 48 participants on the basis of pathologic 
diagnosis of AD (stratified by NIA-Reagan score of 26 (with AD) and 22 
(without AD; labelled non-AD)) and on the basis of clinical diagnosis of 
Alzheimer’s dementia (n = 16) versus non-dementia (n = 32)29,30 (Fig. 1a, 
Extended Data Fig. 1a and Supplementary Table 1). From these 48 indi-
viduals, we profiled six brain regions: the EC (221,493 cells), which is 
affected in early AD (stages I–II); the HC (221,415) and TH (207,625), 
which are affected in mid-AD (stages III–IV); and the AG (220,409), MT 
(227,412) and PFC (254,721), which are affected in late AD (stages V–VI),  
for a total of 1.35 million transcriptomes of independent nuclei after 

removing doublets, low-quality cells and highly sample-specific clus-
ters. We annotated 76 high-resolution cell types in 14 major cell type 
groups, including 32 excitatory neuron subtypes (436,014 nuclei, 
32.2% of total) and 23 inhibitory subtypes (159,838 nuclei, 11.8% of 
total) (Extended Data Fig. 1b–d, Supplementary Figs. 1 and 2 and Sup-
plementary Table 2). We characterized these cell types in terms of their 
transcriptome size and proliferative status, compared our atlas with 
previously published data across species31–33 (Extended Data Fig. 1e,f 
and Supplementary Figs. 3–5) and identified broad cell type identity 
programs using non-negative matrix factorization (NMF)34 and tran-
scriptional regulons using SCENIC35,36 (Extended Data Figs. 2 and 3 and 
Supplementary Tables 3 and 4).

To gain insights into the cellular architecture of the human brain, we 
investigated differences in the composition of major cell types between 
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Fig. 1 | snRNA-seq analysis of six distinct regions of the aged human brain. 
a, snRNA-seq profiling summary, covering 283 samples across 6 brain regions 
from 48 participants from ROSMAP, showing global pathology, Braak stage and 
pathological (26 AD and 22 non-AD) or clinical diagnosis of AD (16 AD dementia 
(dem.) and 32 no dementia). b,c, Joint uniform manifold approximation and 
projection (UMAP), coloured by major cell type (b) and region of origin (c).  
d, The regional composition of major cell types. e, Relative enrichment of 
major cell types across regions by quasi-binomial regression. False discovery 
rate (FDR)-corrected P values are indicated by asterisks; ***P < 0.001, **P < 0.01, 
*P < 0.05. f,g, Global breakdown, region composition, enrichment and number 
of nuclei for excitatory (f) and inhibitory (g) neuronal subtypes. h, Gene 
expression analysis of the top four markers per inhibitory subclass, averaged at 

the sample by subclass level (columns). i, RNAscope validation of FOXP2 and 
MEIS2 as markers of the unique thalamus subtype, with quantification (left) 
performed using Student’s t-tests and representative images (right). The blue 
puncta represent MEIS2 (top) or FOXP2 (bottom) transcripts and red puncta 
represent GAD2 transcripts. FOXP2: n = 19 (PFC) and n = 22 (TH) cells; MEIS2: 
n = 35 (PFC) and n = 26 (TH) cells; each dot represents an individual cell, pooled 
from eight samples (four individuals; each had one PFC and one thalamus sample). 
j, Glutamatergic versus GABAergic scores for all neuron subtypes. The dotted 
lines represent the 95% confidence interval around the linear fit. P values were 
calculated using two-sided F tests. Ast., astrocytes; exc., excitatory neurons; 
inh., inhibitory neurons; mic., microglia/immune cells; olig., oligodendrocytes; 
vasc., vascular/epithelial cells.
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the six brain regions. The fraction of neurons increased significantly 
from the TH (14.4% neurons) to the three-layer allocortical HC (32.2%), 
the entorhinal periallocortex (36.6%) and the six-layered neocortical 
regions (AG, MT and PFC, 58.9%) (Fig. 1b–e and Supplementary Fig. 6). 
Glia, including astrocytes, oligodendrocytes, oligodendrocyte precur-
sor cells (OPCs) and microglia/immune cells, tended to be less abundant 
in neocortical samples (Fig. 1b–e), in agreement with previous studies 
in humans37,38 and mice39,40 (Supplementary Fig. 7a–d). Differences in 
the composition of major cell types between regions were reproduc-
ibly observed across study participants, irrespective of the individual’s 
disease status (Supplementary Fig. 7e–h), suggesting that variability 
in the major cell type composition between regions is a fundamental 
characteristic of the human brain and is not affected by AD pathology.

Neuronal diversity across brain regions
We first characterized the regional diversity of excitatory neuron sub-
types, which were consistent across individuals and were either highly 
region-specific to the HC, EC and TH (7, 9 and 2 subtypes, respectively) 
or were predominantly shared across neocortical regions (12 subtypes) 
(Fig. 1f and Supplementary Fig. 8–12). Hippocampal subtypes included 
neurons from the highly structured CA1 and CA2/CA3 subfields and 
dentate gyrus and the more entorhinal-proximal subiculum and para/
presubiculum areas9. EC-specific subtypes that clustered separately 
from neocortical subtypes for the same layers were often marked by 
expression of RELN, TOX3 and GPC5, and contained subtypes from both 
the lateral (L2 RELN+GPC5+) and medial (L2 TOX3+POSTN+) EC41–43 (Sup-
plementary Fig. 10). Excitatory neurons in the TH were predominantly 
composed (74%) of a subtype (NXPH1+RNF220+) that was not observed 
in the neocortex and is predicted to be regulated by LHX9, SOX2, SHOX2 
and TCF7L234,36 (Extended Data Fig. 2a,b and Supplementary Figs. 9e–i 
and 11n,o). We found that the thalamic–neocortex separation is con-
served in mice and recapitulated both this divide and thalamic marker 
genes in independent single-cell, bulk and microarray data in both mice 
and humans8,39,40,43 (Supplementary Fig. 12).

In contrast to excitatory neuron subtypes, the majority of inhibi-
tory neuron subtypes (22 out of 23 subtypes) were observed in all five 
cortical regions (Fig. 1g and Supplementary Figs. 13–17), although 
some inhibitory subtypes had regional biases, including PVALB+HTR4+ 
and CUX2+MSR1+ (enriched in neocortex), layer 6 SST+NPY+ (EC and 
HC) and GPC5+RIT2+ (EC), suggesting that there are significant differ-
ences in inhibitory neuron composition between the neocortex and 
allocortex (Fig. 1g and Supplementary Fig. 14). Moreover, in the HC, 
EC and MT, caudal ganglionic eminence-derived GABAergic neurons 
(VIP+LAMP5+) were significantly more abundant than medial ganglionic 
eminence-derived neurons (SST +PVALB+), but these two major clades 
were not significantly different in the PFC (Extended Data Fig. 1g). By 
contrast, the TH contained a single unique, thalamus-specific inhibitory 
subtype (MEIS2+FOXP2+) marked by genes that are involved in neurite 
outgrowth, such as the semaphorins SEMA3C and SEMA3E, DISC1 and 
SPON1, and receptors for serotonin (HTR2A), acetylcholine (CHRM2, 
CHRNA3) and glutamate (GRM3) (Fig. 1g,h and Supplementary Figs. 14 
and 15). These genes were in a single inhibitory program (Inh-22, from 
NMF) that included the SCENIC-predicted subtype regulators FOXP2 
and LEF134,36 (Extended Data Figs. 2c,d and 3b). We recapitulated this 
thalamic difference and program genes in the mouse thalamus and 
human lateral geniculate nucleus (dLGN) using previously published 
single-cell data (Supplementary Figs. 16 and 17). To validate the locali-
zation and specificity of markers of the thalamic inhibitory neuron 
subtype, we performed in situ hybridization for both FOXP2 and MEIS2 
with GAD2 on TH and PFC post-mortem brain samples from four indi-
viduals, and found significant thalamus-specific co-localization of 
both marker genes with GAD2 (Fig. 1i).

As thalamic MEIS2 neurons expressed several typically glutamatergic 
neuron genes, we determined glutamatergic and GABAergic module 

scores for every neuronal cell to further examine the chimeric nature 
of this subtype (Supplementary Fig. 15g–k and Supplementary Table 5). 
These scores matched the cortical excitatory and inhibitory split and 
were negatively correlated both across and within broad neuronal 
classes (Fig. 1j and Supplementary Fig. 15g,h). Both thalamic MEIS2+ 
inhibitory and NXPH1+ excitatory neurons had intermediate scores, 
placing them between the cortical excitatory and inhibitory clusters, 
suggesting that they are less polarized with regard to the expression 
of cortical glutamatergic versus GABAergic programs (Fig. 1j and Sup-
plementary Fig. 15i–k). Predicted cell–cell communication interactions 
were mostly shared across multiple regions, but the thalamus had 
multiple differential interactions (Supplementary Figs. 18 and 19). The 
top thalamus-specific interactions were between excitatory NXPH1 
and neuronal NRXN1 or NRXN3, whereas inhibitory neurons expressed 
NXPH1 in the other regions, suggesting that neurexophilin signalling 
swaps from excitatory neurons in the thalamus to inhibitory neurons 
in cortical brain regions (Extended Data Fig. 4).

Glial diversity annotated by gene modules
We next tested whether glial cells also had transcriptional differ-
ences between brain regions. We identified multiple transcriptionally 
distinct subsets for each major glial cell type and determined their 
characteristic marker genes (Fig. 2a and Supplementary Fig. 20–25). 
Among glial cell types, astrocytes had the highest regional hetero-
geneity, containing both highly neocortex-enriched (GRM3+DPP10+) 
and thalamus-enriched (LUZP2+DCLK1+) subtypes (Fig. 2a–c and 
Supplementary Fig. 20). Region-specific astrocyte subtypes were 
experimentally validated using RNA in situ hybridization (Fig. 2d) and 
confirmed by analysing a separate snRNA-seq dataset14 (Supplementary 
Fig. 23m). Cortical astrocytes were enriched for markers involved in 
glutamate processing and transport, whereas hippocampus- and ante-
rior thalamus-enriched DCLK1 astrocytes had lower glutamate trans-
porter activity and were enriched instead for focal-adhesion-related 
genes (Fig. 2c and Supplementary Fig. 25a). Thalamic astrocytes 
(LUZP2+) expressed GABA-uptake genes SLC6A1 and SLC6A11 at much 
higher levels compared with other subtypes, even though the propor-
tion of inhibitory neurons was not markedly higher in the thalamus 
(Fig. 2c). Notably, the thalamic MEIS2+FOXP2+ interneurons shared 
multiple markers with neocortical GRM3 astrocytes, including GRM3, 
MEIS2 and VAV339,40,43 (Supplementary Fig. 23n), suggesting that astro-
cytes in evolutionarily newer regions may share some functions with 
inhibitory neurons in older regions.

We developed a method, single-cell decorrelated module networks 
(scdemon), to identify gene expression modules from highly corre-
lated sets of genes in atlas-scale snRNA-seq datasets (Fig. 2e). Highly 
imbalanced cell type composition in single-cell datasets, in which rare 
cellular states are outnumbered by common cell types, can lead to 
under-recovery of gene–gene interactions, especially for genes that are 
expressed at low levels. To account for these issues, our method esti-
mates a sample-decorrelated gene–gene correlation matrix, thresholds 
gene–gene pairs based on their sparsity and uses the adjusted matrix 
to identify modules of highly correlated genes (Methods). We used our 
method to identify modules both across all cells in the atlas and for each 
major cell type independently, and recovered modules expressed to 
varying degrees, ranging from identity modules for each glial cell type 
to a cell cycle module found in just 0.7% of microglia (Fig. 2f, Extended 
Data Fig. 5, Supplementary Figs. 26–36 and Supplementary Table 6). 
Cells expressing these modules were enriched for diverse aspects of 
our dataset, including cellular subtype identity (205 modules), brain 
region (156, with 77 thalamus specific and 34 EC specific), AD status (73), 
APOE genotype (78) and sex (24) (Fig. 2f and Supplementary Table 7). We 
hierarchically clustered modules across the cell types and found that 
many cell types expressed gene programs for cholesterol biosynthesis 
(C10), chaperones (C5), ribosomes (C1 and C2), ER protein processing 
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(C7), oxidative phosphorylation (C18), synapse interaction (C16), and 
glycolysis and response to hypoxia (C20) (Extended Data Fig. 6a,b).

Using this approach, we identified 32 modules in astrocytes, 
including an astrocyte-wide program (M9, expressed in >99% of 
astrocytes) marked by GPM6A and GPC5 and enriched for cell junc-
tion assembly, and subtype- and region-specific identity programs 
such as thalamus-associated M19 (SLC6A11, LGR6, MRAS), which were 
enriched for sonic hedgehog signalling, M12 (GRM3: forebrain neuron 
development) and M7 (DCLK1: synaptic membrane) (Fig. 2g,h and Sup-
plementary Fig. 31). Other modules spanned a diverse set of functions, 
including metallostasis, RNA splicing, glycolysis, oxidative phospho-
rylation and cholesterol biosynthesis and were shared by multiple 
subtypes (Fig. 2i–k and Extended Data Figs. 5b and 6a–c). For example, 
chaperone-enriched and APOE-ε4-associated M8 was expressed in 

multiple different astrocyte subtypes and regions, and expression of 
AD-associated M28 (metallostasis) overlapped with expression of both 
APOE + (M0) and reactive (M3) astrocytes (Fig. 2i–k). Module–module 
correlations across samples revealed co-expressed programs, such 
as reactive astrocytes (M3, marked by TPST1, CLIC4 and EMP1) with 
cholesterol biosynthesis module M17 (r = 0.60), and glycolysis (M6) 
with AP-1 module M13 (r = 0.39, including FOS/JUN and ubiquitin), a 
pair that is potentially co-expressed in astrocytes under metabolic 
stress (Extended Data Fig. 6d,e).

In contrast to astrocytes, immune cells showed little regional specific-
ity and oligodendrocyte-lineage cells had thalamus-enriched subtypes 
with minor transcriptomic differences to neocortex-enriched subtypes 
(Supplementary Figs. 21–25). Immune modules included identity pro-
grams, such as for T cells (M6), macrophages (M7) and cycling microglia 
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Fig. 2 | Astrocyte diversity across regions annotated by gene expression 
modules. a, UMAP plot for astrocyte nuclei, coloured by astrocyte subtype  
or brain region of origin. b, Global breakdown and regional composition of 
astrocyte subtypes. c, Gene expression heat map for the top markers of each 
astrocyte subclass, averaged to sample by subtype and scaled to the row 
maximum (max.). d, RNAscope validation of GRM3 and LGR6 as markers  
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(MKI67+, M5) as well as modules found across immune cells and enriched  
for genes involved in NF-κB signalling (M18), interferon (M20), p53 and 
DNA damage response (M22) and TGFβ signalling (M14) (Extended 
Data Fig. 6f and Supplementary Fig. 32). Oligodendrocyte-lineage 
modules showed high regional specificity, and two OPC modules—
thalamus-enriched M11 and EC-enriched M25—were marked by 
synapse-associated genes such as neural adhesion-related SEMA3D, 
SEMA6D and CNTN5, and glutamate receptor GRIA4, suggesting a role 
for OPC sensation and response to neuronal activity in specific brain 
regions (Extended Data Fig. 5c,e and Supplementary Figs. 33, 34 and 36).

Vulnerable neuronal subtypes in AD
After constructing our atlas across AD-affected brain regions, we exam-
ined how AD affects the cellular composition. At the level of major cell 
types, we observed slight, non-significant decreases in the number of 
both excitatory neurons (odds ratio (OR) = 0.94, individuals stratified 
by pathologic diagnosis of AD), inhibitory neurons (OR = 0.93) and 
OPCs (OR = 0.85), as well as an increase in the number of oligodendro-
cytes (OR = 1.14, adjusted P (Padj) = 0.01) and vascular cells (OR = 1.24), 
mostly driven by differences in the EC, HC and PFC regions, especially in 
late AD (Extended Data Fig. 7a,b). We next tested whether the fractions 
of region-specific neuronal subtypes were significantly altered relative 
to both individual-level pathologic and clinical diagnoses of AD and 
region-level NFT and plaque accumulation (Fig. 3a and Extended Data 
Fig. 7c,d). Among excitatory neurons, we identified one HC-specific 
(CA1 pyramidal neurons) and four EC-specific (L2 RELN+ lateral EC, L3 
RELN+, L5 and L2/3 TOX3+TTC6+ neurons) subtypes that were signifi-
cantly less abundant (OR = 0.38–0.66) in individuals with a pathologic 
diagnosis of AD (Fig. 3a and Supplementary Fig. 37a–c). Neocortical 
L2–3 neurons were also significantly less abundant in samples with 
high NFT levels and in individuals with neocortical NFT involvement 
(Fig. 3a). Individuals with lower percentages of these vulnerable excita-
tory neuron subtypes performed significantly worse on cognitive tasks, 
with the strongest observed impacts on episodic memory and global 
cognitive function for subtypes marked by GPC5 (EC L5 and L2 RELN+)2 
(Extended Data Fig. 7e,f). Notably, while the overall excitatory fraction 
was not associated with cognition, lower OPC fraction across regions 
and, in particular, in non-neocortex regions was significantly associated 
with impaired cognition (Supplementary Fig. 37d).

Given that these neuronal subtypes lie in highly interconnected 
regions, we next examined whether neuronal subtypes connected 
across regions were coordinately depleted. We found that vulnerable 
neuronal subtypes were co-depleted specifically in individuals with AD, 
with some of the strongest effects observed in established connections 
between the CA1, subiculum, EC–L3 and EC–L5 (Fig. 3b,c and Extended 
Data Fig. 7g). These included co-depletion for entorhinal L5 versus 
L5-projecting subiculum (Kendall’s τ = 0.37 (AD); −0.1 (non-AD)) or 
CA1 (τ = 0.42 (AD) and −0.16 (non-AD)); and for CA1 versus L2-lateral EC 
(LEC, τ = 0.26 (AD) and −0.07 (non-AD)) and L3 RELN+ (τ = 0.24 (AD) and 
−0.13 (non-AD)) EC neurons, both of which project in part to the CA1 
subfield44,45 (Fig. 3b,c and Extended Data Fig. 7g).

We next investigate whether vulnerable subtypes share marker genes 
that might mediate their vulnerability, and identified 391 genes with sig-
nificantly higher baseline (non-AD) expression in vulnerable subtypes 
(Fig. 3d and Supplementary Table 8). These included Reelin signalling 
pathway genes RELN and DAB1; kinase-associated genes MAP2K5, PRKCA 
and SPHKAP; and multiple genes associated with heparan sulfate pro-
teoglycan biosynthesis (including HS6ST3, XYLT1 and NDST3) (Fig. 3d 
and Extended Data Fig. 7h,i). Notably, while RELN expression, which is 
typically restricted to inhibitory neurons, was highly specific to two EC 
excitatory subtypes, its downstream partner DAB1 was present across 
subtypes (Extended Data Fig. 7h,i and Supplementary Fig. 37e,f).

We next examined whether vulnerable inhibitory neuron subtypes 
in the PFC share characteristics with vulnerable excitatory neuron 

subtypes across our brain regions using single-cell transcriptomes from 
621 ROSMAP study participants27,46. We identified specific inhibitory 
neuron subtypes that are depleted in individuals with a high tangle 
density burden, consistent with our previous findings27 (Extended 
Data Fig. 7j). Vulnerable and non-vulnerable inhibitory neuron sub-
types differed in the expression of genes involved in neuron projection 
morphogenesis (ROBO2, SEMA6A and EPHB6), enzyme-linked receptor 
protein signalling pathways (FGFR2, TGFBR1 and PLCE1) and heparan 
sulfate proteoglycan biosynthesis (Extended Data Fig. 7k and Sup-
plementary Table 8). Notably, vulnerable inhibitory neuron subtypes 
expressed significantly higher levels of the Reelin signalling pathway 
components RELN and DAB1, mirroring the observed higher expression 
of these two genes in vulnerable excitatory neuron subtypes (Fig. 3e). 
Furthermore, the Reelin receptors LRP8 (also known as ApoER2) and 
NRP1 exhibited significantly different baseline expression in vulnerable 
compared with non-vulnerable inhibitory neuron subtypes (Fig. 3f).

To test the selective vulnerability of Reelin-expressing excitatory neu-
rons in AD, we performed in situ hybridization (RNAscope) analysis of 
Reelin and vGlut (excitatory neuron marker) in EC tissue samples from 
both patients with AD and healthy individuals without AD. We found 
a significant decrease in the percentage of Reelin-expressing excita-
tory neurons in the EC of individuals with AD (Fig. 3g). To determine 
whether this finding was conserved in animal models of AD, we used 
immunohistochemistry to assess the expression of Reelin in the EC of 
both 12-month-old App knock-in (KI) mice and 9-month-old Tau(P301S) 
transgenic mice. We found that, relative to wild-type littermate con-
trols, App-KI mice and Tau(P301S) mice had a significantly decreased 
percentage of Reelin-positive neurons in the EC (Fig. 3h,i), in agreement 
with our human transcriptomic data suggesting a selective vulnerability 
of Reelin-expressing neurons (Fig. 3d–f).

To understand how vulnerable subtypes are altered in AD, we com-
puted differentially expressed genes (DEGs) for each excitatory neuron 
subtype (Methods and Supplementary Fig. 38a–c). We partitioned 
DEGs into sets associated with either vulnerable or non-vulnerable 
subtypes according to their expression levels in individuals with late 
AD (Extended Data Fig. 7l,m). DEGs linked to non-vulnerable subtypes 
were enriched for a diverse set of functions, including ubiquitin-ligase 
binding, heat-shock-family chaperones, ER protein processing and 
mediators of neuronal death, whereas vulnerability-associated DEGs 
were highly enriched only for mitochondrial oxidative phosphorylation 
but included CRK and NEUROD2, which are both associated with Reelin 
signalling17,18 (Extended Data Fig. 7l,m and Supplementary Fig. 38d–f). 
Some DEGs associated with non-vulnerable subtypes had higher dif-
ferential effect sizes in the vulnerable subtypes, and showed additional 
enrichment for aerobic glycolysis (including PGK1, LDHB and SLC2A3) 
and clathrin-mediated endocytosis (including AP2M1/AP2S1, OCRL and 
COPS8) (Extended Data Fig. 7m).

Regional expression differences in AD
To identify regional differences in cellular expression and function 
specific to individuals with pathologic AD, we computed DEGs for 
each major cell type in every region alone and across regions using a 
negative binomial linear mixed model framework, adjusting for both 
known covariates and potential unknown batch effects (Methods) 
(Extended Data Fig. 8a and Supplementary Table 9). Astrocytes and 
inhibitory and excitatory neurons showed the highest number of DEGs 
over all of the regions, with the largest number of changes in the EC 
(Extended Data Fig. 8a). Notably, neuronal DEGs showed little overlap 
across regions, indicating that neuronal differences in AD are primarily 
determined by subtype or region of origin (Extended Data Fig. 8b). By 
contrast, microglia and OPC DEGs overlapped within the non-neocortex 
regions, and astrocyte and oligodendrocyte changes were more con-
sistent across all regions (Extended Data Fig. 8b). AD DEGs were con-
sistent with published results both for region-specific DEGs and for 
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DEGs computed jointly over all regions for multiple AD variables, and  
were further corroborated by comparisons with various independent 
studies11,12,15,19,47–53 (Supplementary Fig. 39).

Excitatory DEGs were strongly enriched for electron-transport func-
tional terms across regions and showed weak region-specific enrich-
ments for protein-folding-, ubiquitination- and synapse-associated 

terms (Extended Data Fig. 8c). Inhibitory DEGs were also broadly 
enriched for protein-folding- and synapse-associated terms and 
for oxidative phosphorylation uniquely in the thalamus (Extended 
Data Fig.  8c). While microglia DEGs were broadly enriched for 
clathrin-coated endocytosis (up) and viral response (down), they also 
had diverse region-specific enrichments, including upregulation of 
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Fig. 3 | Subtype-specific neuronal vulnerability in AD. a, Compositional 
differences in excitatory neuron subtype enrichment and depletion in AD by 
quasi-binomial regression with FDR correction. Clin. diag., clinical diagnosis; 
path. AD, pathologic AD. b, Scatter plot and correlations (Kendall’s τ) of  
the subtype fraction between four pairs of neuronal subtypes in the HC and  
EC (linear fit with 95% confidence intervals). c, Schematic of the HC and EC, 
highlighting the locations of vulnerable excitatory subtypes and co-depleted 
connections. d, Genes associated with excitatory neuron subtype vulnerability 
across all brain regions. Linear regression between normalized sample + subtype- 
level gene expression and log2[OR] for late-AD, with FDR-corrected P values.  
e, Genes associated with excitatory and inhibitory subtype vulnerability (FDR- 
corrected P values, only genes significantly and positively associated with 
excitatory subtype vulnerability). f, Schematic of Reelin signalling pathway 
genes that are differentially expressed in vulnerable inhibitory subtypes (colour 
indicates the log2-transformed fold change in expression between vulnerable 
and non-vulnerable subtypes). The diagram was created using BioRender.  

g, In situ hybridization (RNAscope) validation of depletion of RELN+ excitatory 
neurons in the EC of individuals with AD relative to individuals without AD. 
Representative images (left) include Hoechst (blue), vGlut transcripts  
(green puncta) and RELN transcripts (magenta puncta). Scale bars, 20 μm. 
Quantification (right) was performed using unpaired two-tailed Student’s t-tests 
(P = 0.0242). Data are mean ± s.e.m. n = 5 (non-AD) and n = 4 (AD) individuals.  
h,i, Immunohistochemistry analysis of Reelin, NeuN and amyloid-β (h) or 
phosphorylated tau (i) in 12-month-old App-KI mice (h) or 9-month-old 
Tau(P301S) transgenic mice (i), showing depletion of Reelin-positive neurons  
in the ECs of the KI and transgenic mice compared with those of the wild-type 
controls. Representative images (left) show Hoechst (blue); amyloid-β (h; D54D2) 
or phosphorylated-tau (i) (green); NeuN (yellow); and Reelin (red). Scale bars, 
100 μm (h and i). Quantification (right) was performed using unpaired two-tailed 
Student’s t-tests; P = 0.0181 (App-KI, h; n = 7 (App-KI) and n = 6 (wild type) mice) 
and P = 0.0005 (Tau(P301S), i; n = 6 mice (Tau(P301S)) and n = 5 (wild type) mice). 
Data are mean ± s.e.m. ParaS, parasubiculum; PrS, presubiculum.
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major histocompatibility complex type II (MHC-II) binding in the EC and 
HC, RNA processing in thalamus and glycolysis in the PFC and EC; and 
HC-driven downregulation of phagocytosis, phospholipase signalling 
and protein kinase activity (Extended Data Fig. 8c).

The majority of region-specific DEGs was either broadly shared (on 
average, 11% of genes were differentially expressed in 3+ cell types in 
a region) or were in cell-type-specific programs (40% of DEGs were 
in 3+ regions for a cell type) (Extended Data Fig. 8d,e). Such genes 
included SLC38A2 and EIF4G2 (broadly shared across regions) and 
PRDX5, HLA-DRA or CD44, upregulated DEGs in excitatory neurons, 
microglia and astrocytes, respectively (Extended Data Fig. 8f and Sup-
plementary Fig. 40). Broadly shared genes across cell types showed 
region-specific enrichment, including for DNA damage (EC), amyloid-β 
binding and iron transport (HC) and glycolysis (thalamus) in upregu-
lated genes as well as for phospholipid biosynthesis and autophagy 
in downregulated genes (Extended Data Fig. 8e). Gene sets based 
on DEGs for global AD pathology burden in the PFC across 427 indi-
viduals changed consistently in each region and glial cell type across 
global pathology, indicating that a significant component of the glial 
AD response is consistent across regions27 (Extended Data Figs. 8b–e 
and 9a,b). The remaining regional DEGs (on average, 48% of DEGs) 
highlighted region- and cell-type-specific changes. In microglia, these 
included PPARG and MSR1, upregulated in the HC, each associated with 
microglia polarization, as well as upregulation of lipoprotein modifier 
APOC1 and downregulation of transcription factor FOXP2 in the EC 
(Extended Data Fig. 8f and Supplementary Fig. 40).

We next examined which cell types and regions were most enriched 
for genes identified in genome-wide association studies (GWASs) of 
AD by computing GWAS scores for each cell using single-cell disease- 
relevance score (scDRS)54,55. Microglia and immune cells showed 
consistently high scores across regions, with the top scores for the 
microglia TPT1+ subtype and macrophages in the HC, thalamus and AG 
(Extended Data Fig. 9c). We examined whether GWAS genes showed 
region-specific differences in expression that might be linked to 
the region specificity of AD progression. We identified eight GWAS 
genes with region-specific expression in microglia, including PLCG2 
(EC), APOE and SORL1 (thalamus), and MS4A4A (midtemporal cortex) 
(Extended Data Fig. 9c–f).

To determine whether GWAS-identified genes have regional asso-
ciations with Alzheimer’s pathology, we intersected DEGs for regional 
pathology measurements with 149 identified familial AD and GWAS 
locus genes56–58 (Extended Data Figs. 10 and 11a). We found that 74 
genes (49%) were differentially expressed for at least one cell type, 
and multiple genes showed region-specific expression, including 
the lipid transporter ABCA7 (enriched in thalamus), the zinc-finger 
protein ZNF655 (EC) and the complement receptor CR1 (neocortex)56 
(Extended Data Fig. 10). GWAS and familial AD genes were maximally 
expressed (75 genes) and differentially expressed (30 genes) in micro-
glia, and 25 genes were differentially expressed in at least three cell 
types, including upregulated CLU, PLCG2 and SORT1, and downregu-
lated DENND6A (Extended Data Fig. 10). Among all of the cell types, 
astrocytes and microglia showed the largest differential changes for 
these genes in regions with high neuritic plaque density, for exam-
ple, for APOE, HLA-DRA, PILRA and SORT1, and showed the most 
response to diffuse plaque. Neurons and oligodendrocyte-lineage 
cells showed stronger differences for these genes, including for 
PLCG2, CLU and MAF, in regions with high NFT density (Extended  
Data Fig. 10).

Pathology-specific expression changes
To determine whether different pathologies induce distinct transcrip-
tional responses, we computed DEGs for region-specific measure-
ments of NFT and neuritic amyloid-β plaque burden (measured in 
each region except thalamus) (Fig. 4a, Extended Data Fig. 11a,b and 

Supplementary Fig. 41). DEGs for AD pathology showed a high overlap 
with DEGs for pathologic diagnosis (NFT: 45% and plaque: 53% on aver-
age) (Fig. 4a). Agreement between NFT and plaque DEGs was highest 
in the EC and HC for all cell types (average adjusted R2 of 67% in both) 
and lowest in the PFC (43%) and AG (21%), consistent with late-AD NFT 
appearance in the neocortex (Fig. 4b).

We next identified genes with higher differential effects in either 
NFTs or neuritic plaques (Fig. 4c, Extended Data Fig. 11c–f and Sup-
plementary Table 10). Consistently, NFT-associated genes (374 genes, 
differentially expressed in 2+ cell types) included PLCG2, CLU and 
CTNNA2 (in oligodendrocytes and OPCs) and mitochondrial subu-
nits, and were enriched for ER protein processing, electron transport 
and cadherin binding (Fig. 4d,e). Neuritic-plaque-associated genes 
(190 genes) included the energy-homeostasis-regulating genes IRS2, 
PDK4 and HIF3A, and genes enriched for immune response, chro-
matin regulation and lipid droplets. Notably, in excitatory neurons, 
plaque-associated and upregulated DEGs were strongly enriched for 
aerobic transport chain components (including NDUFA4 and COX6B1) 
(Fig. 4f,g). On the other hand, NFT-associated and downregulated 
DEGs were enriched for TCA cycle genes, whereas upregulated DEGs 
were enriched for unfolded protein response and lysosome-linked 
genes. Finally, astrocytes contained more plaque-associated DEGs 
compared with other cell types, and their pathology-associated DEGs 
were enriched in our expression modules, including in metallostasis 
(M28) for plaque-associated DEGs and oxidative phosphorylation 
(M27) and chaperones (M8) for NFT-associated DEGs (Fig. 4c,h–j). 
Interestingly, a reactive astrocyte module (M3) was enriched in 
upregulated genes for plaques but in downregulated genes for  
NFTs (Fig. 4j).

Given the enrichment of NFT-associated or plaque-associated DEGs 
in expression modules, we next examined whether gene modules were 
enriched for AD DEGs (for AD pathology or for AD diagnosis) (Fig. 4k, 
Extended Data Fig. 11g and Supplementary Fig. 42). The same modules 
enriched for pathology-associated astrocyte DEGs were also enriched 
for the full sets of DEGs, including metallostasis (M28) with neuritic 
plaque DEGs and oxidative phosphorylation (M27) with NFT DEGs 
(Fig. 4k). Modules including ECM, adhesion and neurogenesis-related 
genes were much lower in AD (M1 and M11), while the modules for spe-
cific astrocyte subtypes (M7, DCLK1+; and M24, DPP10+) were enriched 
for upregulated DEGs (Fig. 4k).

We independently identified modules for heat-shock chaperones, 
glycolysis and oxidative phosphorylation in multiple cell types, which 
were correlated across cell types and were enriched for upregulated 
DEGs (Fig. 4k, Extended Data Figs. 6a,b and 11g and Supplementary 
Fig. 42a,b). The glycolysis modules were enriched among diffuse 
plaque DEGs in microglia and astrocytes and shared a set of genes 
that included canonical glycolysis genes (PDK1/3/4, PFKL/P, PKM 
and PGK1), anaerobic glycolysis enzymes (TPI1 and LDHA) and 
stress-induced genes (EGLN1, DDIT4, VEGFA and BNIP3L) (Fig. 4k–m 
and Extended Data Fig. 6a,b). All glial types upregulated core glyco-
lysis driver GAPDH and mitophagy-regulating BNIP3L in response to 
NFT burden and in individuals with cognitive impairment59 (Fig. 4m). 
In regions with high diffuse plaque, astrocytes upregulated glyco-
lysis enzymes converting glucose-6-phosphate to pyruvate, while 
downregulating MPC1, the mitochondrial pyruvate transporter60 
(Fig. 4n). In parallel, astrocytes uniquely upregulated DDIT4, PFKP 
and ADCY8, along with genes that suppress fatty acid metabolism 
(ANGPTL4) and promote lipid droplet storage of fatty acids (HILPDA), 
while microglia upregulated multiple glycogen-related genes (GBE1, 
UGP2 and PYGL)48 (Fig. 4m).

To validate differential expression of ADCY8 and PFKP, we performed 
in situ hybridization (RNAscope) in AG tissue samples from patients 
with AD and control individuals without AD and found a significant 
increase in transcripts of both genes in AQP4+ astrocytes (Fig. 4o,p). 
Finally, we noticed that the glycolysis pathway genes were maximally 
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expressed at different points in global AD progression for each region 
(pathology diagnosis by ABC score)29,30. The pathway peaked very early 
in the EC (ABC score of 1, low levels of AD pathology), later in the HC and 

midtemporal cortex (intermediate levels), and very late in the PFC (high 
levels) (Supplementary Fig. 42c), suggesting that the glial metabolic 
response to AD may not be coordinated globally.
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Fig. 4 | Gene expression modules annotate and separate AD changes across 
pathology. a, The percentage of AD DEGs (pathologic diagnosis) overlapping  
with DEGs for neuritic plaques (neu. plaq.) and NFTs in each major cell type and 
region. b, Concordance of effect-sizes between neuritic plaque and NFT DEGs.  
Adjusted R2 of log-transformed fold changes between neuritic plaque and NFT 
DEGs in each major cell type and region. c, The number of neuritic-plaque- or 
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each major cell type or shared across 2+ cell types. d–i, The average effect sizes 
for NFTs and neuritic plaques for DEGs with biased differential effect sizes 
(d,f,h) and their respective functional enrichments (e,g,i), for DEGs shared 
across multiple cell types (d,e), in excitatory neurons (f,g) or in astrocytes (h,i). 
j, Enrichments (hypergeometric test) of pathology-biased DEGs in astrocyte 
modules. k, Enrichments (enr.) of AD DEGs in glial gene expression modules 
(*Padj < 0.05, signed log2[fold change], only significant modules are shown).  
l, Pearson correlation of module scores in each region with region-level 

pathology measures for glycolysis and oxidative phosphorylation modules in 
astrocytes, microglia and OPCs (#P < 0.1). m, Core and selected diffuse plaque 
(diff. plaq.) DEGs in glial glycolysis-associated modules. n, Schematic of the 
glycolysis pathway, annotated by astrocyte diffuse plaque DEGs. Significant 
DEGs for diffuse plaques across all regions are indicated by asterisks.  
o,p, RNAscope validation of astrocyte energy metabolism DEGs in the AG of 
individuals with AD relative to control individuals without AD (pathologic 
diagnosis of AD). Representative images (left) show AQP4 transcripts (blue 
puncta) and ADCY8 (o) or PFKP (p) transcripts (red puncta). Scale bars, 20 μm  
(o and p). Quantification (right) was performed using unpaired two-tailed 
Student’s t-tests (ADCY8: n = 117 (non-AD) and n = 76 (AD) cells; PFKP: n = 43 
(non-AD) and n = 40 (AD) cells). The dots represent individual cells, pooled 
from eight samples (four individuals; each had one PFC and one thalamus 
sample). Activ., activation; DAM, disease associated microglia; ox. phos., 
oxidative phosphorylation; resp., response.
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Astrocytes and cognitive resilience
In addition to understanding cellular alterations associated with spe-
cific pathological measures in AD, we investigated what transcriptional 
changes are associated with cognitive resilience (CR) in AD, cases in 
which individuals with AD brain pathology display much less cogni-
tive impairment than expected3,25–27. To identify potential molecular 
mediators that confer CR to AD pathology, we defined CR either cat-
egorically as the absence of cognitive impairment despite a pathologic 
diagnosis of AD (clinical diagnosis condition), or continuously, as the 
difference between observed cognition and the cognition expected 
on the basis of pathology level (Fig. 5a). We computed both scores 
for CR based on global cognitive function and for cognitive decline 
resilience (CDR) based on the rate of change of global cognitive func-
tion over time, and used four different measures of AD pathology: 
global AD pathology, neuritic plaque burden, NFT burden and tangle 
density (Fig. 5a).

We calculated DEGs for both CR and CDR in each major cell type in 
the PFC (snRNA-seq from 427 ROSMAP study participants)27. Astro-
cytes were the only cell type with a consistently high number of genes 
associated with CR across all of the measures tested (Fig. 5b). To iden-
tify specific molecular pathways within astrocytes that may contrib-
ute to CR, we focused on genes that are consistently associated with 
multiple measures of CR in astrocytes (termed CR-associated genes). 
Several CR-associated genes, including GPX3, HMGN2, NQO1 and ODC1 
(encoding a rate-limiting enzyme of polyamine biosynthesis), possess 
or promote antioxidant activities61–66 (Fig. 5c–f and Supplementary 
Fig. 43a–d). The expression of HMGN2, NQO1, ODC1 and GPX3 in astro-
cytes was also positively associated with cognitive function (Fig. 5g 
and Supplementary Fig. 43e), and these genes exhibited the highest 

expression in astrocytes isolated from those individuals with the least 
cognitive decline over time (Fig. 5h and Supplementary Fig. 43f). 
Analysis of bulk RNA-seq data from the ROSMAP cohorts (n = 638) 
confirmed a significant positive association between the expression 
level of HMGN2, ODC1 and GPX3 and multiple measures of cognitive 
function and CR to AD pathology (Supplementary Fig. 44a–d).

Furthermore, we noticed that several CR-associated genes within 
astrocytes encode enzymes that catalyse metabolic reactions that 
are involved in choline formation and breakdown. The expression of 
GPCPD1, which encodes glycerophosphocholine phosphodiester-
ase 1, an enzyme that is critical for cleaving glycerophosphocholine 
(GPC) to produce choline, was positively associated with measures 
of CR in astrocytes (Fig. 5c–f and Supplementary Fig. 43a–d). Con-
versely, PNPLA6, which encodes a phospholipase that catalyses the 
hydrolysis of intracellular phosphatidylcholine, a major membrane 
lipid, generating GPC, and CHDH, which encodes choline dehydroge-
nase, an enzyme that catalyses the conversion of choline to betaine 
aldehyde, were both negatively associated with multiple measures of 
CR in astrocytes (Fig. 5c–f and Supplementary Fig. 43a–d). Many of the 
CR-associated genes identified in PFC astrocytes were also associated 
with CR in astrocytes from other regions of the human brain (Fig. 5i 
and Supplementary Fig. 45), corroborating a link between astrocytes 
and CR beyond the PFC.

To validate the choline pathway genes PNPLA6, GPCPD1 and CHDH, 
we selected PFC samples from individuals with high amyloid and tau 
pathology and compared transcript levels between individuals with 
intact cognition (that is, cognitively resilient) to those with cognitive 
impairment, and performed in situ hybridization (RNAscope) analysis 
of these genes with AQP4 as a marker for astrocytes. We found a sig-
nificant decrease in PNPLA6 and CHDH transcripts and a significant 

a
G

lo
b

al
 c

og
ni

tiv
e 

fu
nc

tio
n

Global AD pathology
0 1 2 3

y

y

2

1

0

–1

–2

–3

–4

–5

CR* score

Observed value

Predicted value
(based on pathology)

j

AQP4PNPLA6

CI CR CI CR CI CR

*

k

AQP4GPCPD1

**CI

CR

CI

CR

CI

CR

l

AQP4CHDH

642
Average transcripts per AQP4+ cellAverage transcripts per AQP4+ cellAverage transcripts per AQP4+ cell

006040200 0.5 1.0 1.5 2.0 2.5

*
b

Number
of DEGs: 0 20 40 60

Clinical diag. of AD dementia
CR/CDR evaluated against:

Tangle density
Neuritic plaque burden
NFT burden
Global AD pathology

CR
score

CDR
score

Tangle density
Neuritic plaque burden
NFT burden
Global AD pathology

9 41 67 73

29 5 7 16
49 19 5 9
11 433 3 10
23 6 4 6

121 80
99 141

68
86 106

40 28 13 42
75 37 26 12
43 23 10 28
38

224 488
269 599
203 646
206 43313 8 5

m

Phosphorus
Oxygen

Carbon
Hydrogen

Negative association with CR measures
Positive association with CR measures

Glycerophosphocholine

CHDHPNPLA6 GPCPD1

1-Acyl-sn-glycerol 3-phosphocholine

R

Betaine aldehyde

Choline

Betaine

Spermine

Spermidine

Putrescine

Ornithine

Polyamine
biosynthesis

ODC1
SAMMethionine

dcSAM
Homocysteine

Choline metabolism

Nitrogen

ic d e f g

SLC39A11
PNPLA6

MARCH6
KANK2
FBXO2
CHDH
CDR2

CAPN2
ADORA1

ODC1
NQO1
LGMN

HMGN2
GPX3

GPCPD1
CHI3L2

AVIL
AP3B2

Global AD
pathology
CR score

Tangle
density

CR score

Global
cognitive
function

Global AD
pathology
CR score

Neuritic
plaque
burden

CR score

NFT
burden

CR score

Rate of
change of

global cogn.
function

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

M
ic

.
O

P
C

O
lig

.
A

st
.

In
h.

E
xc

.

*

*

*

*

**

*
* ***

*

**
*

*

*

*

*
*

** *

*

*
*

*

*
*

**

**
**

**
**
**
**
**
*

**
*

**
**
**
**
*

*

**
**

**
**
**
**
**
**

**
*

**
**
**
**
**
**

** ** ** *

*

*
* * *** * *

* * ** *

*

* * * * * *
* * * * **

* * * *
* *

* * * * *
* * * * *

**

** ** * *
** ** * ** ** * *

* * ** * *

h

THH
CE
C

M
T

P
FC

****
***

********

****
***
*********

****
***

*********
A

G

**** ****
*********

**** **** **********

******************

RegionMajor cell type

Fo
r 

i
Fo

r 
h

Fo
r 

c–
g

0.2

0

–0.2

4
2
0
–2
–4

0.4

0

–0.4

log[FC]

y – y

Exc. Inh. Ast. Olig.OPC Mic.

Fig. 5 | Molecular correlates of CR to AD pathology. a, The concept of CR and 
CDR scores. Pathology measurements are used to predict global cognitive 
function, for CR scores, or rate of cognitive decline, for CDR scores. b, The 
number of significant DEGs in major cell types across nine measures of CR.  
c–h, Association of astrocyte CR genes with measures of CR (global AD pathology 
CR score (c), neuritic plaque burden CR score (d), NFT burden CR score (e), 
tangle density CR score (f), global cognitive (cogn.) function (g) and rate  
of change of global cognitive function (h)) across six major cell types in the  
PFC (427 individuals, DEGs were computed using muscat). i, The association 
between the expression of CR genes in astrocytes across six brain regions and 
CR to global AD pathology (48 individuals; DEGs were computed using MAST). 

j–l, RNAscope validation of the differentially expressed astrocyte CR  
genes PNPLA6 ( j), GPCPD1 (k) and CHDH (l) in the PFC of individuals with 
cognitive impairment (CI) relative to cognitively resilient (CR) individuals. 
Representative images (top) show AQP4 transcripts (red puncta) and CR gene 
transcripts (blue puncta). Scale bars, 20 μm ( j–l). Quantification (bottom)  
was performed using unpaired two-tailed Student’s t-tests; P = 0.0249 ( j), 
P = 0.0052 (k), P = 0.0375 (l). Data are mean ± s.e.m. PNPLA6: n = 3 (CI) and n = 4 
(CR) individuals; GPCPD1 and CHDH: n = 4 individuals per group. m, Schematic 
of choline metabolism and polyamine biosynthesis; significant astrocyte CR 
genes are highlighted.
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increase in GPCPD1 transcripts in cognitively resilient individuals, in 
agreement with the differential expression results (Fig. 5j–l). Notably, 
choline oxidation to betaine generates a labile methyl group that can 
be used for homocysteine remethylation, resulting in methionine for-
mation, which is subsequently transformed into the universal methyl 
donor S-adenosylmethionine67. S-adenosylmethionine is involved in the 
biosynthesis of spermidine, linking choline metabolism and polyamine 
biosynthesis in astrocytes in CR to AD pathology (Fig. 5m).

Discussion
Here we present a transcriptomic atlas of the aged human brain— 
spanning six brain regions from 48 individuals with and without a 
diagnosis of AD—that we used to annotate regional cellular diversity, 
identify gene expression programs and differences in AD across cell 
types, and pinpoint region-specific cell populations that are vulner-
able to AD. We provide an interactive website for exploring the atlas 
and these annotations, markers, functional modules and differences 
in AD at both the single-cell and pseudo-bulk levels (http://compbio.
mit.edu/ad_multiregion).

By annotating neuronal and glial subtypes by brain region, we 
found significant compositional differences between regions, includ-
ing a subtype of thalamic GABAergic neurons (MEIS2+FOXP2+) that 
is molecularly distinct from the canonical subclasses of inhibitory 
neurons in the neocortex. We used region-specific measurements 
of AD pathology to identify changes in gene expression associated 
with neurofibrillary tau tangle or amyloid-β plaque burden, including 
plaque-associated upregulation of metallostasis in astrocytes and 
of the electron-transport chain in excitatory neurons. We found that 
AD-risk genes were highly perturbed in AD—in particular for microglia, 
consistent with their enrichment for GWAS signal68—but few risk genes 
showed region-specific expression. To further examine the cellular and 
regional heterogeneity of the human brain, we developed a scalable 
method, scdemon, which uses sample decorrelation to annotate both 
ubiquitous and rare gene expression programs in each major cell type, 
and used annotated modules to identify functional programs associ-
ated with specific pathological variables, including a glycolysis- and 
energy-metabolism-linked program in glia48,60 associated with diffuse 
plaque burden.

We identified five excitatory neuron subtypes that were reduced in 
patients with AD (vulnerable subtypes) in the early-affected EC and 
HC1,17,18, including EC layer II (L2), RORB-positive L5 (AGBL1+GPC5+)19 and 
hippocampal CA1 subfield neurons20–23. Notably, vulnerable excitatory 
neurons shared expression of genes involved in Reelin signalling and 
heparan sulfate proteoglycan biosynthesis, both of which were also 
predictive of inhibitory neuron vulnerability to AD. Recent case stud-
ies have identified variants in RELN and APOE as potentially mediating 
CR to autosomal-dominant AD. Notably, the RELN variant enhanced 
its binding to glycosaminoglycans (GAGs) and NRP1, and the APOE 
variant decreased binding to GAGs, potentially affecting their ability 
to compete for receptor binding69,70. Thus, our findings suggest a con-
vergence of factors associated with cellular vulnerability in sporadic 
AD, and resilience to autosomal-dominant AD.

Finally, we analysed the transcriptomic correlates of cognition and 
pathology in AD, and identified a set of astrocyte genes linked to CR 
to AD pathology. Notably, these genes converged on the pathways of 
choline metabolism and polyamine biosynthesis. This finding aligns 
with studies showing benefits of dietary choline intake and supple-
mentation on cognitive performance in human individuals and in 
animal models71–78. Similarly, dietary supplementation with the poly-
amine spermidine prolongs life span and health span in several animal  
models66, and spermidine has also been shown to enhance memory 
performance and counteract age-related cognitive decline79–81. Our 
findings support choline metabolism and polyamine synthesis as 
attractive targets for promoting CR in AD.

Our study has several limitations: isotropic fractionation and read 
depth cut-offs may bias cell recovery based on their nuclear content; 
nuclear RNA may not fully capture microglial states82 or localized tran-
scriptomic changes; and pathology burden is based on per-sample 
averages instead of on the spatial context of each cell. Additional 
individuals and data modalities will strengthen future analyses of 
region-specific alterations in AD, and spatial data may help to further 
separate pathology-associated changes.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

snRNA-seq
Sample selection from ROSMAP. We selected 48 individuals from 
ROSMAP, both ongoing longitudinal clinical–pathological cohort stud-
ies of ageing and dementia, in which all of the participants are brain 
donors. The studies include clinical data collected annually, detailed  
post-mortem pathological evaluations, and extensive genetic, epi-
genomic, transcriptomic, proteomic and metabolomic bulk-tissue 
profiling28. For the purpose of this study, individuals were selected 
based on the modified NIA-Reagan diagnosis of AD and the Braak stage 
score (Braak stages 0, 1 and 2, n = 20; Braak stages 3 and 4, n = 14; Braak 
stages 5 and 6, n = 14), with 26 individuals having a positive pathologic 
diagnosis of AD and 22 individuals having a negative pathologic diag-
nosis of AD83. Details of the clinical and pathological data collection 
methods have been previously reported2,5,6,28,84. Individuals were bal-
anced between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD), 
matched for age (median, 86.6 years (AD) and 86.0 years (no AD)) and 
post-mortem interval (median, 5.9 h (AD) and 6.3 h (no AD)). Informed 
consent was obtained from each participant, and the Religious Orders 
Study and Rush Memory and Aging Project were each approved by an 
Institutional Review Board (IRB) of Rush University Medical Center. 
The participants also signed an Anatomic Gift Act, and a repository 
consent to allow their data to be repurposed.

Dissection criteria. All dissections were done on a bed of dry ice using 
either a fine-toothed razor saw (for cortical regions) or a jewellers saw 
with diamond wire (for subcortical regions). Region-specific descrip-
tions are as follows. (1) AG: full thickness cortex from the AG (Brodmann 
area: BA 39/40); take from the first or second slab posterior to the end 
of the HC. Minimize white matter. (2) MT: full thickness cortex from the 
middle temporal gyrus (BA 22); take as close to the level of the anterior 
commissure as possible. Minimize white matter. (3) PFC: full thickness 
cortex from the frontal pole (BA 10); take from the lateral side of the 
first or second slab. Minimize white matter. (4) EC: full thickness cortex 
from the EC (BA 28); take at the level of the amygdala. Avoid amygdala. 
Minimize white matter. (5) Posterior HC: take from the last slab contain-
ing HC. If the last slab has less than 5 mm of HC, take from the next slab 
anterior. Collect a full cross section. (6) TH: take from the first slab with 
thalamus. Include the most medial aspect.

Isolation of nuclei from frozen post-mortem brain tissue. The pro-
tocol for the isolation of nuclei from frozen post-mortem brain tissue 
was adapted from a previous study12. All of the procedures were per-
formed on ice or at 4 °C. In brief, post-mortem brain tissue was homog-
enized in 700 µl homogenization buffer (320 mM sucrose, 5 mM CaCl2, 
3 mM Mg(CH3COO)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, 0.1% 
IGEPAL CA-630, 1 mM β-mercaptoethanol and 0.4 U µl−1 recombinant 
RNase inhibitor (Clontech)) using a Wheaton Dounce tissue grinder  
(15 strokes with the loose pestle). The homogenized tissue was then fil-
tered through a 40 µm cell strainer, mixed with an equal volume of work-
ing solution (50% OptiPrep density gradient medium (Sigma-Aldrich), 
5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM Tris HCl pH 7.8, 0.1 mM EDTA 
pH 8.0 and 1 mM β-mercaptoethanol) and loaded on top of an OptiPrep 
density gradient (750 µl 30% OptiPrep solution (30% OptiPrep density 
gradient medium, 134 mM sucrose, 5 mM CaCl2, 3 mM Mg(CH3COO)2, 
10 mM Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, 1 mM β-mercaptoethanol, 
0.04% IGEPAL CA-630 and 0.17 U µl−1 recombinant RNase inhibitor)) on 
top of 300 µl 40% OptiPrep solution (40% OptiPrep density gradient 
medium, 96 mM sucrose, 5 mM CaCl2, 3 mM Mg(CH3COO)2, 10 mM 

Tris HCl pH 7.8, 0.1 mM EDTA pH 8.0, 1 mM β-mercaptoethanol, 0.03% 
IGEPAL CA-630 and 0.12 U µl−1 recombinant RNase inhibitor). The  
nuclei were separated by centrifugation (5 min, 10,000g, 4 °C). A total 
of 100 µl of nuclei was collected from the 30%/40% interphase and 
washed with 1 ml of PBS containing 0.04% BSA. The nuclei were centri-
fuged at 300g for 3 min (4 °C) and washed with 1 ml of PBS containing 
0.04% BSA. The nuclei were then centrifuged at 300g for 3 min (4 °C) 
and resuspended in 100 µl PBS containing 0.04% BSA. The nuclei were 
counted and diluted to a concentration of 1,000 nuclei per μl in PBS 
containing 0.04% BSA.

Droplet-based snRNA-seq. For droplet-based snRNA-seq, librar-
ies were prepared using the Chromium Single Cell 3′ Reagent Kits v3  
according to the manufacturer’s protocol (10x Genomics). The gener-
ated snRNA-seq libraries were sequenced using NextSeq 500/550 High 
Output v2 kits (150 cycles) or NovaSeq 6000 S2 reagent kits.

snRNA-seq processing, QC, and annotation
snRNA-seq data preprocessing. Gene counts were obtained by align-
ing reads to the GRCh38 genome using Cell Ranger software (v.3.0.2) 
(10x Genomics)85. To account for unspliced nuclear transcripts, reads 
mapping to pre-mRNA were counted. After quantification of pre-mRNA 
using the Cell Ranger count pipeline, the Cell Ranger aggr pipeline 
was used to aggregate all libraries (without equalizing the read depth  
between groups) to generate a gene–count matrix. The Cell Ranger v.3.0 
default parameters were used to call cell barcodes. We used SCANPY86 
to process and cluster the expression profiles and infer cell identities. 
We retained only protein-coding genes and filtered out cells with over 
20% mitochondrial or 5% ribosomal RNA, leaving 1.47 million cells over 
48 individuals and 283 samples across all regions. We further filtered 
the dataset to the top 5,000 most variable genes and used them to 
calculate the low dimensional embedding of the cells (UMAP) (default 
parameters, using 50 principal components and 15 nearest neighbours) 
and clusters using the Leiden clustering algorithm at a high resolution 
(15), giving 337 preliminary clusters87. We separately called doublets 
using DoubletFinder and flagged and removed clusters with strong 
doublet profiles and clusters showing strong individual-specific batch 
effects, leaving a final dataset of 1.35 million cells88.

Cell type annotations. For the UMAP visualization of individual major 
cell type classes (excitatory neurons, inhibitory neurons, astrocytes, 
oligodendrocytes, OPCs, immune cells), the SCTransform-based  
integration workflow of Seurat was used to align data from individual 
samples, using the default settings89,90. We selected the set of relevant 
principal components on the basis of Elbow plots. We annotated cell 
types using previously published marker genes and single-cell RNA-seq 
data9,12,33,91–93. To annotate cell types on the basis of previously pub-
lished single-cell RNA-sequencing data (Allen Institute’s cell types 
database; https://portal.brain-map.org/atlases-and-data/rnaseq/
human-multiple-cortical-areas-smart-seq), we used three separate 
approaches. First, Spearman rank correlation coefficients between 
the average expression profiles of neuronal subpopulations previ-
ously defined by the Allen Brain Institute33 and the neuronal subtypes 
identified in this study were computed using the cor function in R. 
Second, to project annotations of neuronal subpopulations previously 
defined by the Allen Brain Institute onto the neuronal cells analysed 
in this study, we followed the integration and label transfer workflow 
of Seurat90. Third, we determined cell type marker genes based on 
data published by the Allen Brain Institute33 using the FindAllMarkers 
function from Seurat (Wilcoxon rank-sum test with Bonferroni cor-
rection for multiple testing; Padj < 0.05) and computed module scores 
for each cell type marker gene set across all neuronal cells analysed in 
this study using the AddModuleScore function of Seurat. To further 
annotate cell types, we determined marker genes using the FindAll-
Markers function from Seurat (Wilcoxon rank-sum test with Bonferroni 
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correction for multiple testing; Padj < 0.05). We tested only genes that 
were detected in a minimum of 25% of the cells within the cell type (min.
pct = 0.25) and that showed, on average, at least a 0.25-fold difference 
(log-scale) between the cells of the cell type and all remaining cells 
(logfc.threshold = 0.25). Marker genes of the high-resolution cell types 
or states were determined separately for each major cell type class. We 
additionally compared the EC excitatory neuron subtypes to cell type 
annotations previously reported previously94, which were computed 
using ACTIONet95, and compared microglial markers to previously 
reported subtypes96,97.

Cell cycle scores and global properties of gene expression. G2/M 
and S phase cell cycle scores were determined using the function Cell-
CycleScoring in Seurat. Histograms showing the distribution of the 
G2/M- and the S phase module scores in each major cell class were 
generated using Prism 9 software. The statistical analyses compar-
ing the number of genes detected per cell and the number of unique 
transcripts (UMIs) detected per cell between cell types was performed 
using Prism 9 software.

Integration of external data sources. Single-cell transcriptomic 
data from the human dLGN98 were obtained from the Allen Brain 
Institute (https://portal.brain-map.org/atlases-and-data/rnaseq/
comparative-lgn). Single-cell transcriptomic data from multiple cor-
tical areas and the hippocampal formation of the mouse brain43 were 
obtained from the Allen Brain Institute (https://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x).  
Single-cell transcriptomic data across nine regions in the adult mouse 
brain39 were obtained from the McCarroll and Macosko Labs (http://
dropviz.org/). Single-cell transcriptomic data from the mouse nerv-
ous system40 were obtained from the Linnarsson laboratory (http://
mousebrain.org/adolescent/downloads.html). The external datasets 
and the human multiregion data presented in this study were integrated 
using the reciprocal PCA (RPCA) pipeline with the default parameters 
in Seurat (https://satijalab.org/seurat/articles/integration_rpca.html). 
The integration of single-cell data was performed separately for astro-
cytes, excitatory neurons and inhibitory neurons. For the integration of 
GABAergic neurons, the single-cell transcriptomic data from multiple 
cortical areas and the hippocampal formation of the mouse brain43 were 
downsampled to 50,000 GABAergic neurons. For the integration of 
excitatory neurons, the human multiregion dataset was downsampled 
to 5,000 neurons per high-resolution cell type. The mouse cortical 
data43 were downsampled to 50,000 excitatory neurons. The frontal 
cortex, posterior cortex, HC and thalamus data of the DropViz dataset 
were combined and downsampled to 50,000 neurons. Downsampling 
of the data was performed using the Seurat function subset with the 
default parameters. The comparison of microarray data from different 
human brain regions was performed using the Differential Search tool 
of the Allen Brain Atlas data portal (https://human.brain-map.org/
microarray/search). The thalamus was selected as the target structure 
and compared to the cerebral cortex as the contrast structure. The dif-
ferential search results including the fold change values and P values of 
the top 2,000 genes were downloaded from the data portal.

Gene expression and regulon modules
Gene expression modules using ZCA (scdemon framework). We 
would like to find gene expression modules by calculating gene–gene 
correlations in single-cell data and using these to detect communities 
of similarly expressed genes. However, in single-cell data, which often 
contain an unbalanced composition of cell types, modules computed 
using this approach will be dominated by the most common cell type 
markers and pathways. Moreover, correlation values will often be  
inflated for pairs of sparsely expressed genes. We developed a method 
which accounts for these pitfalls to call multiresolution gene expression 
programs from single-cell data using an SVD-based approximation of 

zero-phase component analysis (ZCA) and gene sparsity-dependent 
thresholding99,100.

scdemon (single-cell decorrelated module networks) method. 
The preprocessing transformations alternately called decorrelation, 
whitening, or sphering, transform a matrix X with a matrix W such that 
the covariance of XW is the identity matrix101. In particular, ZCA is the 
transformation which maximizes the similarity of the transformed 
data to the original, which is achieved by setting W = C−1/2, where C is 
the covariance of X.

In single-cell data, given a count matrix X with n cells (rows) and g 
genes (columns), we would like to perform ZCA decorrelation on the 
samples as a preprocessing step for calling modules. Computing and 
storing the n by n sample-wise covariance Cn = XXT/g is prohibitively 
expensive for modern datasets (with n > 1 × 106), even without centring 
X. Instead, we can analytically approximate the covariance with the SVD 
of XT = UnSnVn

T as Cn ≈ (UnSnVn
T)T(UnSnVn

T)/g = VnSn
2Vn

T/g and therefore 
Cn

−1/2 = g1/2VnSn
−1Vn

T. The ZCA transformation can then be computed as 
XZCA = Cn

−1/2X = g1/2VnSn
−1Vn

TX before calculating the covariance of XZCA for 
downstream analysis. While this approximation is already tractable for 
small single-cell datasets, we may not be able to compute the matrix 
multiplications or centred SVD for larger datasets. Here, we can use the 
SVD of X = USVT, which is commonly calculated in single-cell analyses, 
to approximate Cn

−1/2 as g1/2US−1UT and XZCA = g1/2US−1UTX. From this, the 
non-centred covariance of XZCA is CZCA = XZCA

TXZCA/n = g × (US−1UTX)T(US−1

UTX)/n. By substituting the SVD in for X, this reduces to CZCA = g × VVT/n, 
which is a simple and efficient approximation for very large single-cell 
data. As this approximation commonly drops out the largest identity 
program in the data due to the decorrelation approach, we allow com-
puting CZCA = g × VSpVT/n, for any p, to tune the relative involvement of 
the larger eigenvalue components of the SVD.

To control for inflated correlation estimates in highly sparse genes, 
we bin the estimated correlations (CZCA) for each pair of genes accord-
ing to their sparsities (fraction of cells expressing the gene, binned 
on a log10 scale). We calculate the mean and s.d. for each 2D bin and 
smooth the estimates by fitting bivariate splines to the binned statis-
tics, weighted by the log number of examples in the bin. We use the 
smoothed estimates to z-score the correlation matrix (CZCA), which we 
then threshold with a single z-score cut-off to create an adjacency matrix 
for a gene–gene graph. Graphs are laid out using the Fruchterman– 
Reingold algorithm and we remove connected components with fewer 
than four genes102. We then use the leidenalg package and the Leiden 
algorithm with an RBConfiguration vertex partition to cluster the graph 
into gene modules87. To robustly estimate modules for each set of cells 
in our analyses, we first performed a grid search for the optimal num-
ber of SVD components for cells of that type. We then computed the 
z-scored matrices for each of 10 bootstraps, selecting 90% of batches 
for each bootstrap and using only genes expressed in over 5% of cells 
in the full dataset for the cell type. We thresholded the average of the 
bootstrapped z-score estimates with z = 4.5 to build a graph. To balance 
the contributions of modules across the compositional spectrum,  
we calculated and thresholded separate graphs for eigenvalue  
powers p = 0, 0.25, 0.5, 0.75 and 1 and combined them using multigraph 
Leiden clustering to call modules with leiden resolution = 3. Although 
we identify smaller modules, here we only report modules with at least 
10 genes. We also ran the modules method on three published datasets, 
for which we ran the method with the same parameters on each data-
set (k = 100, z = 4.5, resolution = 2.5), used genes with >5% sparsity for 
the COVID103 and brain16 datasets and genes with >10% sparsity for the 
Tabula Sapiens dataset104, and report modules with 10 genes or more.

Module enrichments, network and contour plots. Module enrich-
ments for cell subtypes and brain regions were performed using the 
hypergeometric test by calculating whether cells with a module score 
above 1 s.d. from the mean score were significantly enriched in a specific 
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subtype or region. For plotting scores against other modules, aver-
aged modules scores to either the subtype by sample level (within the 
same major cell type) or at the sample level alone (across cell types) 
and calculated Pearson correlations and P values using the cor.test 
function of R. To create the module–module network across microglial 
and immune modules, we calculated module–module score Pearson 
correlations using the logged module scores at the aggregated subtype 
by sample level, using a one-sided test with Padj < 0.01 as a cut-off105. 
To generate contour plots of module expression on a UMAP, we first 
smoothed cell-level expression on a 500 × 500 grid with a 2D Gaussian 
kernel (size = 25 × 25 and σ = 1) and then plot contours for smoothed 
values (0.1 to 0.8).

Gene expression programs using cNMF. Gene expression pro-
grams underlying both cell type identity and cellular activities were 
determined according to the consensus NMF (cNMF) analysis pipeline  
established previously using the default parameters34. The number 
of components (K) to use for cNMF was determined on the basis of a 
diagnostic plot showing the stability of the solution and the Frobe-
nius reconstruction error as a function of K. To reduce runtime and 
working memory requirements, the data were downsampled using 
the Seurat function subset with the default parameters. The data were 
downsampled to 200 cells per major cell type. For the cNMF analysis 
at the level of high-resolution cell types, the analysis was performed 
separately on excitatory neurons, inhibitory neurons and astrocytes. 
For these analyses, the data were downsampled to 2,000 cells per astro-
cyte subtype and 1,000 cells per excitatory and inhibitory neuron sub-
type. Statistical significance of the overlap between the top 200 genes  
of a gene expression program and cell type marker genes was computed 
using Fisher’s exact tests.

SCENIC analysis and computation of regulon module scores. The 
gene regulatory network analysis was performed using pySCENIC with 
the default parameters35. To reduce runtime and working memory  
requirements, the data were downsampled to 2,000 cells per major cell 
type. For the SCENIC analysis at the level of high-resolution cell types, 
the analysis was performed separately on excitatory neurons, inhibi-
tory neurons and astrocytes and the data were downsampled to 1,000 
cells per high-resolution cell type. To identify the top cell-type-specific 
regulons, we calculated regulon specificity scores as described by 
previously and ranked the regulons based on their regulon specific-
ity score106. Finally, we calculated the activity of each regulon in each 
cell using the AddModuleScore function of Seurat. The calculation of 
regulon module scores for major cell types was performed on a random 
sample of 50% of the cells (676,537 cells). For the analysis at the level 
of high-resolution cell types, the regulon module scores were deter-
mined based on all the cells of a major cell type class. For the statistical 
analysis of differences in the activity of regulons between cell types, 
the average regulon module score per individual and major cell type 
or high-resolution cell type was computed, respectively. The statistical 
analyses comparing the regulon module score activity was performed 
using Prism 9 software.

Analysis of GABAergic and glutamatergic module scores. GABAer-
gic and glutamatergic module scores across all neuronal cell types were 
determined on the basis of a set of GABAergic and glutamatergic neuron 
marker genes, respectively, using the AddModuleScore function of Seu-
rat. The sets of GABAergic and glutamatergic neuron marker genes were 
determined based on the human multiple cortical areas SMART-seq 
dataset from the Allen Brain Institute (https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq).  
We identified marker genes using the FindAllMarkers function from 
Seurat (Wilcoxon rank-sum test with Bonferroni correction for mul-
tiple testing; Padj < 0.05). We tested only genes that were detected in 
a minimum of 25% of the cells within the cell type (min.pct = 0.25)  

and that showed, on average, at least a 0.25-fold difference (log-scale) 
between the cells of the cell class of interest and all remaining cells 
(logfc.threshold = 0.25). To quantify the intermediate character of 
thalamic excitatory and inhibitory neurons, we first computed the 
average GABAergic and glutamatergic module score values for each 
neuronal cell type and for each individual. We then used the resulting 
data to determine the first principal component (PC1) scores (the coor-
dinates of the individual observations on the first principal component 
axis) using the princomp function in R. The ridgeline plot showing the 
distribution of PC1 score for each neuronal cell type was generated 
using the ggplot2 package in R. To determine the association between 
the average glutamatergic and the GABAergic module score across 
neuronal cell types, we performed a simple linear regression analysis 
using Prism 9 software.

Analysis of extratelencephalic projection neuron module scores. 
Marker genes significantly upregulated in extratelencephalic projec-
tion neurons (exc. L5 ET) compared with near-projecting excitatory 
neurons in layers 5 and 6 (exc. L5/6 NP) were determined using the 
FindAllMarkers function from Seurat (Wilcoxon rank-sum test with 
Bonferroni correction for multiple testing; Padj < 0.05). We tested only 
genes that were detected in a minimum of 25% of the cells within the cell 
type (min.pct = 0.25) and that showed, on average, at least a 0.25-fold 
difference (log-scale) between exc. L5 ET cells and exc. L5/6 NP cells 
(logfc.threshold = 0.25). The exc. L5 ET module score was computed 
based on the identified marker genes using the AddModuleScore func-
tion of Seurat. To determine the exc. L5 ET module scores across excita-
tory and inhibitory neurons, cells were downsampled to 2,000 cells 
per high-resolution cell type.

Cell–cell communication analysis
Cell–cell communication events were predicted using the LIgand- 
receptor ANalysis frAmework (LIANA)107 in R. Specifically, the ligand– 
receptor analysis was performed using liana_wrap(). The methods 
included were CellPhoneDB108, NATMI109 and SingleCellSignalR110. 
liana_aggregate() with the argument ‘aggregate_how’ set to ‘magnitude’ 
was run to find consensus ranks of different methods. Only interac-
tions (ligand–receptor pairs) with a robust rank aggregation (RRA) 
score smaller than 0.05 (aggregate_rank < 0.05) were considered in 
downstream analyses. The interaction score of ligand–receptor pairs 
was calculated by applying −log10 transformation to the RRA score 
(aggregate_rank). To determine the number of interactions and the 
overlap of interactions between regions, liana_wrap() was run on the 
pool of cells isolated from all individuals, with separate analyses con-
ducted for each brain region. To determine cell–cell communication 
events that are brain-region specific, liana_wrap() was run separately for 
each individual. We then used a linear mixed-effects model to evaluate 
the association between the interaction scores of individual ligand– 
receptor pairs obtained from LIANA and the respective brain region 
serving as the predictor variable. To account for potential confounding 
factors and individual variability, we included age, sex and post-mortem 
interval as covariates in the linear mixed-effects model. These variables 
were added as fixed effects to the model. Moreover, we included a 
random effect for the individual to capture the participant-specific 
variability in the data. Linear mixed-effects models were implemented 
using the R software packages lme4111 and lmerTest112. The lmer() func-
tion from the lme4 package was employed to fit the models. To obtain  
P values for the fixed effects in these models, we used the lmerTest pack-
age, which incorporated Satterthwaite’s degrees of freedom approx-
imation. To account for multiple hypothesis testing, the obtained  
P values were further adjusted using the Bonferroni method.

Cell type composition
Analysis of cell type composition differences between brain regions.  
For comparing the relative abundance of major cell types across brain 
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regions, the fraction of cells of a major cell type class was computed 
relative to all the cells isolated from a region. For the statistical analysis 
of cell type composition differences between brain regions, we also 
computed the relative abundance of major cell type classes separately 
for each study participant. To this end, the fraction of cells of a major 
cell type class was computed relative to all the cells isolated from a brain 
region of an individual. At the level of high-resolution cell types or cell 
states, two distinct measures of relative abundance were computed. 
First, the relative abundance of each subtype of a major cell class was 
computed as the proportion of a subtype relative to all cells of the cor-
responding major cell class isolated from a brain region. Second, for the 
statistical analysis of differences between brain regions, the fraction of 
cells of a subtype was computed relative to all the cells isolated from 
a brain region of an individual. The statistical analyses comparing the 
relative abundance of major cell types and subtypes between brain 
regions was performed using Prism 9 software.

Analysis of cell type composition alterations in AD. We calculated 
compositional differences in individuals with AD versus individuals 
without AD (or AD dementia versus no dementia) by modelling the 
number of cells of a certain cell type or subtype in a specific sample 
(individual by region) relative to the total number of cells using a 
quasi-binomial regression model. We modelled AD status by binary 
ascertainment variables (cogdx 4–5, NIA-Reagan score 1–2, Braak stage 
5–6 versus others, as well as any detected presence of NFTs, neuritic 
plaque or diffuse plaques in the region) while adjusting for brain region 
and sex. We used the emmeans package in R to assess the significance 
of the regression contrasts and used p.adjust with the fdr method to 
adjust P values. We modelled the effects of fraction of cells on cogni-
tive performance in multiple domains with gaussian linear regression 
of cognitive performance on last visit versus the log10-transformed 
fraction of cells in the subtype or major cell type jointly with covariates 
for age, sex, APOE-ε4 and post-mortem interval, with false-discovery 
rate P-value correction (p.adjust in R). We compared the fractional 
abundances of pairs of neuronal subtypes between two regions using 
Kendall’s τ only in individuals with AD (NIA-Reagan score). Significance 
was assessed using beta regression (R library betareg) controlling for 
sex, APOE genotype, post-mortem interval and age of death, and we 
adjusted P values using p.adjust in R with the fdr method.

Differential gene expression
DEGs in AD. We performed differential expression analyses with three 
separate methods: MAST, Nebula and Wilcoxon testing113,114. For all 
methods, we subset the tested genes to only genes present in over 
20% of cells. For MAST and Nebula, we calculated and included in the 
regression the top 10 components of unwanted variation calculated 
using RUV on the pseudo-bulk-level data (individuals by regions). For 
these methods, we also included as covariates the individual’s sex, age 
of death and post-mortem interval, each cell’s counts per gene and 
number of captured genes and, where applicable, the high-resolution 
cell subtypes and the brain region. For Nebula we used a Poisson 
mixed-model on the counts data with an offset of the log10-transformed 
total counts per cell. For MAST and Wilcoxon, we normalized each cell 
to a total library size of 10,000 counts. We ran Wilcoxon tests on both 
the cell and individual levels. We adjusted P values for multiple testing 
in all cases by using the p.adjust function in R with the fdr method. For 
our final set of differential genes in each analysis, we took all genes 
that were significant (Padj > 0.05) and concordant in both the MAST 
and Nebula results. We also provide the results for Wilcoxon tests, 
but did not use these to determine concordant results as they do not 
correct for many covariates. We computed differential expression 
against five AD ascertainment variables: continuous measurements of 
NFT, plaq_n, and plaq_d measured in each region except the thalamus  
(excluded from these analyses) and binary cognitive impairment (cogdx 
no dementia = 1 and 2 versus AD dementia = 4 and 5) and NIA-Reagan 

score classifications (non-AD = 3 and 4 versus AD = 1 and 2). We provide 
differential expression results for each of the 14 major cell types (with 
T cells, CNS macrophages, and each vascular subtype separately) for all 
regions jointly and for each region separately. We also provide results 
for each of the excitatory subtypes either in its most prevalent region 
for EC, HC or TH subclasses, or across the neocortex for neocortical 
subtypes (Supplementary Table 9). We also computed DEGs for the 
interaction between pathologic diagnosis of AD and sex in each major 
cell type, both across all regions and in each region separately. For 
the glial energy metabolism analyses we recomputed all DEGs in glial 
glycolysis-associated modules separately (keeping all genes, with no 
cell percentage cut-off). Glycolysis pathway diagram is from the glyco-
lysis and gluconeogenesis pathway from WikiPathways115.

Pathology-biased DEGs. Pathology-biased DEGs were based on neu-
ritic plaque or NFT pathology measurements in each region and were 
computed in each major cell type across all regions and in each region 
(except for the TH). Genes were ordered by the residual between NFT 
effect size and predicted NFT effect size from a regression using plaque 
effect size and region. Genes were retained if they were consistently 
up (or down) in 3+ regions for either NFT or plaque but in fewer than 2 
regions for the other pathology measurement (shared genes are genes 
found in 2+ cell types).

Comparison with published DEGs. We compared our differential 
expression results to results from seven different previously pub-
lished studies11,12,19,47–50. We compared the published DEGs both to:  
(1) cross-region DEGs calculated in each major cell type for individual- 
level AD status (NIA-Reagan score or clinical diagnosis of AD) and for 
quantitative measurements of AD pathology (neuritic plaques, diffuse 
plaques and NFTs); and (2) region-specific DEGs calculated in each 
major cell type and in endothelial cells, computed relative to patho-
logic diagnosis of AD (NIA-Reagan score, AD, 1–2; non-AD, 3–4). As 
some studies reported only the significant genes, we compared the 
log-transformed fold change estimates for our DEGs and reported 
DEGs by a Pearson correlation test.

DEG module enrichments. To assess the enrichment of upregulated, 
downregulated non-differentially expressed genes in each module, 
we first assigned each tested DEGs to its closest module by correla-
tion to the module’s average expression profile. We then performed a 
hypergeometric enrichment test for the number of genes in a category 
(upregulated, downregulated, not differentially expressed) assigned 
to the module, against the total number of tested genes assigned to 
the module, the total number in the category and the total number 
tested and corrected P values using p.adjust (Benjamini–Hochberg). 
Enrichments of pathology-biased DEGs in modules were performed 
in the same manner.

Neuronal DEG partitions. To partition neuronal DEGs into non- 
vulnerable and vulnerable-associated subclasses, we calculated each 
genes’ average expressions and differential expression effect sizes at 
the subtype level and compared these to the relative depletion of the 
subtypes. For each gene that was differentially expressed in late-AD 
(stratified by Braak stage, late AD, 5–6 versus non-AD or early-AD, 1–4) 
in at least 25% of all neuronal subtypes, we calculated the correlation 
of its average subtype expression in late-AD with each subtype’s com-
positional stability (log2[OR] in late AD) across excitatory subtypes, 
separating non-vulnerable-associated genes (correlation > 0.2) from 
vulnerable-associated genes (correlation < −0.2). We calculated func-
tional enrichments on neuronal DEG partitions using the top 250 genes 
ordered by effect size in each category. We further separated DEGs with 
higher effect sizes in vulnerable subtypes from those with similar effect 
sizes across all neuronal subtypes by calculating the correlation of their 
differential effect sizes in each subtype with that subtype’s depletion 



(log2[OR] in late AD). To perform enrichments along the continuum 
of genes associated with vulnerability to non-vulnerability, we kept 
only genes with biased effect sizes (effect size correlation < −0.2) and 
binned them along the axis of expression correlation (window size 
0.2 for at 0.05 intervals) and performed functional enrichments for 
all bins jointly.

DEG and module pathway enrichments. We performed DEG enrich-
ments for each differential expression run using the gprofiler2 package 
in R, with multi-query for upregulated and downregulated genes, as 
unordered queries, a P-value cutoff of 0.05, and using GO, REAC, WP, 
KEGG and CORUM as annotation sources, and retained enriched terms 
with fewer than 500 genes. Module and module cluster enrichments 
were performed in the same manner, using the core genes identified 
for each module and for genes found in more than two modules within 
a module cluster.

Markers of neuronal vulnerability. We identified markers associated 
with excitatory neuron subtype vulnerability by performing linear 
regression to predict the log2[OR] of each subtype’s depletion in late 
AD based on its expression at the subtype-aggregate level (log[X + 1], 
averaged normalized expression in each subtype by region by individual 
batch), controlling for age, sex and post-mortem interval and adjusting 
P values with p.adjust (fdr).

Identification of genes associated with cellular vulnerability in 
inhibitory neurons. Processed snRNA-seq data (DLPFC, experiment 2) 
were obtained from Synapse (syn51123521) and integrated with our own 
PFC snRNA-seq dataset comprising 427 individuals. To identify vulner-
able inhibitory neuron subtypes, we examined the association between 
the relative abundance of cell types and the measure of NFT density 
(variable tangles). We used a quasi-binomial regression model to model 
the number of cells belonging to a specific cell type in a given sample 
(individual study participant), relative to the total number of cells in 
that sample. We fitted the regression model using the glm function in 
R, including age, sex and post-mortem interval as covariates. P values 
were corrected for multiple testing using the Benjamini–Hochberg 
procedure as implemented in the R function p.adjust. The results are 
presented in the form of association scores (signed −log10-transformed 
Benjamini–Hochberg-adjusted P value, where the sign was determined 
by the direction (positive or negative) of the association). Inhibitory 
neuron subtypes demonstrating a significant negative association 
with tangle density (Benjamini–Hochberg-adjusted P value < 0.05) 
were classified as vulnerable subtypes, while all other subtypes were 
categorized as non-vulnerable. Genes exhibiting differential expres-
sion between vulnerable and non-vulnerable inhibitory neuron sub-
types were identified on the basis of our PFC snRNA-seq dataset. This 
analysis was restricted to individuals without a pathologic diagnosis 
of AD. The differential expression analysis comparing vulnerable to 
non-vulnerable inhibitory neuron subtypes was performed using 
the R package dreamlet (https://diseaseneurogenomics.github.io/
dreamlet/). We used the dreamletCompareClusters function with the 
argument ‘method’ set to ‘fixed’ for this analysis. Adjusted P values for 
multiple testing were obtained using the topTable function of dreamlet, 
with the ‘adjust.method’ set to ‘BH’.

GWAS analyses. Intersection of regional expression and pathology- 
specific DEGs (across all regions) was performed for 149 annotated AD 
GWAS familial and AD risk loci from recent GWAS54,56–58. We calculated 
the disease-relevance score of each cell in the dataset against a recent 
Alzheimer’s GWAS, using scDRS (based on MAGMA)54,55,116. For the scDRS 
results, we counted the fraction of cells with significant scDRS scores 
(FDR < 0.05) in each cell type, subtype and region. To test for overlap with 
microglia/immune modules, we compared the set of immune cells with 
significant expression of each module (z score > 2.5) and with the set of 

cells with significant scDRS scores (FDR < 0.05) and performed a hyper
geometric test for significance of the overlap (Padj < 0.01, Benjamini– 
Hochberg correction). To identify region-specific GWAS genes, we 
performed an analysis of variance for the effect of region on average 
gene expression at the pseudobulk level.

Identification of genes associated with CR. To quantify CR, we com-
puted a CR score as the difference between the observed cognition and 
the cognition predicted by a linear regression model, given the level 
of pathology (Fig. 5a). Using this approach, we computed cognitive 
resilience (CR) scores based on the measure of global cognitive function 
and CDR scores based on the measure estimating the rate of change of 
global cognitive function over time (Fig. 5a). Four distinct CR and CDR 
scores were derived using four distinct measures of AD pathology, 
namely global AD pathology and, separately, neuritic plaque burden, 
NFT burden and tangle density.

We performed differential expression analyses using the R package 
muscat to identify genes associated with CR in the PFC117. Low-expressed 
genes were excluded and only genes with more than one count in at least 
ten cells were considered. To take advantage of robust bulk RNA-seq 
differential expression frameworks, such as edgeR118, in a first step, 
muscat aggregates measurements for each sample (in each cluster) 
to obtain pseudobulk data. Using this approach, single-cell measure-
ments were aggregated per study participant and cell type using the 
sum of raw counts option. Differential expression analysis was run using 
the edgeR method as implemented in muscat. We included as covari-
ates the individual’s age at death and post-mortem interval. We report 
adjusted P values for multiple testing in all cases by using the p.adjust 
function with the Benjamini–Hochberg method as implemented in 
muscat. The multiple testing correction was performed locally, that is, 
on each of the cell types separately with the number of tests equal to 
the number of genes considered. These differential expression analy-
ses were performed on the entire set of 427 individuals except for the 
group-based differential expression analysis based on our categorical 
definition of CR. In this case, we focused on comparing two distinct 
groups determined by their pathologic and clinical diagnoses of AD. 
First, we identified individuals with a pathologic diagnosis of AD, using 
the NIA-Reagan pathology criteria. Subsequently, these individuals 
were further categorized on the basis of their clinical consensus diag-
nosis of cognitive status at the time of death. Specifically, we compared 
individuals with no cognitive impairment (NCI, final consensus cogni-
tive diagnosis (cogdx) value of 1) against individuals with a cognitive 
diagnosis of AD dementia and no other cause of cognitive impairment 
(cogdx value of 4) among individuals with a pathologic diagnosis of AD.

To confirm the differential gene expression results based on the 
CR and CDR scores, we also evaluated the association between gene 
expression and global cognitive function or the rate of change of global 
cognitive function adjusting for AD pathology as a covariate. The AD 
pathology measures considered as a covariate were global AD pathol-
ogy (gpath), neuritic plaque burden (plaq_n), NFT burden (nft), or 
tangle density (tangles). Thus, together with the DGE analysis based on 
CR and CDR scores, we performed a total of 16 different tests assessing 
the association between gene expression and CR.

We used the model-based analysis of single-cell transcriptomics 
(MAST) tool to investigate whether the CR genes identified in PFC astro-
cytes were also associated with CR in astrocytes from other regions 
of the human brain. To ensure robust analysis, we initially filtered the 
genes under investigation, selecting only those with more than one 
count in at least 10 cells. The analytical model incorporated the condi-
tion variable of interest, as well as several covariates known to influence 
gene expression. These covariates included the cellular detection rate 
(cngeneson), age at death (age_death), post-mortem interval (pmi), 
and sex (msex). We also accounted for potential participant-specific 
variation in the data by incorporating a random effect term for the 
individual (1|individual). To account for multiple comparisons, the 
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P values were adjusted using the FDR method as implemented in the 
p.adjust function.

Bulk RNA-seq differential expression analysis. Differential expres-
sion analysis of bulk RNA-seq data from the ROSMAP cohorts was 
performed using DESeq2119 (plotted) and edgeR118. Age at death and 
post-mortem interval were converted into z scores and included as 
covariates in the regression equation. Both approaches (DESeq2 and 
edgeR) provided similar results.

Permutation test for evaluating the significance of the overlap of 
DEGs between our dataset and the SEA-AD dataset. The average 
expression level of each gene within each major cell type was deter-
mined using the ‘AverageExpression’ function from the Seurat R pack-
age. The genes considered in the differential expression analysis for 
each major cell type were categorized into ten subsets based on their 
average expression level within the corresponding cell type. We next 
intersected the genes in each of the ten subsets with genes identified 
as significantly associated with either neuritic plaque burden (in our 
dataset) or the CPS score (in the MTG SEA-AD dataset). This intersec-
tion enabled us to determine the number of significant DEGs in each 
subset. The process was performed separately for genes positively and 
negatively associated with AD pathology. Subsequently, we randomly 
sampled the determined number of significant DEGs from each of the 
10 subsets, ensuring that the expression level distribution of the DEGs 
was preserved in the random samples. This random sampling step was 
repeated for a total of 1,000 iterations. These steps were performed 
separately for both our dataset and the SEA-AD dataset. For each of the 
1,000 random samples, we determined the overlap of genes between 
datasets and compared it to the observed overlap between the two data-
sets. To assess the significance of the observed overlap, we computed 
z scores, which represent the difference between the observed value 
of overlap and the mean value of overlap based on the permutation 
results, divided by the s.d. of the permutation results.

Comparison with previously published proteomics study of AD. To 
further validate our differential expression results, we evaluated the cor-
relation between the effect sizes of gene expression changes observed 
in our study and those identified through quantitative proteomics51. 
We specifically examined the correlation between the effect sizes of 
genes associated with neuritic plaque burden in our study and the effect 
sizes of overlapping differentially expressed proteins in the quantita-
tive proteomics analysis of bulk tissue. The correlation was computed 
using the cor.test function in R with the argument ‘alternative’ set to 
‘two.sided’ and the argument ‘method’ set to ‘pearson’. P values were 
adjusted for multiple testing using the Benjamini–Hochberg method 
as implemented in the R function p.adjust.

Inter-regional comparison of AD pathology-associated gene sets in 
glial cells along the spectrum of global AD pathology burden. We 
determined genes significantly associated with global AD pathology 
for each glial cell type, using single-nucleus RNA sequencing data from 
the PFC of 427 participants in the ROSMAP study. We then calculated 
module scores for these gene sets in astrocytes, microglia, oligoden-
drocytes, and OPCs using the Seurat ‘AddModuleScore’ function. The 
module scores were determined separately for genes positively and 
negatively associated with global AD pathology. To assess the progres-
sion of these scores across the spectrum of global AD pathology burden, 
we averaged the module scores of all cells of a specified cell type iso-
lated from the brain region of interest of an individual. For visualizing 
the relationship between the global AD pathology burden and mean 
module scores, we employed Locally Estimated Scatterplot Smooth-
ing (LOESS) using the ggplot2 package in R, with the ‘geom_smooth’ 
function and the ‘method’ parameter set to ‘loess’. The correlation 
of mean module scores between regions was determined using the  

cor.mtest function of the R package corrplot. P values were adjusted for 
multiple hypotheses testing using the Benjamini–Hochberg method 
as implemented in the R function p.adjust.

In situ hybridization (RNAscope)
Frozen human post-mortem brain samples were embedded in 
Tissue-Tek OCT compound (VWR; 25608-930), sectioned on a Leica 
cryostat at a thickness of 20 μm, and mounted onto Fisherbrand Super-
frost Plus microscope slides (Thermo Fisher Scientific; 12-550-15).  
Slides were fixed in 4% paraformaldehyde at 4 °C for 30 min, and dehy-
drated in ethanol. The RNAscope 2.5 HD Chromogenic Duplex Detec-
tion Kit and RNAscope Multiplex fluorescent V2 Kit (ACDBio) were then 
used according to the manufacturer’s instructions. Tissue samples 
were hybridized using the following chromogenic RNAscope probes: 
GAD2, FOXP2, MEIS2, AQP4, GRM3, ADCY8, PFKP, PNPLA6, GPCPD1 
and CHDH (ACDBio). For in situ hybridization of Reelin, tissue samples 
were hybridized using the following fluorescent RNAscope probes: 
vGlut and Reelin. Cell nuclei were stained with 50% haematoxylin (for 
chromogenic experiments) or with Hoechst (for fluorescent experi-
ments). For fluorescence RNAscope analysis, sections were incubated in 
TrueBlack (Biotium; 23007) for 10 s before Hoechst staining to quench 
auto-fluorescence. Images were acquired using the Zeiss LSM 900 con-
focal microscope, with a 63× oil objective. Two images were acquired 
per tissue sample. For both chromogenic and fluorescence RNAscope 
experiments, puncta were manually counted by researchers blinded 
to the experimental group of each image.

Immunohistochemistry
All experiments were performed according to the Guide for the Care 
and Use of Laboratory Animals and were approved by the National 
Institute of Health and the Committee on Animal Care at Massachu-
setts Institute of Technology. Sample sizes were determined on the 
basis of previous work from our laboratory, without power analysis 
calculation or randomization. In the experiment comparing App-KI 
(C57BL/6-App<tm3(NL-G-F)Tcs>, RBRC06344) and WT mice, the 
App-KI group consisted of 7 mice (5 male and 2 female) and the WT 
group included 6 female mice. In the experiment comparing Tau 
P301S (The Jackson Laboratory, 008169) to WT mice, both groups 
consisted entirely of male mice, with 6 mice in the Tau(P301S) group 
and 5 mice in the WT group. Mice were transcardially perfused with 
ice-cold phosphate-buffered saline, followed by 4% paraformalde-
hyde for fixation. Brains were dissected out and post-fixed in 4% para-
formaldehyde overnight at 4 °C. Brains were sectioned horizontally 
on the Leica vibratome at a thickness of 40 μm. Slices containing the 
EC were selected under a dissecting microscope to ensure consistent 
anatomical structure across all cohorts. Brain sections were incubated 
in antigen retrieval solution (pH 6, 100 mM sodium citrate buffer, pre-
warmed to 80 °C) for 20 min, and then cooled to room temperature. 
The sections were then washed twice with phosphate-buffered saline, 
and blocked in buffer (0.3% Triton X-100, 2% bovine serum albumin, 
10% normal donkey serum in phosphate-buffered saline) for 1 h at room 
temperature.

The sections were incubated in primary antibodies (anti-Reelin, 
1:200; anti-NeuN, 1:200, anti-phospho tau, 1:200; and anti-amyloid-β, 
1:500) overnight at 4 °C. After primary antibody incubation, the sec-
tions were washed three times with PBS, twice with blocking buffer and 
incubated in secondary antibody (1:1,000) for 2 h at room temperature. 
The sections were then washed three times with PBS, incubated with 
Hoechst (1:1,000) for 10 min and washed once more with PBS.

Confocal tile scans of the EC were acquired on the Zeiss LSM 900 
using a 20× objective, with consistent laser setting across all cohorts. 
Layer II–III EC was identified based on previous criteria120. Orthogonal 
projections of the confocal tile scans were exported to Fiji for signal 
quantification. In Fiji, layer II–III of the EC was set as a region of inter-
est, and a macro was used to count Reelin-positive cells in the region 



of interest and quantify the mean fluorescence intensity for each cell. 
The signal intensity of the Reelin channel was subsequently normal-
ized to the NeuN signal. Researchers were blinded to animal genotype.

External data sources
Processed snRNA-seq data generated by the Seattle Alzheimer’s Dis-
ease Brain Cell Atlas (SEA-AD) consortium (SEAAD_MTG_RNAseq_final- 
nuclei.2023-05-05.h5ad) were obtained from the Seattle Alzheimer’s 
Disease Brain Cell Atlas (SEA-AD) (https://sea-ad-single-cell-profiling.
s3.amazonaws.com/index.html#MTG/RNAseq/). The SEA-AD DLPFC 
data (SEAAD_DLPFC_RNAseq_final-nuclei.2023-07-19.h5ad) were down-
loaded from https://sea-ad-single-cell-profiling.s3.amazonaws.com/
index.html#DLPFC/RNAseq/. Additional processed snRNA-seq data-
sets (specifically the h5ad files Neurons.h5ad and Nonneurons.h5ad) 
were obtained from the Linnarsson laboratory (https://console.cloud.
google.com/storage/browser/linnarsson-lab-human;tab=objects? 
authuser=0&prefix=&forceOnObjectsSortingFiltering=false).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
snRNA-seq profiling data are available from Synapse in coordination 
with the ROSMAP project. Data are accessible under accession codes 
syn52293442 (as part of the MIT ROSMAP Single-Nucleus Multiomics 
Study; Synapse: syn52293417). The data are available under controlled 
use conditions set by human privacy regulations. To access the data, a 
data use agreement is needed. This registration is in place solely to ensure 
anonymity of the ROSMAP study participants. A data use agreement can 
be agreed with either Rush University Medical Center (RUMC) or with 
SAGE, who maintains Synapse, and can be downloaded from their web-
sites (https://www.radc.rush.edu/; https://adknowledgeportal.synapse.
org/). Additional processed data as well as integrative visualization and 
exploration of the atlas are available online (http://compbio.mit.edu/
ad_multiregion/ and https://ad-multi-region.cells.ucsc.edu/)121. We also 
downloaded the following public single-cell gene expression datasets: 
human multiple cortical areas SMART-seq (https://portal.brain-map.org/
atlases-and-data/rnaseq/human-multiple-cortical-areas-smart-seq),  
human DLPFC (Synapse: syn51123521), SEA-AD MTG (https://sea-ad- 
single-cell-profiling.s3.amazonaws.com/index.html#MTG/RNAseq/), 
SEA-AD DLPFC (https://sea-ad-single-cell-profiling.s3.amazonaws.
com/index.html#DLPFC/RNAseq/), human dLGN (https://portal.
brain-map.org/atlases-and-data/rnaseq/comparative-lgn), multiple 
human brain regions (https://console.cloud.google.com/storage/
browser/linnarsson-lab-human;tab=objects?authuser=0&prefix= 
&forceOnObjectsSortingFiltering=false), multiple cortical areas and the 
hippocampal formation of the mouse brain (https://portal.brain-map.
org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus- 
10x), nine regions in the adult mouse brain (http://dropviz.org/) and 
Mouse Brain Atlas (http://mousebrain.org/). Source data are provided 
with this paper.

Code availability
Code for analysis is available at GitHub (https://github.com/cboix/
admultiregion_analysis) and Zenodo (https://doi.org/10.5281/
zenodo.11051020). The code for the scdemon method for module 
detection from single-cell RNA-seq is available at GitHub (https://
github.com/KellisLab/scdemon).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of the study sample and major cell type 
annotations. a, Metadata overview: a total of 283 post-mortem brain tissue 
samples from 24 male and 24 female study participants were analysed across 
Alzheimer’s disease progression (AD). Top two panels show metadata at the 
individual level and bottom three panels show region-specific pathology 
measurements of neurofibrillary tangle burden (nft), neuritic plaque burden 
(plaq_n), and diffuse plaque burden (plaq_d). Individuals (columns) are ordered 
according to their global AD pathology burden. b, Joint UMAP of 1.3 M cells 
across 14 major cell types coloured and labelled by 76 high-resolution subtypes. 
c,d, Representation of individuals across cell types. The stacked bar plots show 
the proportion of cells contributed by each study participant across 14 major 
cell types (c) and 76 high-resolution cell types (d). e-f, Box plots of the number 
of genes detected per cell across all major cell types (e) and mean number of 
unique transcripts detected per cell per individual and major cell type across 

the six brain regions analysed (f). Within each box, horizontal lines denote 
median values; boxes extend from the 25th to the 75th percentile of each 
group’s distribution of values; whiskers extend from the 5th to the 95th 
percentile. ****P < 0.0001, ***P < 0.001, **P < 0.01; ns, P > 0.05; (ordinary one-
way ANOVA corrected for multiple comparisons using Bonferroni’s multiple 
comparisons test). g, Relative abundance of inhibitory neurons originating 
from the medial (MGE) ganglionic eminences (SST and PVALB) and the caudal 
(CGE) ganglionic eminence (VIP, PAX6, and LAMP5) across brain regions.  
The bar plots show the mean fraction of cells per individual and brain region 
(AG, HC, MT, PFC: n = 48; TH: n = 45; EC: n = 46). The fraction of cells was 
computed relative to all the cells isolated from a brain region of an individual. 
Data are expressed as mean with 95% confidence intervals and individual data 
points are shown (two-way ANOVA corrected for multiple comparisons using 
Bonferroni’s multiple comparisons test).
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Extended Data Fig. 2 | Gene expression programs. a, Heat map showing 
percent usage of all excitatory neuron gene expression programs (GEPs)  
(rows) in all excitatory neuron subtypes (columns). b, relative expression level 
of the top 20 genes associated with the gene expression program GEP Exc 15 
(preferentially used by Exc NXPH1 RNF220 neurons) across all excitatory 
neuron subtypes. c, Heat map showing percent usage of all inhibitory neuron 
gene expression programs (GEPs) (rows) in all inhibitory neuron subtypes 
(columns). d, Expression level of the top 20 genes associated with the gene 

expression program GEP Inh 22 (preferentially used by Inh MEIS2 FOXP2 
neurons) across all inhibitory neuron subtypes. e, Heat map showing percent 
usage of all astrocyte gene expression programs (GEPs) (rows) in all astrocyte 
subtypes (columns). f-h, Relative expression level of the top 10 genes associated 
with the gene expression programs GEP Ast 1 (preferentially used by the 
astrocyte subtype Ast GRM3) (f), GEP Ast 2 (preferentially used by the astrocyte 
subtype Ast DCLK1) (g), and GEP Ast 3 (preferentially used by the astrocyte 
subtype Ast LUZP2) (h) across all astrocyte subtypes.



Article

row min row max

NEUROD2_(+)
TMEM33_(+)
ZNF189_(+)
ELK1_(+)
ZNF821_(+)
DLX1_(+)
DLX6_(+)
ZNF821_(+)
LHX6_(+)
GATA3_(+)
ASCL1_(+)
OLIG2_(+)
SOX6_(+)
POLE3_(+)
SOX8_(+)
CREB5_(+)
ARID3A_(+)
SOX10_(+)
STAT2_(+)
POU3F3_(+)
PAX6_(+)
EMX2_(+)
BCL6_(+)
LHX2_(+)
SMAD1_(+)
TP73_(+)
ZNF273_(+)
ZNF217_(+)
RFX4_(+)
SOX12_(+)
CYB5R1_(+)
MSX1_(+)
TFCP2L1_(+)
OTX2_(+)
ESRRB_(+)
IRF5_(+)
CEBPA_(+)
IRF8_(+)
SPI1_(+)
PPARD_(+)
VENTX_(+)
PPARD_(+)
IRF5_(+)
HIF1A_(+)
SPI1_(+)
GFI1_(+)
TBX21_(+)
EOMES_(+)
HOXB2_(+)
BCL11B_(+)
SOX18_(+)
SOX17_(+)
MECOM_(+)
FOXF1_(+)
BCL6B_(+)
ALX4_(+)
NR2F1_(+)
GATA6_(+)
PRRX2_(+)
PRDM6_(+)
HES4_(+)
TBX3_(+)
TBX2_(+)
HIC1_(+)
HEYL_(+)
TFE3_(+)
NR2F6_(+)
ZBTB7B_(+)
TAGLN2_(+)
CEBPB_(+)

regulon

Exc T cellsInh OPC Oli Ast Epd CPEC Mic CAMs End Fib Per SMC

major cell type

Exc

Inh

OPC

Oli

Ast

Epd

CPEC

Mic

CAMs

T cells

End

Fib

Per

SMC

mean module score

a
Module scores of cell type-specific SCENIC transcription factor regulons

To
p 

5 
tra

ns
cr

ip
tio

n 
fa

ct
or

 re
gu

lo
ns

 fo
r e

ac
h 

m
aj

or
 c

el
l t

yp
e

Mean module scores across all individuals and major cell types

row min
SST
Inh MEIS2 FOXP2

b

row max LAMP5
PAX6
VIP
PVALB

NFIA_(+)
ZNF708_(+)
EGR4_(+)
NFATC2_(+)
NEUROD2_(+)
PAX6_(+)
SOX9_(+)
ZNF471_(+)
ETS2_(+)
FOXG1_(+)
RXRA_(+)
POU2F1_(+)
FOXG1_(+)
ONECUT2_(+)
FOSL2_(+)
KLF7_(+)
PRRX1_(+)
GLI3_(+)
SOX5_(+)
ZNF281_(+)
KLF7_(+)
BCL11A_(+)
KLF8_(+)
MTA3_(+)
MAFF_(+)
DMBX1_(+)
GATA3_(+)
UNCX_(+)
LEF1_(+)
FOXP2_(+)

regulon

m
ea

n 
m

od
ul

e 
sc

or
e

Module scores of inhibitory neuron subclass-specific SCENIC 
transcription factor regulons

To
p 

5 
tra

ns
cr

ip
tio

n 
fa

ct
or

 re
gu

lo
ns

 fo
r e

ac
h 

in
hi

bi
to

ry
 n

eu
ro

n 
su

bc
la

ss

Mean module scores across all individuals and 
inhibitory neuron subclasses

c

row min

row max

Ast GRM3
Ast DPP10
Ast DCLK1
Ast LUZP2

LHX2_(+)
MEIS1_(+)
ZNF675_(+)
ONECUT2_(+)
PRDM16_(+)
FOXG1_(+)
LHX2_(+)
ZSCAN2_(+)
PRDM16_(+)
NR2C2_(+)
PGR_(+)
ZNF212_(+)
PRRX1_(+)
TP63_(+)
NPAS2_(+)
NFATC2_(+)
POU6F2_(+)
NFIC_(+)
ESRRA_(+)
FOXO4_(+)

regulon

m
ea

n 
m

od
ul

e 
sc

or
e

Module scores of astrocyte subtype-specific 
SCENIC transcription factor regulons

To
p 

5 
tra

ns
cr

ip
tio

n 
fa

ct
or

 re
gu

lo
ns

 fo
r e

ac
h 

su
bt

yp
e

Mean module scores across all 
individuals and subtypes

Extended Data Fig. 3 | Cell and subtype-specific transcription factor 
regulators. a, Identification of major cell type-specific SCENIC transcription 
factor regulons. The heat map shows the module score of the top 5 transcription 
factor regulons (rows) for each major cell type across all individuals and major 
cell types (columns). b, Identification of inhibitory neuron subclass-specific 
SCENIC transcription factor regulons. The heat map shows the module score  

of the top 5 transcription factor regulons (rows) for each subclass across all 
individuals and subclasses of inhibitory neurons (columns). c, Identification  
of astrocyte subtype-specific SCENIC transcription factor regulons. The heat 
map shows the mean module score of the top 5 transcription factor regulons 
(rows) across all individuals and astrocyte subtypes (columns).
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Extended Data Fig. 4 | Region-specific cell-cell communication. a-b, Ligand- 
receptor pairs with the greatest increase (a) or decrease (b) in interaction score 
in the thalamus compared to the prefrontal cortex. Bar plots show the interaction 
scores for the ligand-receptor pairs indicated. The interaction score was 
calculated by applying the minus log10 transformation to the robust rank 

aggregation (RRA) score. A lower RRA score indicates that a ligand-receptor 
interaction is ranked consistently higher than expected by chance across 
multiple prediction methods. Violin plots show the expression of the ligand 
(left) and receptor (right) in the cell types and brain regions indicated.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Module summary panels across modules.  
a-h, Overview of gene expression modules with at least 10 genes each across all 
cells and across major cell types, showing the module name, number of genes, 
percent expression, top module genes, enrichments by subtype (except for 
neuron subtypes, see Supplement), covariates, and regions, and the top 
functional enrichment for each module. Percent expression is the percent of 
cells whose average expression (log1p, normalized) of the module is above 1. 
Covariate enrichments are performed by hypergeometric test, comparing the 
intersection of cells with z-scored module expression of at least 1 vs. with z < 1 

against a particular level of a covariate of interest (e.g. cells from the entorhinal 
cortex region or cells of a specific subtype). Panels summarize modules  
found in all cells (a), astrocytes (b), OPCs (c), microglia and immune cells (d), 
oligodendrocytes (e), inhibitory neurons (f), vasculature and epithelia (g), and 
excitatory neurons (h). All modules except vasculature and epithelia modules 
are split into identity vs. other, where identity modules are highly enriched in a 
single subtype and have an average expression greater than 1 (log1p, normalized) 
for over 50% of the subtype’s cells.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Cross-module clustering and comparison. a, Module-
module correlation (Pearson correlation) and gene set overlap (Jaccard distance) 
for modules with at least 10 genes from all sets of modules (263 modules in total). 
Heatmaps are ordered by the hierarchical clustering of the correlation  
matrix and cuts represent 20 clusters cut from the hierarchical clustering 
dendrogram. Left and right side bars label rows by their modules set of origin 
(major cell type colours and grey for all cells). The most commonly shared 
genes in selected clusters of modules are shown on the right of the gene set 
overlap heatmap. b, Functional enrichments for each cluster of modules for  
the shared genes (>2 modules) in each cluster (only clusters with significant 
enrichments shown). Up to 5 enrichments shown, ordered by p-value, labelled 
by their source and only keeping terms with fewer than 500 genes. c, Covariate 
and functional enrichments for example astrocyte modules M19 (thalamus 
identity program) and M17 (cholesterol metabolism and biosynthesis program). 
Region, subtype, and covariate enrichments performed at cell level by 

stratifying cells with z-score > 1 and testing for regional or subtype enrichment 
(see Methods). Functional enrichments performed using gprofiler2, keeping 
terms with fewer than 500 genes. d, Scatterplots and correlation of scores  
for selected pairs of astrocyte modules. Each dot represents the module 
expression scores for a subtype in a specific sample and is coloured by the 
astrocyte subtype. Grey area represents the 95% confidence interval around 
the linear fit. e, Functional enrichments for selected astrocyte modules, 
showing top 10 functional enrichments for each pair of compared correlated 
modules (and for M6, M13, M27 together). Only terms with fewer than 500 genes 
shown. f, Microglial and immune modules network from correlation of module 
pairs at the subtype by sample level (edges shown where FDR-adjusted 
p-value < 0.05). Nodes are coloured by module’s relative expression in each  
of the microglial and immune subtypes and groups highlight sets of subtype-
biased modules.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Neuronal vulnerability, connectivity, and markers  
of vulnerability. a, Compositional differences for major cell types in AD  
by quasi-binomial regression with FDR-correction. log2 OR shown both for  
each AD variable across regions (left) and for each region in late-AD (right). 
Analysis performed for individual-level AD status and region-level pathology 
measurements. Pathologic diagnosis of AD (Path. AD) was stratified by NIA-
Reagan score (26 AD and 22 non-AD) and clinical diagnosis was stratified as AD 
dementia (n = 16) and non-CI (n = 32). b-c, Compositional differences for glial 
subtypes and inhibitory neuron subtypes according to individual-level AD 
status and region-level pathology measurements (as in a). Grey boxes indicate 
interactions that are not computed due to MEIS2 FOXP2 specificity to the 
thalamus, where we do not have measured regional scores. d, Compositional 
differences in inhibitory neuron subtypes in late AD (Braak Stage 5-6 vs. 1–4)  
in each region. Grey boxes indicate interactions that are not computed due to 
subtype regional specificity. e, Boxplots (top) of neuronal fraction for two 
vulnerable EC subtypes, split by AD status (AD: blue, non-AD: red), with p-values 
from one-sided Wilcoxon test. Scatter plots (bottom) of individuals’ global 
cognition at last visit against cell fraction for two AD-vulnerable entorhinal 
cortex subtypes, coloured by AD. Linear fit with 95% confidence interval shown 
in grey. f, Estimated effect size of cell fraction (log10) on scores for performance 
in various cognitive domains at last visit and combined scores from all domains 
(global). Linear regression FDR-corrected p-values (**adjusted p-value < 0.01, 
*<0.05, dot is <0.1). g, Full correlation matrix between subtype fraction between 
the hippocampus and entorhinal cortex in the same individuals, as described  
in the methods (***adjusted p-value < 0.001, **<0.01, *<0.05). i, Example genes 

predictive of subtype vulnerability. Scatterplots show average expression  
in the subtype across individuals against the effect size of the depletion or 
enrichment in AD as measured by the log2 odds-ratio for late-AD, as in the 
Methods. i, Functional enrichments and intersected genes for top 30 markers 
of subtype vulnerability (terms with <500 genes). j, Association (quasi-binomial 
regression) between the relative abundance of inhibitory neuron subtypes in 
the prefrontal cortex and the density of neurofibrillary tangles. Association 
scores (signed negative log10 FDR-adjusted P value, where the sign was 
determined by the direction (positive or negative) of the association) are shown. 
The dotted line indicates the significance level threshold of an FDR-corrected  
P value of 0.05. P values were derived using the glm function in R and adjusted 
for multiple testing via the Benjamini-Hochberg method. k, Volcano plot showing 
genes differentially expressed in vulnerable versus non-vulnerable inhibitory 
neuron subtypes (genes significantly higher in vulnerable subtypes in red, 
lower in blue). FDR-adjusted P values as determined by the R package ‘dreamlet’ 
are shown. l, Scatter plot of each tested gene’s average differential expression 
effect size in late-AD (y-axis) versus the correlation of its expression in a 
subtype and that subtype’s level of depletion in late-AD (x-axis). Dashed  
lines separate genes associated with vulnerability and non-vulnerability.  
m, Functional enrichments for each identified class of neuronal DEGs  
(terms <500 genes) on bins (along x-axis from l), from genes associated with 
vulnerability to those associated with non-vulnerability (only genes with 
biased effect sizes, see Methods). Dashed lines correspond to the same breaks 
as in (l).
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Extended Data Fig. 8 | Regional differential expression and GWAS 
association. a, Number of up- and down-regulated differentially expressed 
genes (DEGs) with respect to pathologic diagnosis of AD for each major cell 
type, calculated in each region separately as well as jointly over all regions.  
b, Heatmaps of Jaccard similarity of DEGs across regions for each major cell 
type. c, Heatmap of -log10 p-values for functional enrichments showing the top 
pathways for AD DEG shared across 3+ cell types. Enrichments shown for DEGs 
calculated in each region and in all regions together (up to the top 3 pathways 

per analysis are shown). d, Barplot of number of DEGs per region and cell type, 
coloured by type of DEG, as determined by its shared differential expression 
across regions and cell types. e, Top functional enrichments for region-specific 
DEGs and DEGs shared across regions (≥3 regions) with up to the top 2 terms 
(<500 genes only) shown per region. Panels shown and computed separately 
for each major cell type. f, Heatmap of log fold change for top shared, cell-type 
consistent, and cell+region-specific DEGs in major cell types. GG-NER: global 
genome nucleotide excision repair.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Inter-regional comparison of AD pathology-
associated gene sets and region-specific GWAS enrichments. a-b, Seurat 
module scores of genes significantly positively (top) or negatively (bottom) 
associated with the global AD pathology variable in prefrontal cortex for 
astrocytes, oligodendrocytes, OPCs, and microglia across brain regions and 
the spectrum of global AD pathology burden. The gene sets used for computing 
the module scores (genes significantly associated with global AD pathology 
burden) were determined based on snRNA-seq data derived from prefrontal 
cortex tissue of 427 ROSMAP study participants. The scatterplots (a panels) 
illustrate the relationship between global AD pathology burden and the mean 
module score for the specified gene set, with this mean score calculated by 
averaging the module scores of all cells of the designated cell type isolated 
from an individual. A LOESS (Locally Estimated Scatterplot Smoothing) 
regression line with a 95% confidence interval is shown, and the regression 
lines are coloured by brain region. The central LOESS regression line represents 
the local measure of central tendency, calculated through locally weighted 
regression to reflect the smoothed relationship between the module scores 
indicated and global AD pathology burden. Interregional Pearson’s correlation 
analysis of mean module scores (b panels) was performed by first averaging the 

module scores of all cells of the cell type of interest from an individual study 
participant. The correlation analysis was then performed between regions 
based on these averaged scores. P values were calculated using the cor.test 
function in R and were adjusted for multiple testing using the p.adjust function 
with the Benjamini-Hochberg method. c, Heatmap (by region, left) and barplot 
(over all regions, right) showing the percentage of cells with significant scDRS 
(disease relevance scores) for AD GWAS. Rows are split into major cell type 
groups (top) and microglia and immune subtypes. d, Regional expression 
(heatmap, left) and F-statistic for region in predicting expression (barplot, 
right) for eight GWAS genes with significantly region-specific expression in 
microglia. Barplot is coloured by the top expressed region (regression 
coefficient). Heatmap is labelled with stars if the gene is a DEG for that region. 
e, Boxplots showing expression of two of the region-specific GWAS genes in 
individuals with and without a pathologic diagnosis of AD. f, Microglia/immune 
modules associated with AD GWAS. Fraction of microglia or immune cells with 
significant expression of each module (z-score > 2.5) and with significant 
scDRS scores (FDR < 0.05). Only significant modules are shown (adjusted 
p < 0.01, hypergeometric test with BH correction).



Extended Data Fig. 10 | Alzheimer’s disease GWAS-linked genes in the 
multi-region atlas. a, Expression level by region/subtype and effect sizes of 
150 Alzheimer’s disease candidate risk genes from Alzheimer’s disease GWAS 
risk loci. b, Differential effect sizes and significance for each candidate risk 

gene in each minor cell type across regional pathology measurements. 
Ependymal cells and CPEC cells were excluded as the thalamus does not have 
regional pathology measurements.
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Extended Data Fig. 11 | Pathology-biased DEGs for major cell types.  
a, Number of DEGs for each cell type for both region-level pathology 
measurements and individual-level AD status (DE analysis performed over  
all regions jointly). b, Overlap of AD DEGs in each major cell type for each 
combination of region and condition (AD variable). DEG overlap computed  
by Jaccard distance and rows/columns hierarchically ordered by Euclidean 
distance. c-f, Scatter plots of average effect sizes for NFT and plaque for DEGs 
with biased differential effect sizes (left panels) and their respective functional 

enrichments (right panels), for DEGs specific to inhibitory neurons (c), 
oligodendrocytes (d), microglia (e), and OPCs (f). Genes are coloured by 
whether they have higher effect size relative to NFT (orange) or plaque levels 
(teal). g, Heatmap of hypergeometric enrichments of up (red) or down (blue) 
AD DEGs in modules for DEGs in all sets of modules across all regions, by AD 
condition. Only modules with at least two significant enrichments are shown 
and rows are clustered hierarchically by Euclidean distance.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection no software was used

Data analysis Gene counts were obtained by aligning reads to the GRCh38 genome using Cell Ranger software (v.3.0.2) (l0x Genomics). 
We used SCAN PY (vl.6) to process and cluster the expression profiles and infer cell identities. 
We called doublets using DoubletFinder (v2.0). 
The R package Seurat (v.3.2) was used for UMAP visualizations and to determine marker genes. 
Prism 9 software was used for histogram visualizations and for statistical analyses comparing the number of genes and transcripts detected 
per cell. 
The Differential Search tool of the Allen Brain Atlas data portal (v.7) (https://human.brain-map.org/microarray/search) was used to compare 
microarray data from different human brain regions. 
The Consensus Non-negative Matrix factorization (cNMF) (vl.3) package implemented in python was used for the NMF analysis. 
The gene regulatory network analysis was performed using pySCENIC (v0.10.4). 
MAST (vl.16.0) and Nebula (vl.1.7) were used for the differential expression analyses. 
The gprofiler2 package in R DEG was used for DEG enrichments. 
Cell-cell communication events were predicted using the LIgand-receptor ANalysis frAmework (LIANA) (v0.1.12). 
The differential expression analysis comparing vulnerable to non-vulnerable inhibitory neuron subtypes was performed with the R package 
dreamlet (v0.99.6). 
Genes associated with cognitive resilience were identified using the R package muscat (v1.12.1). 
Bulk RNA-seq differential expression analysis was performed using DESeq2 (v1.38.3). 
Further statistical analyses and visualizations were implemented in R version 4.0.3 {2020-10-10). 
Gene expression modules were determined using the scdemon (v0.9.0) framework. The code for the scdemon method for module detection 
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from single-cell RNA-seq is available at https://github.com/KellisLab/scdemon. 
Code for analysis is available at https://github.com/cboix/admultiregion_analysis and Zenodo (11051021, https://doi.org/10.5281/
zenodo.11051021).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Single-nucleus RNA-seq profiling data is available from Synapse (www.synapse.org) in coordination with the ROSMAP project. Data is accessible at https://
www.synapse.org/#!Synapse:syn52293442 (as part of The MIT ROSMAP Single-Nucleus Multiomics Study https://www.synapse.org/#!Synapse:syn52293417). The 
data is available under controlled use conditions set by human privacy regulations. To access the data, a data use agreement is needed. This registration is in place 
solely to ensure anonymity of the ROSMAP study participants. A data use agreement can be agreed with either Rush University Medical Center (RUMC) or with 
SAGE, who maintains Synapse, and can be downloaded from their websites (https://www.radc.rush.edu/; https://adknowledgeportal.synapse.org/). Additional 
processed data as well as integrative visualization and exploration of the atlas are available through http://compbio.mit.edu/ad_multiregion/ and https://ad-multi-
region.cells.ucsc.edu/. 
 
We also downloaded the following public single-cell gene expression datasets: Human Multiple Cortical Areas SMART-seq (https://portal.brain-map.org/atlases-and-
data/rnaseq/human-multiple-cortical-areas-smart-seq), human DLPFC (https://www.synapse.org/#!Synapse:syn51123521), SEA-AD MTG (https://sea-ad-single-cell-
profiling.s3.amazonaws.com/index.html#MTG/RNAseq/), SEA-AD DLPFC (https://sea-ad-single-cell-profiling.s3.amazonaws.com/index.html#DLPFC/RNAseq/), 
human dLGN (https://portal.brain-map.org/atlases-and-data/rnaseq/comparative-lgn), multiple human brain regions (https://console.cloud.google.com/storage/
browser/linnarsson-lab-human;tab=objects?authuser=0&prefix=&forceOnObjectsSortingFiltering=false), multiple cortical areas and the hippocampal formation of 
the mouse brain (https://portal.brain-map.org/atlases-and-data/rnaseq/mouse-whole-cortex-and-hippocampus-10x), nine regions in the adult mouse brain (http://
dropviz.org/), and Mouse Brain Atlas (http://mousebrain.org/).

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We selected 48 individuals from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), both ongoing 
longitudinal clinical-pathologic cohort studies of aging and dementia, in which all participants are brain donors. Individuals 
were balanced between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD) (sex was determined based on self-reporting).

Reporting on race, ethnicity, or 
other socially relevant 
groupings

No socially constructed or socially relevant categorization variables were used in this study.

Population characteristics We selected 48 individuals from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), both ongoing 
longitudinal clinical-pathologic cohort studies of aging and dementia, in which all participants are brain donors. For the 
purpose of this study, individuals were selected based on the modified NIA-Reagan diagnosis of Alzheimer's disease and the 
Braak stage score (Braak stage 0,1,2, n=20; Braak stage 3,4, n=14; Braak stage 5,6, n=14), with 26 individuals having a positive 
pathologic diagnosis of AD and 22 individuals having a negative pathologic diagnosis of AD. Individuals were balanced 
between sexes (male:female ratios 13:13 in AD, 11:11 in NoAD), matched for age (medians 86.6 years (AD) and 86.0 years 
(NoAD)), and postmortem interval (medians 5.9 hours (AD) and 6.3 hours (NoAD)).

Recruitment No donors were recruited, the tissue has been obtained from participants in the Religious Order Study. 

Ethics oversight The Religious Orders Study and Rush Memory and Aging Project were approved by an IRB of Rush University Medical Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No explicit calculations were performed to determine sample size. Rather, we aimed to analyze brain tissue from an equal number of men and 
women and at least 11 individuals per group. Therefore we analyzed brain tissue from 26 individuals having a positive pathologic diagnosis of 
AD and 22 individuals having a negative pathologic diagnosis of AD. The sample size of 48 was chosen based on findings from our previous 
study, which also included the same number of participants. This previous study demonstrated that a sample size of 48 is sufficient to detect 
significant differences between individuals diagnosed with and without Alzheimer's Disease.

Data exclusions Low quality snRNA-seq libraries were excluded and the exclusion criteria are described in the manuscript as follows. We kept only protein 
coding genes and filtered out cells with over 20% mitochondrial or 5% ribosomal RNA, leaving 1.47M cells over 48 individuals and 283 samples 
across all regions. We separately called doublets using DoubletFinder and flagged and removed clusters with strong doublet profiles and 
clusters showing strong individual-specific batch effects, leaving a final dataset of 1.35M cells. 

Replication Verification of the single-nucleus RNA-seq data was performed through validation using RNA in situ hybridization on post-mortem brain tissue. 
These experiments validated the findings derived from snRNA-seq. The snRNA-seq experiment was performed once. The RNA in situ 
hybridization (RNAscope) experiments shown in Figure 1i, Figure 2d, Figure 3g, Figure 4o-p, and Figure 5j-l were each performed once. 
Similarly, the IHC experiments shown in Figure 3h-i were each performed once.

Randomization The study participants were allocated into groups based on Braak stage.

Blinding Investigators were not blinded to group allocation. The outcome measures used in our snRNA-seq analysis are objective, relying on 
standardized computational methods, which reduces the potential for bias that blinding seeks to mitigate.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used • Anti-reelin   

o Host: monoclonal mouse  
o Catalogue name: Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10 
o Catalogue number: Millipore Sigma MAB5364 
• Anti-NeuN  
o Host: polyclonal serum from guinea pig  
o Catalogue name: NeuN antibody  
o Catalogue number: Synaptic System 266004 
• Anti-Amyloid ß 
o Host: Monoclonal rabbit  
o Catalogue name: β-Amyloid (D54D2) XP® Rabbit mAb 
o Catalogue number: 8243S  
• Anti-Phospho-tau  
o Host: Polyclonal rabbit 
o Catalogue name: Phospho-Tau (Ser396)  
o Catalogue number: 44-752G 

Validation • Anti-reelin: 
Millipore Sigma application statement: Detect Reelin using this Anti-Reelin Antibody, a.a. 164-496 mreelin, clone G10 validated for 
use in IH & WB. 
• Anti-NeuN  
Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations. 
Adaikkan C, Joseph J, Foustoukos G, Wang J, Polygalov D, Boehringer R, Middleton SJ, Huang AJY, Tsai LH, McHugh TJ 
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Nature communications (2024) 151: 2190. 266 004 IHC; tested species: mouse 
• Anti-Amyloid ß 
Cell Signaling Technology Specificity/Sensitivity statement: β-Amyloid (D54D2) XP® Rabbit mAb recognizes endogenous levels of total 
β-amyloid peptide (Aβ). The antibody detects several isoforms of Aβ, such as Aβ-37, Aβ-38, Aβ-39, Aβ-40, and Aβ-42. This product 
detects transgenically expressed human APP in mouse models. 
• Anti-Phospho-tau  
Invitrogen Advanced Verification statement: This Antibody was verified by Cell treatment to ensure that the antibody binds to the 
antigen stated. 

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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