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DNA mismatch and damage patterns 
revealed by single-molecule sequencing

Mei Hong Liu1,2,10, Benjamin M. Costa1,2,10, Emilia C. Bianchini1,2, Una Choi1,2, Rachel C. Bandler1, 
Emilie Lassen3, Marta Grońska-Pęski1,2, Adam Schwing1,2, Zachary R. Murphy1,2, 
Daniel Rosenkjær3, Shany Picciotto4, Vanessa Bianchi5, Lucie Stengs5, Melissa Edwards5, 
Nuno Miguel Nunes5, Caitlin A. Loh1,2, Tina K. Truong1,2, Randall E. Brand6, Tomi Pastinen7, 
J. Richard Wagner8, Anne-Bine Skytte3, Uri Tabori5,9, Jonathan E. Shoag4 & Gilad D. Evrony1,2 ✉

Mutations accumulate in the genome of every cell of the body throughout life,  
causing cancer and other diseases1,2. Most mutations begin as nucleotide 
mismatches or damage in one of the two strands of the DNA before becoming 
double-strand mutations if unrepaired or misrepaired3,4. However, current 
DNA-sequencing technologies cannot accurately resolve these initial single-strand 
events. Here we develop a single-molecule, long-read sequencing method (Hairpin 
Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule 
fidelity for base substitutions when present in either one or both DNA strands. 
HiDEF-seq also detects cytosine deamination—a common type of DNA damage— 
with single-molecule fidelity. We profiled 134 samples from diverse tissues, including  
from individuals with cancer predisposition syndromes, and derive from them 
single-strand mismatch and damage signatures. We find correspondences between 
these single-strand signatures and known double-strand mutational signatures, 
which resolves the identity of the initiating lesions. Tumours deficient in both 
mismatch repair and replicative polymerase proofreading show distinct single- 
strand mismatch patterns compared to samples that are deficient in only polymerase 
proofreading. We also define a single-strand damage signature for APOBEC3A. In the 
mitochondrial genome, our findings support a mutagenic mechanism occurring 
primarily during replication. As double-strand DNA mutations are only the end point 
of the mutation process, our approach to detect the initiating single-strand events  
at single-molecule resolution will enable studies of how mutations arise in a variety 
of contexts, especially in cancer and ageing.

Mosaic mutations are ubiquitous in the body and accumulate through-
out life in every cell1,2. Most mosaic mutations begin as nucleotide mis-
matches or damage in only one of the two strands of the DNA double 
helix3,4. When these single-strand DNA (ssDNA) events are misrepaired, 
or when they are replicated during the cell cycle before repair, they 
then become permanent double-strand DNA (dsDNA) mosaic muta-
tions3. Although current methods for profiling mosaic changes to 
DNA achieve high fidelity for dsDNA mutations, they cannot accu-
rately resolve these precursor ssDNA events. This is because current 
methods—single-cell genome sequencing5, in vitro cloning of single 
cells6, microdissection or biopsy of clonal populations7, and duplex 
sequencing8,9—amplify the original DNA molecules before sequencing, 
either prior to or on the sequencer itself. This masks true ssDNA events 

by either transforming existing ssDNA mismatches and damage to 
dsDNA mutations, or by introducing artefactual ssDNA mismatches and  
damage8.

Mosaic dsDNA mutations are the result of the interaction between 
ssDNA mismatch and damage events, DNA repair, and DNA replication3. 
Consequently, dsDNA mutational signatures (that is, the sequence 
contexts of mutations) may not reflect the patterns of the originating 
ssDNA events4. dsDNA mutation profiling also does not resolve on 
which strands the initiating ssDNA events occur. Therefore, a complete 
understanding of mutational processes requires profiling of ssDNA 
mismatches and damage3,10. Here, to study the ssDNA origins of mosaic 
mutations, we developed an approach for direct sequencing of single 
DNA molecules without any previous amplification that achieves, for 
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single-base substitutions, single-molecule fidelity detection of dsDNA 
mutations simultaneously with ssDNA mismatches and damage.

HiDEF-seq
Profiling dsDNA mosaic mutations in human tissues requires 
single-molecule fidelity of less than 1 error per 1 billion bases (10−9), and 
profiling ssDNA mismatch and damage events would probably require 
similar or greater fidelity8,10. However, to our knowledge, no technology 
to date has achieved this fidelity when directly sequencing unampli-
fied single DNA molecules. To achieve this, we developed HiDEF-seq. 
HiDEF-seq substantially increases the fidelity of single-molecule 
sequencing by (1) increasing the number of independent sequencing 
passes per strand (median of 32 passes with a median of 1.7 kilobase (kb) 
molecules) relative to standard single-molecule sequencing11 to create 
a high-quality consensus sequence for each strand; (2) eliminating 
in vitro artefacts during library preparation by ssDNA nick ligation and 
by using either the NanoSeq A-tailing approach8 or a protocol without 
A-tailing for post-mortem samples with degraded DNA; and (3) a com-
putational pipeline that avoids analytic artefacts (Fig. 1a,b, Methods, 
Extended Data Figs. 1–5 and Supplementary Note 1). HiDEF-seq librar-
ies are sequenced on Pacific Biosciences (PacBio) single-molecule, 
long-read sequencers. The computational pipeline analyses single-base 
substitutions, as these have an orthogonal error profile to the prevalent 
insertion and deletion sequencing errors of single-molecule sequenc-
ing12, and it analyses each strand separately to distinguish between 
dsDNA and ssDNA events (Methods).

We profiled purified human sperm with HiDEF-seq as the most 
rigorous test of fidelity for detecting dsDNA mosaic mutations, as 
sperm have the lowest dsDNA mutation burden of any readily acces-
sible human cell type13. Sperm dsDNA mutation burdens measured by 
HiDEF-seq were concordant with a previous study of de novo muta-
tions14 and with NanoSeq profiling8 (a method for duplex sequencing 
of mosaic dsDNA mutations) that we performed for the same samples 
(Fig. 1c). HiDEF-seq also measured the expected dsDNA mutational 
signatures and linear increase in dsDNA mutation burdens with age 
in other human tissues (liver, kidney, blood and cerebral cortex neu-
rons)8,15, with one outlier blood sample of an individual with a kidney 
transplant (Fig. 1d, Extended Data Fig. 5i and Supplementary Note 2).

Notably, relaxing from a threshold of ≥20 to ≥5 sequencing passes per 
strand, while keeping our optimized computational filters, produced 
concordant dsDNA mutation burdens (Extended Data Fig. 3e). This sug-
gests that PacBio sequencing can achieve a higher per-pass fidelity for 
substitutions than estimated by previous studies11. Using the probabil-
ity of complementary single-strand calls occurring at the same position 
(Methods), we estimate HiDEF-seq’s fidelity for dsDNA mutations as less 
than 1 error per 3 × 1013 base pairs (bp) with ≥5 passes per strand and less 
than 1 error per 1 × 1014 bp with ≥20 passes per strand. Accordingly, for 
analysis of dsDNA mutations, we used the lower threshold of ≥5 passes 
per strand as this increases the percentage of analysed molecules from 
70% to 99.8% (of molecules passing primary data processing), and 
it increases the percentage of interrogated bases by 11%. HiDEF-seq 
uses restriction enzyme fragmentation that captures approximately 
40% of the human genome (Extended Data Fig. 1a), which is sufficient 
for obtaining accurate mosaic mutation burdens and mutational pat-
terns8. It can also use random fragmentation to enable profiling of any 
genomic region, although this requires more input DNA (Methods). We 
also successfully quantified dsDNA mutation burdens in sperm using 
HiDEF-seq with larger DNA fragments (median, 4.2 kb), which have 
correspondingly fewer (median, 15) passes per strand (Supplementary 
Note 3). However, for this study, we proceeded with HiDEF-seq with the 
smaller median 1.7 kb fragments, as a higher threshold of ≥20 passes 
per strand was required for ssDNA analysis.

We next analysed ssDNA calls. Importantly, these may include not 
only ssDNA mismatches, but also damaged bases that alter base pairing 

and lead to misincorporation of nucleotides by the sequencer polymer-
ase. The latter may be advantageous as it would enable high-fidelity 
detection of ssDNA damage. In contrast to dsDNA mutation analysis, 
duplex error correction is not possible for ssDNA calls, and true ssDNA 
call burdens (calls per base) are unknown. Thus, for ssDNA calling, 
we optimized key analytic parameters by identifying filter thresh-
olds above which ssDNA burden estimates are stable (Methods and 
Extended Data Fig. 3i,j). To compare ssDNA calls between HiDEF-seq 
and NanoSeq, we profiled 9 samples using both methods. Although 
HiDEF-seq and NanoSeq dsDNA mutation burdens and patterns were 
concordant, HiDEF-seq measured on average 18-fold lower ssDNA call 
burdens, with distinct patterns, and 5-fold lower when considering only 
C>T calls (Fig. 1e–g and Extended Data Fig. 6a–c). This suggests that, 
while NanoSeq achieves high fidelity for dsDNA mutations, its ssDNA 
calls are largely artefactual as suggested by its developers8. HiDEF-seq 
ssDNA burdens in cerebral cortex neurons were also around 13-fold 
lower than estimated by Meta-CS single-cell duplex sequencing16, with 
a distinct pattern, and about 4-fold lower when considering only C>T 
calls (Supplementary Tables 2 and 3). Overall, by direct interrogation of 
unamplified single molecules, HiDEF-seq achieves, to our knowledge, 
the highest fidelity for single-base changes of any DNA-sequencing 
method to date.

Cancer predisposition syndromes
As there is no previous method for sequencing ssDNA mismatches 
with single-molecule fidelity, we sought to confirm the veracity of 
HiDEF-seq’s ssDNA calls by profiling samples from individuals with 
inherited cancer predisposition syndromes that may have elevated 
ssDNA call burdens. We profiled 17 blood, primary fibroblast, and 
lymphoblastoid cell line samples from 8 different cancer predispo-
sition syndromes, including defects in nucleotide excision repair, 
mismatch repair, polymerase proofreading, and base excision repair 
(Supplementary Tables 1 and 2). In these samples, we first confirmed 
HiDEF-seq’s single-molecule fidelity for dsDNA mutations by meas-
uring the expected dsDNA mutation burdens and signatures based 
on previous studies17–21 (Extended Data Fig. 7a–d and Supplementary 
Tables 2 and 4).

Notably, compared to non-cancer predisposition samples, we 
detected higher ssDNA call burdens in two cancer predisposition syn-
dromes: a 2.6-fold increase (95% confidence interval: 2.3–3.0) in POLE 
polymerase proofreading-associated polyposis syndrome samples 
(PPAP; germline heterozygous exonuclease domain mutations in POLE, 
which encodes the catalytic subunit of polymerase epsilon that per-
forms leading strand genome replication22), and a 1.6-fold increase (95% 
confidence interval: 1.4–1.9) in congenital mismatch repair deficiency 
syndrome samples (CMMRD; MSH2, MSH6, and PMS2 germline biallelic 
loss of function) (Fig. 2a). Moreover, the percentage of purine ssDNA 
calls (G>T/C/A and A>T/G/C) was elevated in PPAP samples (average, 
61%; range, 52–73%) and CMMRD samples (average, 33%; range, 23–57%) 
compared to non-cancer predisposition samples (average, 20%; range, 
12–29%) (Fig. 2b). In PPAP samples, this was largely due to increased G>T, 
G>A, and A>C ssDNA calls, while CMMRD samples exhibited smaller 
alterations in sequence contexts of ssDNA calls (Fig. 2b). These data 
indicate that most ssDNA calls in PPAP samples, and at least some calls 
in CMMRD samples, are bona fide ssDNA mismatches.

To further characterize the patterns of ssDNA mismatches in POLE 
PPAP samples, we plotted their 192-trinucleotide context spectra 
(standard 96-trinucleotide context spectra, separated by central 
pyrimidine versus central purine). This revealed a distinct pattern, 
with two large peaks for AGA>ATA and AAA>ACA accounting for around 
15–20% and about 5–10% of ssDNA mismatches, respectively, in addi-
tion to smaller peaks with G>T, G>A, A>C, and C>T contexts (Fig. 2c 
and Supplementary Table 3). The ssDNA mismatch spectra were highly 
concordant with the dsDNA mutation spectra of these same samples 
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(Fig. 2d and Supplementary Table 4), confirming that these are true 
ssDNA mismatches—arising from polymerase epsilon nucleotide 
misincorporation—that lead to the subsequent pattern of accumu-
lated dsDNA mutations. De novo extraction of ssDNA mismatch signa-
tures from PPAP samples produced a signature that we name SBS10ss 
(SBS, single-base-substitution; ss, single-strand) (Fig. 2e). Note that 
we propose a nomenclature with the suffix ‘ss’ to distinguish between 

ssDNA and dsDNA signatures. Projecting SBS10ss to central pyrimidine 
contexts, by summing central purine and central pyrimidine spectra, 
produced a spectrum remarkably similar (cosine similarity = 0.97) 
to the dsDNA signatures extracted de novo (SBSE + SBSF) from these 
same samples (Fig. 2e), again indicating that the ssDNA mismatches 
are the inciting events leading to the dsDNA mutations. SBS10ss also 
had strong similarity (cosine similarity = 0.90) to COSMIC23 SBS10c that 
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lines show weighted least-squares linear regressions. e,f, HiDEF-seq versus 
NanoSeq dsDNA mutation burdens (e) and ssDNA call burdens (f). Samples are 
(top to bottom in legend): SPM-1013, SPM-1002, SPM-1004, SPM-1020, SPM-
1060, 1443, 1105, 6501, 63143. Only sample 63143 (POLE p.M444K) is from an 
individual with a cancer predisposition syndrome. The dashed line shows y = x 
(expectation for concordance). g, HiDEF-seq versus NanoSeq ssDNA call burdens 
separated by call type. For each call type, each bar represents a different sperm 
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deviations. c–f, Dots and error bars show point estimates and their Poisson 95% 
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each sample, HiDEF-seq and NanoSeq confidence intervals were normalized  
to reflect an equivalent number of interrogated base pairs (c and e) or bases (f) 
(Methods). mo, months old; yo, years old.
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was previously associated with POLE PPAP17. SBS10ss accounted for an 
average of 79% (range, 70–91%) of ssDNA calls in PPAP samples, with 
the remaining attributed to SBS30ss*, a ssDNA cytosine deamination 
damage signature (asterisk (*) indicates damage) that is described in 
a subsequent section (Fig. 2f). For CMMRD samples, the number of 
ssDNA calls was too low to extract a signature.

The two most frequent ssDNA mismatch contexts in PPAP samples 
are also notable for the asymmetry of their prevalence relative to their 
reverse complements: AGA>ATA versus TCT>TAT (73 versus 10 mis-
matches across all PPAP samples; χ2 test, P < 0.0001) and AAA>ACA 

versus TTT>TGT (26 versus 2 mismatches; χ2 test, P < 0.0001). These 
data provide a direct observation that the dsDNA mutational context 
AGA>ATA / TCT>TAT prevalent in POLE PPAP arises in vivo significantly 
more frequently from C:dT (template base:polymerase incorporated 
base) misincorporations than G:dA misincorporations, and that the 
dsDNA mutational context AAA>ACA / TTT>TGT arises in vivo more 
frequently from T:dC than A:dG misincorporations. These results are 
consistent with previous studies that indirectly inferred this asym-
metry in yeast24 and human tumours25–27 harboring mutations in the 
polymerase epsilon exonuclease domain by identifying asymmetries 
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sensitivity (Methods). Statistical analysis was performed using two-sided 
Poisson rates ratio tests, combining calls and interrogated bases from each 
group, with Holm multiple-comparison adjustment; ***P = 2 × 10−10 for mismatch 
repair and P < 10−15 for polymerase proofreading, versus non-cancer 
predisposition samples. Results were also significant when including only 
blood samples. Samples (left to right) are: 5203, 1105, 1301, 6501, 1901, 
GM12812, GM02036, GM03348, GM16381, GM01629, GM28257, 55838, 58801, 
57627, 1400, 1324, 1325, 60603, 59637, 57615, 63143 (L), 63143 (B), CC-346-253, 
CC-388-290, and CC-713-555. Cancer predisposition samples are ordered as in 
b, which lists the affected genes. b, ssDNA call burdens by context, corrected 
for trinucleotide context opportunities. Statistical analysis was performed 
using heteroscedastic two-tailed t-tests, adjusted for multiple comparisons; 
*P = 0.03, ***P = 0.0008. Only non-cancer predisposition samples with >30 

ssDNA calls were included (1105, 1301, 1901, GM12812, GM03348), as patterns 
are not reliably ascertained with fewer calls. However, GM16381 (XPC) with <30 
calls was included for completeness in showing all cancer predisposition 
samples. c,d, Spectra of ssDNA calls (c) and dsDNA mutations (d) for 
representative POLE PPAP sample 57615, corrected for trinucleotide context 
opportunities. e, Top, the ssDNA mismatch signature SBS10ss extracted from 
all PPAP samples while simultaneously fitting SBS30ss* (Fig. 4d). Middle, SBS10ss 
projected to central pyrimidine contexts by summing central pyrimidine values 
and their reverse-complement central purine values to enable comparison to 
dsDNA signatures. Bottom, the dsDNA mutational signature (sum of SBSE and 
SBSF) extracted from PPAP samples. f, The fraction of ssDNA calls attributed  
to ssDNA signatures in PPAP samples (same PPAP sample order as in a). Cosine 
similarities of original spectra to spectra reconstructed from signatures (left 
to right) were: 0.94, 0.97, 0.97, 0.85. Sample details for a and b are provided in 
Supplementary Tables 1 and 2. a, Error bars show Poisson 95% confidence 
intervals.
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in the prevalence of dsDNA mutation contexts relative to their reverse 
complement contexts depending on whether the mutation locus is pref-
erentially replicated through leading-strand versus lagging-strand syn-
thesis. However, while these studies rely on replication timing data that 
imperfectly estimates the probability of leading- versus lagging-strand 
replication to measure this asymmetry, our single-molecule detection 
of nucleotides that were misincorporated by polymerases in vivo ena-
bles us to measure this asymmetry directly. Our results are also consist-
ent with in vitro polymerase gap-filling assays25,28, but, in contrast to 
our detection of in vivo misincorporation events, these assays lack the 
full context of DNA replication and repair. We also applied the above 
studies’ indirect replication timing analysis and similarly found in our 
POLE PPAP samples a higher frequency of AGA>ATA dsDNA mutations 
and AGA>ATA ssDNA mismatches on the strand that is preferentially 
replicated in the leading direction (Extended Data Fig. 7e,f). Together, 
our results demonstrate direct measurements of in vivo ssDNA mis-
match burdens and patterns.

Hypermutating tumours
To study the interaction between ssDNA mismatches introduced dur-
ing replication and mismatch repair, we profiled three hypermutating 
brain tumours from individuals with CMMRD whose tumours also 
contained somatic mutations affecting polymerase proofreading. 
We excluded one tumour (tumour 3) from further analysis due to a 
very high ssDNA C>T burden attributed to SBS30ss* (a ssDNA cyto-
sine deamination damage signature described in the next section) 
that probably arose ex vivo (Supplementary Tables 2 and 3). The 
other two tumours, a medulloblastoma and a glioblastoma—both 
with biallelic germline PMS2 mutations and somatic POLE exonucle-
ase domain mutations—had higher burdens and distinct patterns of 
dsDNA mutations and ssDNA calls compared with samples deficient in 
only mismatch repair or only polymerase proofreading (Figs. 2a–d and 
3, Extended Data Figs. 7a,b and 8a–c and Supplementary Tables 2–4). 
Additionally, the dsDNA mutation spectra of these tumours resembled 
those found in previous studies of tumours and cell lines deficient 
in both mismatch repair and polymerase proofreading29–32 (Fig. 3). 
Most dsDNA mutations were attributed to a signature with moderate 

similarity to COSMIC SBS14 (cosine similarity = 0.85)31 (Extended 
Data Fig. 8e). Moreover, the dsDNA mutation spectra of the tumours 
resembled their ssDNA call spectra (Fig. 3 and Extended Data Fig. 8b,c), 
except for ssDNA C>T calls related to SBS30ss* (Fig. 3 and Extended  
Data Fig. 8f).

Importantly, the ssDNA call spectra of the tumours had notable 
differences relative to ssDNA call spectra of samples deficient in 
only polymerase proofreading, including increases in ssDNA AG>AT 
calls flanked by 3′ C/G/T, and increases in ssDNA G>A, A>G, and T>C 
calls (Figs. 2c and 3 and Supplementary Table 3). These differences 
in ssDNA call spectra of polymerase proofreading-deficient samples 
with and without mismatch repair deficiency are consistent with pre-
vious studies suggesting that mismatch repair is more efficient for 
certain mismatches caused by deficient polymerase proofreading32,33. 
The tumours’ relative increase in ssDNA C>T calls largely arose from 
cytosine deamination damage rather than polymerase misincorpora-
tion (Figs. 3 and 4d and Extended Data Fig. 8f). The ssDNA call spectra 
further resolve the identity of the nucleotides misincorporated by 
proofreading-deficient polymerase epsilon—for example, C>T / G>A 
dsDNA mutations largely arise from C:dA rather than G:dT misincor-
porations (Fig. 3). We extracted a ssDNA mismatch signature from 
tumour samples that we name SBS14ss, as after projecting it to central 
pyrimidine contexts, its most similar COSMIC dsDNA signature is SBS14 
(cosine similarity = 0.73 for all ssDNA calls and 0.96 for only C>A ssDNA 
calls) (Extended Data Fig. 8d). SBS14ss accounted for most ssDNA calls 
in both tumours (Extended Data Fig. 8f). We also profiled post-mortem 
brain and spinal cord of individuals with MSH2 and MSH6 CMMRD 
who died of brain tumours harboring somatic POLE mutations. This 
revealed not only an elevated burden of SBS1 dsDNA mutations as seen 
in a previous study19, but also an elevated burden of ssDNA C>T calls 
at CG dinucleotides (Supplementary Note 4). This demonstrates that 
HiDEF-seq can also detect the ssDNA precursor lesions of SBS1 when 
this mutational process is elevated.

Patterns of cytosine deamination damage
A common form of DNA damage is deamination of cytosine (with or 
without preceding oxidation) to uracil, uracil glycol, 5-hydroxyuracil, 
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Also annotated are the cosine similarities of each sample’s full ssDNA call 
spectrum (projected to central pyrimidine context) to its dsDNA mutation 
spectrum, for all ssDNA calls and after excluding ssDNA C>T calls (most of 
which are due to SBS30ss* cytosine deamination). Medulloblastoma ID: 
tumour 8; glioblastoma ID: tumour 10. Sample details are provided in 
Supplementary Table 1.
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or 5-hydroxyhydantoin (uracil-species)34,35. When unrepaired, these 
lesions result in dsDNA C>T mutations34. We reasoned that HiDEF-seq 
may detect these ssDNA cytosine  to  uracil-species events with 
single-molecule fidelity despite their low levels (estimated by mass 
spectrometry at less than 1 per 1 million bases36), as damaged cytosines 
would be mis-sequenced as thymines due to nucleotide misincorpora-
tion by the sequencer polymerase.

We began by investigating the burden and pattern of ssDNA C>T 
calls in the blood DNA of individuals without cancer predisposition, as 
blood can be processed rapidly without potential post-mortem DNA 
damage. We also extracted the DNA with room temperature incuba-
tions to avoid heat-induced deamination37. Blood DNA had 2.0 × 10−8 
ssDNA C>T calls per base (mean of n = 9 samples from n = 5 individuals; 
range 9.8 × 10−9–3.1 × 10−8), comprising on average 71% of these sam-
ples’ ssDNA calls (Extended Data Fig. 9a and Supplementary Tables 2  
and 3). This burden, which may have either been present in vivo or 
partly arisen during laboratory processing, suggests that there are 
less than 250 cytosine to uracil-species deaminated bases per cell in 

blood leukocytes. Our detection level of 1 event per 50 million bases is 
on par with the most sensitive mass spectrometry methods36,38—which 
cannot determine the sequence context of damaged bases—and pro-
vides a low background for studying cytosine deamination processes. 
Notably, the spectrum of the combined ssDNA calls of these blood 
samples, projected to central pyrimidine contexts, most closely resem-
bled COSMIC23 SBS30 (cosine similarity = 0.83) (Fig. 4a,c), a signature 
associated with cytosine oxidative deamination damage repaired by 
DNA glycosylases18,39,40. Surprisingly, G>T ssDNA calls, which would 
be expected due to the commonly oxidized base 8-oxoguanine, were 
very infrequent in these blood samples (average of 6% of ssDNA calls, 
1.5 × 10−9 ssDNA calls per base; range 0–2.9 × 10−9), possibly due to 
the sequencer polymerase correctly incorporating dC across from  
8-oxoguanine.

Given the high sensitivity of HiDEF-seq’s ssDNA C>T detection, we 
investigated the effect of heat, an important source of laboratory-based 
cytosine deamination artefacts (as most DNA extraction methods use 
heat)37. We profiled purified blood DNA after heat incubation at 56 °C 
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Fig. 4 | ssDNA damage signatures of sperm and heat-treated DNA. a, Spectrum 
of all ssDNA calls of non-cancer predisposition blood samples (one sample each 
from individuals 1105, 1301, 5203 and 6501, and five samples from individual 
1901). The cosine similarity to COSMIC SBS30 was calculated after projecting 
the ssDNA spectrum to central pyrimidine contexts. b, dsDNA mutation and 
ssDNA call burdens of heat-treated DNA. c, ssDNA call spectra of representative 
sperm and heat-treated blood DNA samples, and SBS30 for comparison.  
d, SBS30ss* obtained by de novo signature extraction from central pyrimidine 
ssDNA calls of sperm and heat-treated samples. The cosine similarity to SBS30 
was calculated after projecting to central pyrimidine contexts. e, Schematic  
of PW and IPD measured for incorporated bases during sequencing. f, Average  
PW ratios for positions −1 to +6 (relative to C>T calls), which is the polymerase 

footprint that has a kinetic signal that differs from the flanking baseline. 
Unbiased hierarchical clustering (dendrogram) separates ssDNA C>T calls 
from dsDNA C>T mutations and from kinetic profiles with randomized 
molecule labels. Positions +1 and +3 (stars) best discriminate ssDNA C>T 
damage from dsDNA C>T mutations. dsDNA ‘Blood, heat’ samples were heat 
treated at 56 °C and 72 °C (both 3 hours and 6 hours for each). dsDNA ‘Blood’: 
n = 4 samples; dsDNA ‘Kidney and liver’: n = 10 samples. a,c,d, HiDEF-seq 
spectra were corrected for trinucleotide context opportunities. b, Bars and 
error bars show point estimates and their Poisson 95% confidence intervals, 
and statistical analysis was performed using two-sided Poisson rates ratio tests; 
from left to right, *P = 0.001, 0.35 (not significant (NS)), *P < 10−15, *P < 10−15.
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and 72 °C, each for 3 hours (h) and 6 h. While heat did not affect dsDNA 
mutation burdens, HiDEF-seq measured a significant increase in ssDNA 
calls (29-fold for 72 °C, 6 h treatment), specifically C>T calls (97% of 
calls), with increasing temperature and time (Fig. 4b and Supplemen-
tary Tables 2 and 3). This observation led us to profile all of the samples 
in this study except four (neurons of individual 5344 and 3 tumour sam-
ples) at least once with a room temperature DNA extraction (Methods 
and Supplementary Table 1). Notably, HiDEF-seq library preparation 
temperatures do not exceed 37 °C (Methods).

Across all of the healthy tissues and cell lines that we profiled, only 
sperm had a similarly high percentage of ssDNA calls that were C>T 
(average, 94%; Extended Data Fig. 9a). Sperm also had a higher ssDNA 
C>T burden than the other sample types (average, 1.4 × 10−7 C>T calls 
per base; Extended Data Fig. 9a). This suggests that these are also cyto-
sine deamination events and that sperm DNA either undergoes more 
in vivo cytosine deamination than DNA of other tissues, or that it incurs 
this damage ex vivo before sperm purification from semen, during 
sperm purification or freezing, and/or during DNA extraction. To dis-
tinguish between these possibilities, we profiled non-sperm samples 
with the same processes used to freeze sperm and extract DNA from 
sperm, and we profiled additional sperm samples purified using filter 
chips that mimic physiological separation of motile sperm (Methods). 
The former did not produce an increase in ssDNA C>T burden, and the 
latter measured similar C>T burdens to the previous sperm samples 
that were purified by standard density gradient centrifugation (Sup-
plementary Table 2 and Supplementary Note 5). These results suggest 
that sperm incur an elevated cytosine deamination burden either in vivo 
or ex vivo during the time (<1 h) that semen liquefies in the laboratory 
before sperm purification. In both cases, the elevated cytosine deami-
nation burden would likely be present in sperm fertilizing the egg, 
and the egg’s DNA repair machinery would then repair the damage41. 
Moreover, sperm ssDNA C>T calls did not exhibit transcription level 
or transcription strand biases (Supplementary Note 6).

Notably, all sperm and heat-treated blood DNA samples exhibited 
similar ssDNA C>T spectra, and the projection of these ssDNA spectra to 
dsDNA spectra again closely matched COSMIC dsDNA signature SBS30 
(average cosine similarities of 0.92 and 0.95 for sperm and 72 °C heat 
samples, respectively) (Fig. 4c and Extended Data Fig. 9b). Using all 
of the above sperm and heat-damage samples, we next extracted this 
ssDNA signature, which we named SBS30ss* (cosine similarity = 0.94 
to SBS30) (Fig. 4d). COSMIC signature SBS30 is associated with NTHL1 
and UNG biallelic loss-of-function mutations18,39 and with formalin fixa-
tion42. NTHL1 and UNG encode DNA glycosylases that initiate base exci-
sion repair of oxidized pyrimidines, including uracil-species resulting 
from cytosine oxidation40. Our finding that in vitro heating of purified 
DNA leads to a ssDNA damage signature, SBS30ss*, that matches the 
in vivo dsDNA SBS30 signature indicates that the SBS30ss* process is 
active in vivo, and that its pattern reflects the nucleotide context bias 
of the primary biochemical process of cytosine deamination, probably 
through an oxidized intermediate.

To further characterize the ssDNA C>T calls in heat-treated DNA and 
sperm, we took advantage of the single-molecule sequencer’s polymer-
ase kinetic data that record the duration of each nucleotide incorpora-
tion (pulse width (PW)) and the time between nucleotide incorporations 
(interpulse duration (IPD)) (Fig. 4e). PW and IPD encode unique kinetic 
signatures for different canonical and damaged bases43. ssDNA C>T 
calls in heat-treated DNA and sperm exhibited a distinct PW and IPD 
kinetic signature compared to dsDNA C>T mutations (for the muta-
tion strand containing thymine) (Fig. 4f, Methods and Extended Data 
Fig. 9c,d,g). These results provide further evidence that the ssDNA C>T 
calls are uracil-species arising from cytosine deamination damage and 
exclude the possibility that they are cytosine to thymine changes. We 
further validated that nearly all ssDNA C>T calls in heat-treated DNA and 
sperm are uracil-species by incubating three of these HiDEF-seq librar-
ies with uracil DNA glycosylase and endonuclease VIII. This eliminated 

the SBS30ss* pattern and nearly all ssDNA C>T calls (Supplementary 
Note 7 and Supplementary Tables 2 and 3).

We also evaluated heating of DNA in five different buffers and in 
water. Heating in water or Tris buffer without additional salt increased 
cytosine damage 66-fold relative to heating in higher-salt buffers, with 
slight differences in ssDNA C>T patterns (Extended Data Fig. 9e,f and 
Supplementary Table 2). As low salt decreases DNA duplex stability at 
elevated temperatures, these results suggest that the in vivo mechanism 
of SBS30ss*/SBS30 is cytosine deamination while DNA is transiently 
single-stranded.

Patterns of APOBEC3A-induced damage
HiDEF-seq’s detection of cytosine deamination damage with single- 
molecule fidelity motivated us to define a ssDNA damage signature 
for APOBEC3A that was recently distinguished as the key contribu-
tor to cytosine deamination caused by APOBEC3 family proteins44. 
We expressed human APOBEC3A in primary human fibroblasts and 
extracted a ssDNA signature, which we named SBS2ss*, with strong 
similarity to APOBEC3A’s associated COSMIC dsDNA signature SBS2 
(cosine similarity = 0.92) (Extended Data Fig. 10a–f). Notably, SBS2ss* 
contained additional low-level peaks of ssDNA C>T calls outside the 
TCN contexts characteristic of SBS2 (Extended Data Fig. 10f and Sup-
plementary Note 8). Moreover, the absence of any appreciable ssDNA 
C>A or C>G calls (Extended Data Fig. 10e,f) provides further strong 
evidence that the COSMIC SBS13 signature associated with APOBEC3A 
arises by base excision followed by error-prone translesion synthesis 
across the resulting abasic sites44 (Supplementary Note 8).

Profiling the mitochondrial genome
Previous studies measured an approximately 20–40-fold higher 
dsDNA mutation rate with age in the mitochondrial genome than in 
the nuclear genome15. However, the mechanism by which the mitochon-
drial genome mutates remains unclear45–48. While it was long assumed 
to be primarily due to oxidative damage47, recent studies instead sup-
port a mechanism linked to replication45–49. Specifically, A>G and C>T 
dsDNA mutations are highly enriched on the mitochondrial heavy 
(G+T-rich) strand, with a frequency that decreases with distance from 
the heavy strand origin of replication in the direction of heavy strand 
synthesis45,46,48,49. Several potentially overlapping hypotheses have 
been proposed for these findings: (1) strand-displacement replication  
leaves the heavy strand exposed longer as ssDNA, making it vulner-
able to deamination of adenine and cytosine that are then mispaired 
during replication with cytosine and adenine, respectively45,46,48;  
(2) strand asymmetries in polymerase misincorporation of canonical 
nucleotides46,47; and (3) strand asymmetries in DNA repair46. Impor-
tantly, assuming that DNA repair is not substantially more efficient in 
mitochondria than in nuclei50 and that most mutagenic mitochondrial 
ssDNA lesions can be detected by HiDEF-seq, then possibilities (2) and 
(3) should exhibit significantly higher HiDEF-seq ssDNA burdens in the 
mitochondrial genome than in the nuclear genome—since HiDEF-seq 
detects an increased ssDNA burden in CMMRD and POLE PPAP sam-
ples that have even lower dsDNA mutation rates than mitochondria 
(8.1-fold and 5.4-fold lower, respectively) (Fig. 5a and Extended Data 
Fig. 7d). However, possibility (1) would not yield a substantial differ-
ence in HiDEF-seq ssDNA burdens between the mitochondrial and 
nuclear genomes because HiDEF-seq would not capture denatured 
mitochondrial ssDNA in which the ssDNA damage events occur, and 
these ssDNA damage events would be rapidly transformed into dsDNA 
changes by replication. We investigated HiDEF-seq’s mitochondrial 
dsDNA and ssDNA calls to assess these hypotheses.

We focused on liver and kidney samples, which yield more mitochon-
drial DNA (average 1% of sequenced molecules) than other tissues, 
and we also purified mitochondria from five liver samples to further 



Nature | Vol 630 | 20 June 2024 | 759

increase mitochondrial DNA yield (average of 13% of molecules; Sup-
plementary Table 1). Mitochondrial dsDNA mutation rates measured 
by HiDEF-seq were 38.9- and 60.1-folder higher in liver and kidney, 
respectively, than the dsDNA mutation rates of the nuclear genomes 
of these tissues (Fig. 5a and Extended Data Fig. 11a). Combining liver 
and kidney samples, the difference was 45.4-fold (Fig. 5a). HiDEF-seq 
also detected the expected highly asymmetric pattern of A>G and 
C>T dsDNA mutations on the heavy strand, and the heavy strand’s 
A>G mutation spectrum had strong similarity to SBS30ss* and SBS30 
(both cosine similarities = 0.91) (Fig. 5c, Extended Data Fig. 11b and 
Supplementary Note 9).

Notably, despite the mitochondrial genome’s significantly higher 
dsDNA mutation rate, its ssDNA call burden in liver and kidney was only 
1.5-fold higher (95% confidence interval: 1.1–2.1) than the ssDNA call 
burden of the nuclear genome (Fig. 5b). While the number of mitochon-
drial ssDNA calls was low, these were concentrated in sequence contexts 
consistent with the dsDNA mutation spectrum (Fig. 5d, Extended Data 
Fig. 11c and Supplementary Note 9). Together, these data strengthen 
the evidence that the mitochondrial genome mutates primarily during 
replication, possibly through DNA damage on the heavy strand while it 
is single-stranded and, to a lesser extent, through cytosine deamination 
on the light strand (Supplementary Note 9).

Discussion
Profiling dsDNA mutations provides information on past mutational 
events, while profiling ssDNA mismatches and damage provides 
a real-time view of DNA lesions that reflects the current equilib-
rium between DNA damage, repair, and replication. Once ssDNA 
mismatches and damage transform into dsDNA mutations, infor-
mation is lost about the originating lesions. This gap in studying 
mutagenesis motivated us to develop HiDEF-seq—a single-molecule 
sequencing approach that achieves single-molecule fidelity. Our 
approach opens new avenues for studying DNA damage and mutation  
processes.

Mutational signatures have transformed the study of cancer and 
mosaic mutations4, but current signatures reflect only dsDNA muta-
tions. Here we have begun to define ssDNA signatures, specifically: 
SBS10ss, SBS14ss, SBS30ss* and SBS2ss* (Supplementary Table 7). 
SBS10ss and SBS14ss arise from misincorporation of canonical (that is, 
non-damaged) nucleotides during replication. ssDNA mismatches of 
canonical nucleotides probably also occur outside the setting of repli-
cation. For example, signature SBS5 is ubiquitous in all cells, including 
post-mitotic neurons8,51, and a recent study indicates that SBS5 may 
be caused by translesion polymerases44. This implies a mechanism of 
canonical nucleotide misincorporation that may become detectable 
by HiDEF-seq with higher-throughput instruments. We anticipate that 
HiDEF-seq will spur efforts to create a comprehensive catalogue of 
ssDNA signatures that complements the existing catalogue of dsDNA 
signatures. It will then be important to relate specific ssDNA and 
dsDNA signatures to each other, as these relationships will encode 
information about DNA damage, repair, and replication dynamics. 
Furthermore, as we have shown here, HiDEF-seq may be used to system-
atically assess potential damage caused by laboratory tissue and DNA  
processing.

The prevailing view that single-molecule sequencers have relatively 
high cost may have deterred their use in studying mosaic mutations 
and rare events, with the exception of in vitro polymerase and bacterial 
mutagenesis studies52,53. Since HiDEF-seq captures data from both DNA 
strands more efficiently than short-read duplex sequencing, it is only 
around 4.6-fold more expensive for dsDNA mosaic mutation detec-
tion than short-read duplex sequencing, and new sequencing instru-
ments will reduce this to an approximately 2.8-fold difference (and 
about 1.6-fold for large-fragment HiDEF-seq) (Supplementary Note 10). 
One limitation of HiDEF-seq is that it does not achieve single-molecule 
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type’ interaction term (an estimate of the difference in dsDNA mutation rate 
depending on whether it is the nuclear or mitochondrial genome). b, ssDNA call 
burdens in the nuclear versus mitochondrial genomes after combining the calls 
of liver and kidney samples shown in Extended Data Fig. 11a, excluding from  
the nuclear genome burden the liver samples from which mitochondria were 
enriched as, due to low DNA inputs, these samples were profiled with HiDEF-seq 
with A-tailing, which induces ssDNA T>A artefacts in the nuclear genome of 
post-mortem liver. P value was calculated using a two-sided Poisson rates  
ratio test. c, dsDNA mutation spectrum, corrected for trinucleotide context 
opportunities, of the liver and kidney samples shown in Extended Data Fig. 11a 
for the mitochondrial genome heavy strand, separated by pyrimidine (top) and 
purine (bottom) contexts. d, Spectrum of mitochondrial ssDNA calls combined 
from the liver and kidney samples shown in Extended Data Fig. 11a plus all bulk 
(that is, non-mitochondria enriched) liver and kidney samples profiled by HiDEF- 
seq with A-tailing, as the ssDNA T>A artefact that A-tailing can incur in these 
post-mortem tissues (Supplementary Note 1) is orthogonal to the contexts of 
mitochondrial mutagenesis. Spectra are corrected for trinucleotide context 
opportunities, separately for each strand. Excluding bulk samples profiled by 
HiDEF-seq with A-tailing yields a similar spectrum (Extended Data Fig. 11c).  
a, Error bars show the 95% confidence intervals from regressions. b, Bars and 
error bars show point estimates and their Poisson 95% confidence intervals.
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fidelity for insertions and deletions (indels) due to high sequencing 
error rates for these events in single-molecule sequencing12. This may 
become feasible with improved sequencing fidelity and indel-tuned 
consensus sequence calling12. Moreover, HiDEF-seq does not currently 
detect types of ssDNA damage that do not affect base pairing or that 
cannot be replicated by the sequencing polymerase. Since diverse types 
of ssDNA damage alter sequencing polymerase kinetics43, other types 
of damage may be feasible to detect in the future with single-molecule  
fidelity.

The high mutation rates of CMMRD and PPAP syndromes put their 
abnormal ssDNA call burdens and patterns within range of currently 
feasible single-molecule sequencing depth. However, we did not 
detect altered ssDNA burdens or patterns in cancer predisposition 
syndromes involving nucleotide excision repair or base repair, probably 
due to current limitations of sequencing depth and/or their mutational 
mechanisms involving types of ssDNA damage that we do not currently 
detect. We anticipate that future higher-throughput single-molecule 
sequencing combined with kinetics analyses will reveal additional 
ssDNA signatures in other cancer predisposition syndromes and in 
individuals with normal mutation rates.

Diverse methods profile DNA damage by enzymatic altera-
tion at damage sites or by affinity enrichment, but their lack of 
single-molecule fidelity yields low-resolution damage patterns10. 
HiDEF-seq’s single-molecule fidelity for cytosine deamination dam-
age revealed SBS30ss*. In healthy tissues, we detect SBS30ss* but not 
an SBS1ss* signature corresponding to SBS1, suggesting that SBS30ss* 
in healthy tissues reflects primarily ex vivo cytosine deamination 
that obscures in vivo SBS1ss* (Supplementary Note 11). However, in 
sperm, the higher burden of SBS30ss* may reflect in vivo cytosine 
deamination that accumulates in the absence of effective DNA repair 
and is later repaired after fertilization41. Nevertheless, when SBS1 is 
elevated, HiDEF-seq can detect its ssDNA precursors (Supplementary  
Note 4).

HiDEF-seq may also find utility in experimental systems to dissect the 
kinetics of the DNA damage, repair, and replication equilibrium—for 
example, combined with in vitro genetic and other manipulations, with 
synchronization of the cell cycle, and in reconstituted enzyme systems. 
Sequencing single-strand changes in DNA with single-molecule fidelity 
will greatly advance our understanding of the origins of mutations.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07532-8.

1. Mustjoki, S. & Young, N. S. Somatic mutations in “benign” disease. N. Engl. J. Med. 384, 
2039–2052 (2021).

2. Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation and genome mosaicism 
in aging. Cell 182, 12–23 (2020).

3. Seplyarskiy, V. B. & Sunyaev, S. The origin of human mutation in light of genomic data. 
Nat. Rev. Genet. 22, 672–686 (2021).

4. Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: 
emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 
(2021).

5. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and 
somatic mutation in the human brain. Cell 151, 483–496 (2012).

6. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during 
life. Nature 538, 260–264 (2016).

7. Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. 
Nature 574, 532–537 (2019).

8. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 
405–410 (2021).

9. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. 
Proc. Natl Acad. Sci. USA 109, 14508 (2012).

10. Sloan, D. B., Broz, A. K., Sharbrough, J. & Wu, Z. Detecting rare mutations and DNA 
damage with sequencing-based methods. Trends Biotechnol. 36, 729–740 (2018).

11. Wenger, A. M. et al. Accurate circular consensus long-read sequencing improves variant 
detection and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162 (2019).

12. Baid, G. et al. DeepConsensus improves the accuracy of sequences with a gap-aware 
sequence transformer. Nat. Biotechnol. 41, 232–238 (2022).

13. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 
597, 381–386 (2021).

14. Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a 
sequence-level genetic map. Science 363, eaau1043 (2019).

15. Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human 
tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 
(2016).

16. Xing, D., Tan, L., Chang, C.-H., Li, H. & Xie, X. S. Accurate SNV detection in single cells by 
transposon-based whole-genome amplification of complementary strands. Proc. Natl 
Acad. Sci. USA 118, e2013106118 (2021).

17. Robinson, P. S. et al. Increased somatic mutation burdens in normal human cells due to 
defective DNA polymerases. Nat. Genet. 53, 1434–1442 (2021).

18. Zou, X. et al. A systematic CRISPR screen defines mutational mechanisms underpinning 
signatures caused by replication errors and endogenous DNA damage. Nat. Cancer 2, 
643–657 (2021).

19. Sanders, M. A. et al. Life without mismatch repair. Preprint at bioRxiv https://doi.org/ 
10.1101/2021.04.14.437578 (2021).

20. Yurchenko, A. A. et al. XPC deficiency increases risk of hematologic malignancies 
through mutator phenotype and characteristic mutational signature. Nat. Commun. 11, 
5834 (2020).

21. Robinson, P. S. et al. Inherited MUTYH mutations cause elevated somatic mutation rates 
and distinctive mutational signatures in normal human cells. Nat. Commun. 13, 3949 
(2022).

22. Lujan, S. A., Williams, J. S. & Kunkel, T. A. DNA polymerases divide the labor of genome 
replication. Trends Cell Biol. 26, 640–654 (2016).

23. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 
578, 94–101 (2020).

24. Lujan, S. A. et al. Heterogeneous polymerase fidelity and mismatch repair bias genome 
variation and composition. Genome Res. 24, 1751–1764 (2014).

25. Shinbrot, E. et al. Exonuclease mutations in DNA polymerase epsilon reveal replication 
strand specific mutation patterns and human origins of replication. Genome Res. 24, 
1740–1750 (2014).

26. Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Böckler, B. Mutational signature 
distribution varies with DNA replication timing and strand asymmetry. Genome Biol. 19, 
129 (2018).

27. Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal 
mechanisms of DNA damage and repair. Cell 164, 538–549 (2016).

28. Bulock, C. R., Xing, X. & Shcherbakova, P. V. Mismatch repair and DNA polymerase δ 
proofreading prevent catastrophic accumulation of leading strand errors in cells 
expressing a cancer-associated DNA polymerase ϵ variant. Nucleic Acids Res. 48,  
9124–9134 (2020).

29. Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair 
genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 
(2015).

30. Hodel, K. P. et al. Explosive mutation accumulation triggered by heterozygous human Pol 
ε proofreading-deficiency is driven by suppression of mismatch repair. eLife 7, e32692 
(2018).

31. Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent loss of 
polymerase proofreading and mismatch repair. Nat. Commun. 9, 1746 (2018).

32. Hodel, K. P. et al. POLE mutation spectra are shaped by the mutant allele identity, its 
abundance, and mismatch repair status. Mol. Cell 78, 1166–1177 (2020).

33. Kunkel, T. A. & Erie, D. A. Eukaryotic mismatch repair in relation to DNA replication. Ann. 
Rev. Genet. 49, 291–313 (2015).

34. Shinmura, K. et al. Defective repair capacity of variant proteins of the DNA glycosylase 
NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic. Biol. Med. 131, 
264–273 (2019).

35. Dizdaroglu, M. Oxidatively induced DNA damage and its repair in cancer. Mutat. Res. Rev. 
Mutat. Res. 763, 212–245 (2015).

36. Madugundu, G. S., Cadet, J. & Wagner, J. R. Hydroxyl-radical-induced oxidation of 
5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 42, 7450–7460  
(2014).

37. Chen, G., Mosier, S., Gocke, C. D., Lin, M.-T. & Eshleman, J. R. Cytosine deamination is a 
major cause of baseline noise in next-generation sequencing. Mol. Diagn. Ther. 18, 587–593 
(2014).

38. Tretyakova, N., Villalta, P. W. & Kotapati, S. Mass spectrometry of structurally modified 
DNA. Chem. Rev. 113, 2395–2436 (2013).

39. Grolleman, J. E. et al. Mutational signature analysis reveals NTHL1 deficiency to cause a 
multi-tumor phenotype. Cancer Cell 35, 256–266 (2019).

40. Krokan, H. E. & Bjørås, M. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, 
a012583 (2013).

41. Stringer, J. M., Winship, A., Liew, S. H. & Hutt, K. The capacity of oocytes for DNA repair. 
Cell. Mol. Life Sci. 75, 2777–2792 (2018).

42. Guo, Q. et al. The mutational signatures of formalin fixation on the human genome. Nat. 
Commun. 13, 4487 (2022).

43. Clark, T. A., Spittle, K. E., Turner, S. W. & Korlach, J. Direct detection and sequencing of 
damaged DNA bases. Genome Integr. 2, 10 (2011).

44. Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 
607, 799–807 (2022).

45. Sanchez-Contreras, M. et al. A replication-linked mutational gradient drives somatic 
mutation accumulation and influences germline polymorphisms and genome 
composition in mitochondrial DNA. Nucleic Acids Res. 49, 11103–11118 (2021).

46. Ju, Y. S. et al. Origins and functional consequences of somatic mitochondrial DNA 
mutations in human cancer. eLife 3, e02935 (2014).

https://doi.org/10.1038/s41586-024-07532-8
https://doi.org/10.1101/2021.04.14.437578
https://doi.org/10.1101/2021.04.14.437578


Nature | Vol 630 | 20 June 2024 | 761

47. Kauppila, J. H. K. & Stewart, J. B. Mitochondrial DNA: radically free of free-radical driven 
mutations. Biochim. Biophys. Acta 1847, 1354–1361 (2015).

48. Kennedy, S. R., Salk, J. J., Schmitt, M. W. & Loeb, L. A. Ultra-sensitive sequencing reveals 
an age-related increase in somatic mitochondrial mutations that are inconsistent with 
oxidative damage. PLoS Genet. 9, e1003794 (2013).

49. Yuan, Y. et al. Comprehensive molecular characterization of mitochondrial genomes in 
human cancers. Nat. Genet. 52, 342–352 (2020).

50. Fontana, G. A. & Gahlon, H. L. Mechanisms of replication and repair in mitochondrial DNA 
deletion formation. Nucleic Acids Res. 48, 11244–11258 (2020).

51. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased 
mutations in single human neurons. Science 359, 555–559 (2018).

52. Matsuda, T., Matsuda, S. & Yamada, M. Mutation assay using single-molecule real-time 
(SMRTTM) sequencing technology. Genes Environ. 37, 15 (2015).

53. Hestand, M. S., Houdt, J. V., Cristofoli, F. & Vermeesch, J. R. Polymerase specific error 
rates and profiles identified by single molecule sequencing. Mutat. Res. 784–785, 39–45 
(2016).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this 
article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2024



Article
Methods

Sample sources
Post-mortem tissues obtained by the NIH NeuroBioBank (University 
of Maryland site) were frozen in isopentane-liquid nitrogen baths and 
stored at −80 °C until use. Post-mortem tissues obtained by the Interna-
tional Replication Repair Deficiency Consortium (IRRDC) biobank were 
frozen and stored at −80 °C until use. Blood was obtained from indi-
viduals enrolled in human subjects research of the New York University 
Grossman School of Medicine, the IRRDC, the University of Pittsburgh 
and the Cryos International Sperm Bank. All blood samples were col-
lected in EDTA tubes and frozen immediately after collection until use. 
Tumour samples were obtained from the IRRDC and were frozen and 
stored at −80 °C until use. Semen samples (processing details described 
in the ‘Sperm purification’ section) were obtained at Cryos International 
Sperm Bank from individuals enrolled in human subjects research 
approved by the New York University Grossman School of Medicine 
Institutional Review Board, except for participants D1 and D2, who 
were enrolled in human subjects research conducted by Cryos Inter-
national Sperm Bank. Lymphoblastoid cell lines were obtained from 
Coriell Institute and the IRRDC. Primary fibroblasts were obtained from 
Coriell Institute and the IRRDC. All of the samples were collected under 
human subjects research protocols approved by either the New York 
University Grossman School of Medicine Institutional Review Board, 
the Hospital for Sick Children (SickKids) Research Ethics Board as part 
of the IRRDC, the Cryos International Sperm Bank scientific advisory 
committee or the University of Pittsburgh Institutional Review Board.

The source, sex, age at collection, and post-mortem interval of each 
sample are provided in Supplementary Table 1.

Sperm purification
After collection at the Cryos International Sperm Bank, semen under-
went liquefaction at room temperature for 30 to 60 min. Semen then 
immediately underwent initial purification for sperm using density gra-
dient centrifugation followed by a wash with HEPES-buffered medium54. 
For semen from individuals D1 and D2, sperm were purified from half of 
each semen sample using this method, and sperm were purified from 
the other half using the ZyMot Multi (850 µl) Sperm Separation Device 
(ZyMot) according to the manufacturer’s instructions. After addition 
of cryopreservation media, sperm were stored in liquid nitrogen until 
further use.

Cryopreserved sperm that previously underwent initial purification 
by density gradient centrifugation were further purified in the labora-
tory with a second density gradient centrifugation and two additional 
washes, as follows. First, the following reagents were equilibrated to 
room temperature: ORIGIO gradient 40/80 buffer (Cooper Surgical, 
84022010), Origio sperm wash buffer (Cooper Surgical, 84050060) 
and Quinn’s Advantage sperm freezing medium (Cooper Surgical, 
ART-8022). In a 15 ml tube, 1 ml of Origio 80 buffer was placed at the 
bottom, and 1 ml of Origio 40 buffer was gently layered on top. Sperm 
were thawed at room temperature for 15 min, gently mixed with a 
pipette, and carefully layered on top of the Origio 40 buffer. The tube 
was then centrifuged in a swinging-bucket centrifuge at 400g for 20 min 
at room temperature with low acceleration and deceleration speeds. 
The supernatant was aspirated, leaving 500 µl of sperm/buffer at the 
bottom. The sperm was transferred to a new 15 ml tube and diluted 
with 5 ml sperm wash buffer. The tube was mixed by inverting ten times 
and centrifuged in a swinging-bucket centrifuge at 300g for 10 min 
at room temperature with maximum acceleration and deceleration. 
The supernatant was removed, leaving about 350 µl of sperm/buffer 
at the bottom. The sperm was then washed again in the same way with 
5 ml of sperm wash buffer, and the supernatant was removed, leaving 
about 250 µl of sperm/buffer at the bottom of the tube. After pipette 
mixing, an aliquot of this sperm was transferred to a 2 ml DNA LoBind 
microtube (Eppendorf) for immediate DNA extraction and general 

evaluation using a haemocytometer. The remaining sperm was diluted 
dropwise with a 1:1 volumetric ratio of sperm freezing medium, incu-
bated at room temperature for 3 min, frozen in a Mr. Frosty freezing 
container (Thermo Fisher Scientific) in a −80 °C freezer for 24 h and 
then transferred to a liquid nitrogen freezer.

Cerebral cortex neuronal nuclei purification
Cerebral cortex neuronal nuclei were isolated as previously described5 
from post-mortem frontal cortex (Brodmann area 9, left hemisphere) 
of individuals who did not have any known neurological or psychiatric 
disease. Specifically, approximately 1 g of frozen tissue from each indi-
vidual was cut into 5 mm3 pieces and added to 9 ml of chilled lysis buffer 
(0.32 M sucrose, 10 mM Tris HCl pH 8, 5 mM CaCl2, 3 mM magnesium 
acetate, 0.1 mM EDTA, 1 mM DTT, 0.1% Triton X-100) in a large dounce 
homogenizer (Sigma-Aldrich, D9938). While on ice, the tissue was 
dounced 20 times each with pestle size A and then B. The homogenate 
was layered on a 7.4 ml sucrose cushion (1.8 M sucrose, 10 mM Tris HCl 
pH 8, 3 mM magnesium acetate, 1 mM DTT) in an ultracentrifuge tube 
on ice. The tubes were centrifuged (Thermo Fisher Scientific, Sorvall 
LYNX 6000) at 10,000 rpm for 1 h at 4 °C. The resulting supernatant 
was removed, and 500 µl of nuclei resuspension buffer (3 mM MgCl2 
in 1× phosphate-buffered saline) was added on top of the pellet and 
then incubated on ice for 10 min. The pellet was then gently resus-
pended. Antibody staining buffer was prepared by adding 1.2 µg of 
NeuN-Alexa-647 (Abcam, ab190565) to 400 µl of antibody staining 
buffer (3% BSA in nuclei resuspension buffer) and inverted gently to mix. 
Then, 400 µl of antibody staining buffer was added to 1 ml of nuclei and 
the sample was rotated at 4 °C for 30 min. NeuN-positive nuclei were 
gated as shown in Supplementary Note 12. NeuN-positive nuclei were 
collected in 30 µl of nuclei buffer in 1.5 ml LoBind tubes (Eppendorf) 
by fluorescence-activated nuclei sorting on a SONY LE-SH800 sorter. 
After sorting, a 1:1 volumetric ratio of 80% glycerol was added to sorted 
nuclei for a final concentration of 40% glycerol to stabilize nuclei dur-
ing centrifugation. Nuclei were centrifuged at 4 °C, 500g for 10 min. 
The supernatant was removed and nuclei pellets were immediately 
frozen at −80 °C.

Extraction and isolation of mitochondria
Mitochondria were extracted and isolated from 300–500 mg of tissue 
using the Mitochondria Extraction Kit (Miltenyi Biotec) and Mitochon-
dria Isolation Kit (Miltenyi Biotec), according to the manufacturer’s 
Extraction Kit protocol, with the following modifications: (1) protease 
inhibition buffer was prepared with 100× HALT protease inhibitor cock-
tail (Thermo Fisher Scientific); (2) minced tissue was resuspended 
with a larger 2 × 2.5 ml volume of protease inhibitor buffer instead of 
2 × 1 ml; (3) after homogenization, the homogenate was passed through 
a 30 µm SmartStrainer (Miltenyi Biotec); (4) the SmartStrainer was 
washed with 2 × 2.5 ml of solution 3 instead of 2 × 1 ml; (5) before adding 
TOM22 antibody, the homogenate was diluted with Separation Buffer 
to a volume of 25 ml instead of 10 ml; and (6) 125 µl of TOM22 antibody 
was used per sample instead of 50 µl. Final mitochondria pellets were 
frozen at −20 °C for subsequent DNA extraction.

Cell culture for direct profiling
Lymphoblastoid cell lines were cultured at 37 °C, 5% CO2, and ambient 
oxygen in T25 flasks with RPMI 1640 medium (Thermo Fisher Scientific, 
61870036) supplemented with 15% fetal bovine serum and penicillin– 
streptomycin. Cells were passaged to new medium approximately 
every 2–3 days.

Fibroblasts were cultured at 37 °C, 5% CO2 and ambient oxygen in T25 
flasks with DMEM medium (Thermo Fisher Scientific, 10569010) sup-
plemented with 10% fetal bovine serum and penicillin–streptomycin. 
Cells were passaged to new medium every 3–5 days before reaching 
full confluency. Cells were collected for DNA extraction at 80–90% 
confluency using trypsin-EDTA.



For the experiment testing the potential effect of sperm freezing 
medium on cytosine deamination, we resuspended the collected pel-
let of fibroblasts in Origio sperm wash buffer, mixed with a 1:1 volume 
ratio of Freezing Medium TYB with Glycerol & Gentamicin (Irvine Sci-
entific), and froze the cells in a Mr. Frosty container (Thermo Fisher 
Scientific) at −80 °C followed by transfer to a liquid nitrogen freezer. 
After thawing, cells were either washed once with PBS followed by Pure-
gene DNA extraction or they were processed using the same method 
of DNA extraction that was used for sperm (the details of each method 
are described in the ‘DNA extraction’ section).

Lentivirus experiments
Lentivirus plasmid design and synthesis. The lentivirus transfer 
plasmid design and sequences are listed in Supplementary Table 8. 
APOBEC3A constructs included a human gamma globin intron 2 seq-
uence to prevent expression of the mutagenic protein during bacterial 
cloning55. Gene inserts were synthesized and cloned by GenScript into 
a pLVX-TetOne lentiviral vector (Takara). The pLVX-TetOne vector was 
used to enable temporal control of gene expression using doxycycline. 
This prevents expression of encoded mutagenic proteins during lenti-
viral packaging, which could mutate the lentiviral transfer plasmid and 
lentiviral RNA to create non-functional lentiviruses. GenScript verified 
gene inserts by sequencing and prepared quality-controlled quantities 
of transfer plasmid sufficient for lentiviral packaging.

Lentivirus packaging. Lenti-X 293T cells (Takara) were cultured at 
37 °C, 5% CO2 and ambient oxygen in T75 collagen-coated flasks (Zen-
Bio) with DMEM medium (Thermo Fisher Scientific, 11995065) supple-
mented with 10% tetracycline-free fetal bovine serum (Takara). Cells 
were transfected at about 80% confluency. The lentiviral packaging 
transfection mix was prepared by combining 0.8 ml DMEM (Thermo 
Fisher Scientific; 11995065), 20 µl pC-Pack2 second-generation lenti-
viral packaging plasmid mix (Cellecta, CPCP-K2A), lentiviral transfer 
plasmid (10 µg for eGFP plasmid; 12.5 µg for APOBEC3A plasmids), 
and 36 µl PureFection transfection reagent (System Biosciences). Note 
that a second-generation packaging system was necessary because 
fourth-generation packaging systems contain a Tet-Off gene that would 
cause the pLVX-TetOne gene insert to be expressed during packaging, 
and third-generation packaging systems do not contain the tat gene 
required for efficient packaging of the fourth-generation pLVX-TetOne 
transfer plasmid. Cells were transfected by adding this transfection 
mix to cells in fresh 10 ml of the above medium. The next day, an ad-
ditional 8 ml of the above medium was added to the cells. Then, 72 h 
after transfection, the cell medium was collected and centrifuged at 
500g for 10 min to pellet the cell debris. The ~18 ml supernatant was 
mixed with 6 ml of Lenti-X Concentrator (Takara), incubated for at least 
3 h at 4 °C and centrifuged at 1,500g for 45 min at 4 °C. The lentivirus 
pellet was resuspended in DMEM medium (Thermo Fisher Scientific, 
10569010) supplemented with 10% standard fetal bovine serum and 
penicillin–streptomycin. Aliquots of lentivirus were flash-frozen in 
liquid nitrogen and stored at −80 °C.

Lentiviral particles were quantified after thawing using Lenti-X 
GoStix Plus (Takara). The resulting GoStix values were multiplied by 
1.25 × 107 to obtain the lentiviral particle per ml concentration.

Lentivirus transduction. Fibroblasts were cultured at 37 °C, 5% CO2 
and ambient oxygen in T75 flasks with DMEM medium (Thermo Fisher 
Scientific, 10569010) supplemented with 10% fetal bovine serum and 
penicillin–streptomycin. Cells were transduced with lentivirus at 
about 60% confluency in 15 ml of the above medium supplemented 
with 8 µg ml−1 polybrene (Sigma-Aldrich, H9268). The amount of len-
tivirus added was calculated as follows: ([estimated 900,000 cells in a 
60% confluent T75 flask] × [250 infectious units per cell])/([previously 
measured concentration of lentiviral particles per ml]/[estimated 100 
viral particles per infectious unit]). The factor of 250 infectious units 

per cell was optimized to obtain > 80% GFP-positive cells using the eGFP 
lentivirus. Then, 16 h after transduction, the medium was replaced with 
a new 15 ml of the above medium (without polybrene) supplemented 
with 250 ng ml−1 doxycycline (Takara, 631311). After an additional 48 h, 
the medium was replaced with a new 15 ml of the above doxycycline 
medium. After an additional 24 h, cells were collected for DNA extrac-
tion using trypsin-EDTA.

DNA extraction
The DNA-extraction method used for each sample is listed in Supple-
mentary Table 1. Details of each DNA extraction method are provided 
below.

DNA extraction from sperm for HiDEF-seq. An aliquot of washed 
sperm (that is, after the washes that are performed after density gra-
dient centrifugation) was centrifuged at 300g for 5 min at room 
temperature. The supernatant was removed, leaving approximately 
50 µl of sperm/buffer at the bottom of the microtube. The tube was 
tapped gently five times to break up the sperm pellet before adding 
lysis buffer.

If starting with frozen sperm instead of an aliquot of washed sperm, 
the frozen sperm vial was rapidly thawed in a 37 °C water bath, gently 
mixed with a pipette, and an aliquot was transferred to a 2 ml DNA 
LoBind microtube for DNA extraction. The remaining sperm was 
frozen again. The DNA extraction aliquot was diluted with 600 µl 
of Origio sperm wash buffer, centrifuged at 300g for 5 min at room 
temperature, and the supernatant was removed to leave approxi-
mately 100 µl of sperm/buffer at the bottom. The sperm was diluted 
again with 600 µl of Origio sperm wash buffer, centrifuged at 300g 
for 5 min at room temperature, and the supernatant was removed to 
leave approximately 50 µl of sperm/buffer at the bottom. The tube 
was tapped gently five times to break up the sperm pellet before add-
ing lysis buffer.

Sperm DNA extraction was based on a previous study56, with some 
modifications, including optimizations we performed that showed that 
tris(2-carboxyethyl)phosphine (TCEP) can be reduced from 50 mM to 
2.5 mM in the lysis buffer. Specifically, sperm lysis buffer was prepared 
by combining (for each sample) 497.5 µl of Qiagen Buffer RLT (Qiagen) 
without β-mercaptoethanol and 2.5 µl of 0.5 M Bond-Breaker TCEP 
Solution (Thermo Fisher Scientific) for a lysis buffer with 2.5 mM TCEP 
final concentration. Then, 500 µl of sperm lysis buffer and 100 mg of 
0.2 mm stainless-steel beads (Next Advance, SSB02-RNA) were added 
without mixing to each sample. Homogenization was then performed 
using a TissueLyser II instrument (Qiagen) at 20 Hz for 4 min (samples 
profiled by HiDEF-seq without nick ligation: SPM-1004, SPM-1020; 
samples profiled by HiDEF-seq with nick ligation and A-tailing, and 
samples profiled by NanoSeq: SPM-1002, SPM-1004, SPM-1013, SPM-
1020; samples profiled by HiDEF-seq with nick ligation in large frag-
ments: SPM-1002, SPM-1020) or 30 s (samples profiled by HiDEF-seq 
with nick ligation and A-tailing: SPM-1060, D1, D2; sample profiled 
by HiDEF-seq with nick ligation without A-tailing: SPM-1013; sample 
profiled by NanoSeq: SPM-1060; and samples profiled by HiDEF-seq 
with nick ligation and with uracil DNA glycosylase/endonuclease VIII 
treatment: SPM-1002 and SPM-1004). DNA was then extracted from 
the lysate using the QIAamp DNA Mini Kit (Qiagen) with a modified 
protocol as follows. A 500 µl volume of buffer AL was added to each 
lysate and vortexed well. Then, 500 µl of 100% ethanol was added and 
vortexed well. The mixture was then applied to a QIAamp DNA Mini 
spin column and the remaining standard QIAamp protocol was fol-
lowed. DNA was eluted with 100 µl of 10 mM Tris pH 8. RNase treatment 
was then performed by adding 12 µl of 10× PBS pH 7.4 (Gibco), 2 µl of 
Monarch RNase A (New England Biolabs (NEB)) and 6 µl nuclease-free 
water (NFW). The reaction was incubated at room temperature for 
5 min and immediately purified using a 0.8× beads to sample volume 
ratio of SPRI beads (solid-phase reversible immobilization; made by 
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washing 1 ml Sera-Mag carboxylate-modified SpeedBead (Cytiva, 
65152105050250) and resuspending the beads in 50 ml of 18% PEG-
8000, 1.75 M NaCl, 10 mM Tris pH 8, 1 mM EDTA, 0.044% Tween-20). 
DNA was eluted from beads with 35 µl of 10 mM Tris/0.1 mM EDTA pH 8. 
For the experiments in which we processed previously extracted blood 
DNA and primary fibroblast DNA with the same process used for sperm 
DNA extraction, we inputted previously extracted DNA and followed 
the same process above beginning with addition of lysis buffer, with a 
homogenization time of either 30 s or 4 min with concordant results 
(Supplementary Table 2).

A somatic cell contamination assay was adapted from a previ-
ous study57 and performed on all extracted sperm DNA samples to 
further confirm sperm purity. This assay amplifies four loci from 
bisulfite-treated DNA: three loci that are methylated in sperm but not 
in somatic cells (PCR7, PCR11, PCR31) and 1 locus that is methylated in 
somatic cells but not in sperm (PCR12). After bisulfite treatment and 
PCR amplification of each locus, the PCR amplicon is cut by a restriction 
enzyme only if the original DNA was methylated. Thus, this assay can 
detect somatic cell contamination. In total, 350 ng of each extracted 
sperm DNA and 350 ng of control human NA12878 lymphoblastoid cell 
line genomic DNA (Coriell Institute) were bisulfite-converted using the 
Zymo EZ DNA Methylation Kit (Zymo Research). The loci were ampli-
fied by PCR using the following primer sets: PCR7 (GGGTTATATGA 
TAGTTTATAGGGTTATT and TCTATTACTACCACTTCCTAAATCAA), 
PCR11 (TGAGATGTTTGTTAGTTTATTATTTTGG and TCATCTTCTC 
CCACCAAATTTC), PCR12 (TAGAGGGTAGTTTTTAAGAGGG and 
ATTAACCAACCTCTTCCATATTCTT) and PCR31 (TTTTAGTTTTGG 
GAGGGGTTGTTT and CTACCAAAATTAAAAACCAACCCAC). The PCR 
reaction contained 1.5 µl of bisulfite-converted DNA, 10 µl of 2× Zymo-
Taq PCR Mix (Zymo Research), PCR primers, and NFW to a final volume 
of 20 µl. The PCR reactions were optimized to contain the following 
final concentrations of each forward and reverse primer: 0.6 µM for 
PCR7 primers, 0.6 µM for PCR11 primers, 0.3 µM for PCR12 primers, and 
0.45 µM for PCR31 primers. The PCR reactions were cycled as follows: 
95 °C for 10 min; 40 cycles of 94 °C for 30 s, X °C for 30 s and 72 °C for 
30 s; 72 °C for 7 min; and hold at 4 °C, where X (annealing temperature) 
was 49 °C for PCR7 and PCR11, 51 °C for PCR12 and 55 °C for PCR31. PCR 
reactions were purified by 2× volumetric ratio SPRI beads cleanup and 
eluted in 22 µl of 10 mM Tris pH 8. Restriction digests were performed 
by combining 5 µl of purified PCR product, restriction enzyme (10 
units of HpyCH4IV (NEB) for PCR7 and PCR31, and 20 units of TaqI-v2 
(NEB) for PCR11 and PCR12), 1 µl of 10× CutSmart buffer (NEB), and 
NFW for a total reaction volume of 10 µl. Restriction digestions were 
performed at 37 °C (HpyCH4IV) or 65 °C (TaqI-v2) for 60 min. Control 
reactions without restriction enzyme were performed for each sample/
locus combination. A total of 5 µl of each restriction digest reaction 
was combined with 1 µl 6× TriTrack DNA loading dye (Thermo Fisher 
Scientific) and run on a 2% agarose gel prestained with ethidium bro-
mide, followed by imaging of the gel.

DNA extraction from solid tissues for HiDEF-seq. Approximately 
50–300 mg of tissue was cut in a Petri dish on dry ice and minced with 
a scalpel, followed by one of the following DNA-extraction methods, 
as specified for each sample in Supplementary Table 1.
Nucleobond HMW, MagAttract HMW, QIAamp. In this method, DNA was 
extracted and purified with three serial kits to maximize DNA purity. 
DNA was extracted using the NucleoBond HMW DNA Kit (Takara) 
according to the manufacturer’s instructions with a 50 °C proteinase 
K incubation for 4.5 h. The eluted DNA was then further purified with 
the MagAttract HMW DNA Kit (Qiagen) according to the manufacturer’s 
whole-blood purification protocol, except with proteinase K/RNase 
A incubation occurring at 56 °C for 20 min. The eluted DNA was then 
further purified using the QIAamp DNA Mini Kit (Qiagen) by diluting 
the DNA to a final volume of 200 µl and final 1× PBS concentration, 
adding 20 µl of proteinase K (Qiagen) and continuing according to 

the manufacturer’s body fluids DNA purification protocol with a 56 °C 
proteinase K incubation for 10 min without RNase A treatment.
MagAttract HMW. We used the MagAttract HMW DNA Kit (Qiagen) 
according to the manufacturer’s protocol for tissue, with a 2 h protein-
ase K digestion at 56 °C. DNA was eluted with 10 mM Tris pH 8.
Puregene. Tissue was pulverized inside a microtube while in a liquid- 
nitrogen cooled mini mortar and pestle (Bel-Art). DNA was then 
extracted using the Puregene DNA Kit (Qiagen) according to the manu-
facturer’s protocol for tissues, except (1) the lysis step with proteinase 
K was performed at room temperature on a ThermoMixer C instru-
ment (Eppendorf) at 1,400 rpm for 1 h; (2) the RNase A treatment was 
performed at room temperature for 20 min; and (3) the final DNA  
pellet was resuspended in 10 mM Tris pH 8 at room temperature for 1 h.

DNA extraction from cerebral cortex neuronal nuclei for HiDEF-seq. 
DNA was extracted from nuclei pellets using two methods, as specified 
for each sample in Supplementary Table 1.

QIAamp: we used the QIAamp DNA Mini Kit (Qiagen) according to 
the manufacturer’s protocol, with lysis performed by adding 180 µl of 
buffer ATL and 20 µl of proteinase K to the nuclei pellet, followed by a 
56 °C incubation for 1 h, and including RNase A treatment.

MagAttract: we used the MagAttract HMW DNA Kit according to 
the manufacturer’s protocol for blood, after resuspending nuclei 
with 200 µl of 1× PBS, with a 30 min proteinase K digestion at room 
temperature.

DNA extraction from mitochondria for HiDEF-seq. DNA was extracted 
from mitochondria pellets using the Puregene DNA Kit (Qiagen) ac-
cording to the manufacturer’s protocol for tissues, except (1) the lysis 
step used 200 µl Cell Lysis Solution and 1.5 µl proteinase K and was 
performed at room temperature for 30 min; (2) the RNase A treatment 
was performed at room temperature for 20 min; and (3) the final DNA 
pellet was resuspended in 10 mM Tris pH 8 at room temperature without 
an extended incubation.

Note that, due to the relatively low yields of mitochondria DNA prepa-
rations, these samples were profiled with HiDEF-seq with A-tailing (see 
the ‘HiDEF-seq library preparation’ section).

DNA extraction from blood, lymphoblastoid cells, and fibroblasts 
for HiDEF-seq and germline sequencing. DNA from blood, lympho-
blastoid cells, and fibroblasts (the latter two after resuspending cell 
pellets in 1× PBS)—except for blood from individuals whose tumours 
were profiled, fibroblasts testing the effect of sperm freezing medium, 
and fibroblasts from lentivirus experiments—was extracted using the 
MagAttract HMW DNA Kit according to the manufacturer’s whole-blood 
purification protocol, with proteinase K incubation at room tempera-
ture for 30 min.

DNA from fibroblasts frozen in sperm-freezing medium and fibro-
blasts in lentivirus experiments was extracted using the Puregene DNA 
Kit according to the manufacturer’s protocol for cultured cells, except 
(1) the protocol volumes were scaled 2.8-fold; (2) the lysis step used 
840 µl cell lysis solution and 4.2 µl proteinase K and was performed 
at room temperature for 30 min; (3) the RNase A treatment was per-
formed at room temperature for 20 min; and (4) the final DNA pellet 
was resuspended in 10 mM Tris pH 8 at 4 °C for 1 h.

We also performed an experiment that excluded a measurable cyto-
sine deamination effect by possible leached iron from MagAttract 
magnetic beads (Extended Data Fig. 9e) by extracting an additional 
aliquot of DNA from the blood of individual 1901 using the Puregene 
DNA Kit according to the manufacturer’s protocol for ‘whole blood 
or bone marrow’, except (1) 200 µl blood was first diluted with 100 µl 
of 1× PBS; (2) the cell lysis step was performed at room temperature; 
(3) the RNase A treatment was performed at room temperature for 
20 min; and (4) the final DNA pellet was resuspended in 10 mM Tris 
pH 8 at 4 °C for 1 h.



DNA extraction from tumours and those individuals’ correspond-
ing blood for Illumina tumour and germline sequencing. DNA was 
extracted from tumours by first homogenizing the tumour using the 
Precellys 24 Tissue Homogenizer followed by the DNeasy Blood & Tissue 
Kit (Qiagen), according to the manufacturer’s protocol for animal tis-
sues with a 56 °C incubation for 10 min. For individuals whose tumours 
were profiled, DNA was extracted from blood of those individuals using 
the PAXgene Blood DNA Kit (Qiagen) according to the manufacturer’s 
protocol.

DNA extraction from saliva for Illumina germline sequencing. DNA 
was extracted using the QIAamp DNA Mini Kit according to the manu-
facturer’s ‘DNA purification from blood or body fluids’ protocol and 
including RNase A treatment.

DNA extraction from the liver and spleen for Illumina germline 
sequencing. DNA of all of the samples was extracted using the QIAamp 
DNA Mini Kit according to the manufacturer’s ‘DNA purification from 
tissues’ protocol with a 2 h proteinase K digestion at 56 °C and includ-
ing RNase A treatment, except for liver of individual 5309, from which 
DNA was extracted using the MagAttract HMW DNA Kit according to the 
manufacturer’s ‘Fresh or Frozen Tissue’ protocol with a 2 h proteinase 
K digestion at 56 °C.

DNA extraction from blood for Pacific Biosciences germline se-
quencing. DNA was extracted using the Chemagic DNA Blood 2k Kit 
(Perkin Elmer, CMG-1097) on the Chemagic 360 automated nucleic 
extraction instrument (Perkin Elmer) according to the manufacturer’s 
protocols for DNA isolation from whole blood.

DNA quantity and quality measurements and storage. The concen-
tration and quality of all DNA samples were measured using a NanoDrop 
instrument (Thermo Fisher Scientific), a Qubit 1× dsDNA HS Assay Kit 
(Thermo Fisher Scientific) and a Genomic DNA ScreenTape TapeStation 
Assay (Agilent). DNA was stored at −20 °C.

Illumina germline and tumour library preparation and 
sequencing
Illumina germline and tumour sequencing libraries were prepared 
using the TruSeq DNA PCR-Free Kit (Illumina) for all samples. At least 
110 Gb (~36× genome coverage) of 150 bp paired-end sequencing per 
sample was obtained using a NovaSeq 6000 instrument (Illumina) 
by Psomagen, except for tumour sequencing and those individuals’ 
corresponding germline sequencing, for which HiSeqX and NovaSeq 
6000 instruments were used at the Centre for Applied Genomics at 
the Hospital for Sick Children.

Pacific Biosciences germline library preparation and sequencing
A total of 15 µg of DNA was cleaned up with 1× AMPure PB beads (Pacific 
Biosciences) and sheared to a target size of 14 kb using the Megarup-
tor 3 instrument (Diagenode) using the following settings: speed, 36; 
volume, 300 µl; concentration, 33 ng µl−1. Library preparation was 
performed using the SMRTbell Express Template Prep Kit 2.0 (Pacific 
Biosciences) according to the manufacturer’s instructions. Library 
fragments longer than 10 kb were selected using a PippinHT instrument 
(Sage Science). Size-selected libraries were sequenced on the Pacific 
Biosciences Sequel IIe system using the Sequel II Binding Kit 2.0 and 
Sequel II Sequencing Kit 2.0 (Pacific Biosciences), Sequencing primer 
v4 (Pacific Biosciences), 1 h binding time, 2 h pre-extension, adaptive 
loading, 2 h immobilization time, and 30 h movies.

Heat damage of DNA
DNA was heated in a volume of 62 µl at the temperature, for the time, 
and in the buffer listed for each sample in Supplementary Table 1, 
followed by incubation on ice up to a total of 6 h if the heating time 

was less than 6 h. Untreated samples in these experiments were incu-
bated on ice for 6 h. The DNA was then input into HiDEF-seq library 
preparation.

NanoSeq library preparation and sequencing
NanoSeq libraries were prepared as previously described8 with 50 ng 
DNA input from the same DNA aliquots used for HiDEF-seq.

HiDEF-seq library preparation and sequencing
Choice of restriction enzymes for DNA fragmentation. We per-
formed in silico digests of the CHM13 v.1.0 human reference genome 
sequence58 to identify restriction enzymes that (1) maximize the per-
centage of the genome between 1 and 4 kb; (2) are active at 37 °C; and  
(3) the DNA is fragmented with blunt ends, since blunt fragmen-
tation avoids single-strand overhangs that can lead to artefactual 
double-strand mutations during end repair8. This in silico screen 
identified Hpy166II (recognition sequence: 5′-GTN/NAC-3′) as the 
optimal restriction enzyme, with a prediction of 37% of the genome 
mass fragmenting between 1 and 4 kb. The percentage of the genome 
fragmented to sizes between 1 and 4 kb was then empirically measured 
by fragmenting 1 µg of genomic DNA followed by quantification on a 
Genomic DNA ScreenTape assay (Agilent). Hpy166II fragments 41% 
of the genome to within the target size range. Note that, although 
Hpy166II is blocked by methylated CpG when present on both sides 
of the recognition sequence (New England BioLabs), this will occur 
only with the larger recognition sequence 5′-C*GTN/NAC*G-3′ (the 
asterisks signify methylation of the preceding cytosine); excluding 
all of these potential bimethylated sites increases the in silico pre-
dicted percentage of the genome fragmented by Hpy166II to within 
the target size range by 0.2%, and 99.97% of genomic bases within the 
original target size range remain when excluding these as potential 
fragmentation sites.

For the mitochondrial genome, Hpy166II captures 3 fragments in our 
target 1–4 kb size range, at the following coordinates (CHM13 v.1.0):  
(1) 3068–5116 (2,048 bp); (2) 7581–9439 (1,858 bp); and (3) 10441–11831 
(1,390 bp). These fragments encompass 32% of the mitochondrial 
genome.

HiDEF-seq library preparation. Input DNA amounts of 500–3,000 ng 
(as measured using the Qubit 1× dsDNA HS Assay (Qubit)) were used 
per library, depending on available DNA. With high-quality DNA, input 
amounts of 500 ng provide sufficient HiDEF-seq library yield for app-
roximately one full (non-multiplexed) Pacific Biosciences (PacBio) 
Sequel II instrument sequencing run, and lower input amounts are 
feasible for filling a fraction of a sequencing run. We have successfully 
made HiDEF-seq libraries with as low as 200 ng input DNA, producing 
sufficient yield for 40% of a sequencing run. For fragmented DNA sam-
ples, more than 1,500 ng of input DNA is generally required. Generally, 
for samples other than sperm and tissues from young children that have 
low mutation burdens, one quarter of a sequencing run is sufficient 
for mutation burden and pattern analysis. Input DNA A260/A280 > 1.8 
and A260/A230 > 2.0 absorption ratios were confirmed on the NanoDrop 
before library preparation according to the Pacific Biosciences DNA 
preparation guidelines; we found that this quality control is important 
for sequencing yield for post-mortem tissues, but is not strictly neces-
sary for other sample types.

As some DNA fragments are <1 kb after restriction enzyme frag-
mentation, these small fragments need to be removed during library 
preparation. We found that effective removal of <1 kb DNA fragments 
with high-yield recovery of larger DNA fragments requires three size 
selections with a 75% dilution of AMPure PB beads (Pacific Biosciences) 
during library preparation. We also found that efficient size selection 
critically depends on a DNA concentration of <10 ng µl−1 in the input 
sample. Accordingly, before beginning library preparation, a suf-
ficient volume of AMPure PB Beads was diluted with Elution Buffer 
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(Pacific Biosciences) to a final 75% AMPure PB bead volume/total 
volume solution to be used for all subsequent bead purifications 
and size selections. Below, ‘diluted AMPure beads’ refers to these 
diluted beads.

Input DNA was fragmented with 0.14 U µl−1 of Hpy166II restriction 
enzyme (NEB) in a 70 µl reaction with 1× CutSmart buffer (NEB) for 
20 min at 37 °C. The fragmentation reaction was scaled to a higher 
volume if the input DNA was too dilute to accommodate a 70 µl reaction.

Fibroblast samples from lentivirus transduction experiments and 
fibroblasts frozen in sperm-freezing medium that were extracted using 
the Puregene method comprised around 30–70% residual RNA (based 
on a comparison of Qubit and NanoDrop quantification), which was 
not fully removed by the DNA extraction’s RNase A digestion. For these 
samples, we added 0.5 µl of 100 mg ml−1 RNase A (Qiagen) after comple-
tion of the fragmentation reaction and incubated at room temperature 
for 1 min.

Next, the fragmentation reaction was diluted with NFW to a DNA 
concentration of 10 ng µl−1 (or not diluted if DNA is already <10 ng µl−1) 
based on the Qubit concentration of the DNA measured before the frag-
mentation reaction. For the first bead purification/size selection, a ratio 
of 0.8× diluted AMPure beads volume to sample volume was used, with 
two 80% ethanol washes, and the DNA was eluted with 22 µl of 10 mM 
Tris pH 8. The DNA concentration was measured again with Qubit.

Nick ligation was then performed (except for the initial version of 
HiDEF-seq without nick ligation; Supplementary Note 1) in a 30 µl 
reaction with 3 µl of 10× rCutSmart Buffer (NEB), 1.56 µl of 500 µM 
β-nicotinamide adenine dinucleotide (NAD+) (NEB) and 15 U of Escheri-
chia coli DNA ligase (NEB). The nick ligation reaction was incubated at 
16 °C for 30 min with the heated lid turned off.

The DNA was then diluted with 10 mM Tris pH 8 to 10 ng µl−1 (or not 
diluted if DNA is already <10 ng µl−1) based on the Qubit concentration 
measured after the post-fragmentation reaction bead purification. For 
the second bead purification/size selection, a ratio of 0.75× diluted 
AMPure bead volume to sample volume was used, with two 80% ethanol 
washes, and the DNA was eluted with 22 µl of 10 mM Tris pH 8. The DNA 
concentration was measured with Qubit.

The DNA was then treated as described in ref. 8 in 30 µl volume reac-
tions with 21 µl of input DNA, 1.5 µl NFW, 3 µl 10× NEBuffer 4 (NEB), 
3 µl of 1 mM each dATP/ddCTP/ddGTP/ddTTP (dATP/ddBTP) (dATP, 
Thermo Fisher Scientific, R0141; ddCTP/ddGTP/ddTTP, Jena Bioscience 
NU-1019S) and 7.5 U of Klenow fragment 3′→5′ exo- (NEB), except for 
input DNA that is degraded (such as post-mortem kidney and liver) 
for which the reaction was performed without dATP. The reaction 
was incubated at 37 °C for 30 min. Next, a third bead-purification/
size-selection step was performed: the reaction volume was diluted 
with 10 mM Tris pH 8 to 10 ng µl−1 DNA (or not diluted if DNA is already 
<10 ng µl−1) based on the Qubit concentration measured before the Kle-
now reaction, followed by a ratio of 0.75× diluted AMPure bead volume 
to sample volume, with two 80% ethanol washes, and elution of DNA 
with 22 µl of 10 mM Tris pH 8. The eluted DNA was then adjusted to a 
total of 30 µl with 3 µl of 10× NEBuffer 4 and NFW before proceeding 
to adapter ligation.

Ligation of hairpin adapters was performed using reagents from 
the SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences) by 
combining 30 µl of Klenow-treated DNA, 2.5 µl Barcoded Overhang 
Adapter (Pacific Biosciences), 15 µl Ligation Mix, 0.5 µl Ligation Additive 
and 0.5 µl of Ligation Enhancer. For samples for which the preceding 
Klenow reaction was performed without dATP (that is, non-A tailed 
libraries), 2.5 µl of 17 µM annealed blunt adapters were used instead 
(their sequences and preparation are described below). The adapter 
ligation reaction was incubated at 20 °C for 60 min with the heated lid 
turned off. Immediately after the adapter ligation, nuclease treatment 
was performed using the SMRTbell Enzyme Clean Up Kit 1.0 (Pacific 
Biosciences) to remove any non-circularized DNA containing nicks 
and/or without hairpin adapters: 2 µl Enzyme A, 0.5 µl Enzyme B, 0.5 µl 

Enzyme C and 1 µl Enzyme D were combined, and this 4 µl enzyme mix 
was added to the ligation reaction and incubated at 37 °C for 60 min. 
After the nuclease treatment, the samples were purified with a ratio of 
1.2× diluted AMPure bead volume to sample volume and eluted with 
24 µl of 10 mM Tris pH 8.

After the post-nuclease treatment AMPure bead purification, non-A 
tailed HiDEF-seq libraries underwent an additional 1.1× diluted AMPure 
bead purification to remove residual adapter dimers.

Final library concentration and size distribution were measured 
using the Qubit and High Sensitivity D5000 ScreenTape (Agilent). 
The final library fragment size distribution should contain <5% of DNA 
mass <1 kb and <5% of DNA mass >4 kb (percentages calculated using 
the ScreenTape analysis software’s manual region analysis ‘% of Total’ 
field). The final mass yield of A-tailed libraries should be around 6–10% 
of the input genomic DNA mass, and approximately half of that for 
non-A tailed libraries. The libraries were stored in 0.5 ml DNA LoBind 
tubes at −20 °C.

On ScreenTape, some non-A tailed HiDEF-seq libraries had a low level 
of residual adapter dimers, which was removed with a final 1.3× diluted 
AMPure bead purification after multiplexing the libraries from the 
same run (see multiplexing details in the ‘HiDEF-seq library sequenc-
ing’ section).

Sequences and preparation of blunt adapters used for HiDEF-seq 
without A-tailing. Adapters (sequences below) were ordered as 
HPLC-purified oligonucleotides from Integrated DNA Technologies. 
Each adapter was reconstituted to 100 µM concentration with NFW. 
Annealing was then performed for each adapter at a concentration of 
17 µM in a 30 µl volume containing 10 mM Tris pH 8 and 50 mM NaCl, 
by incubating at 95 °C for 3 min and cooling at room temperature for 
30 min. Additional barcoded adapters can be designed by replacing the 
below barcodes with alternative sequences. bcAd1001: /5′Phos/ACG 
CACTCTGATATGTGATCTCTCTCTTTTCCTCCTCCTCCGTTGTTGTTGTT 
GAGAGAGATCACATATCAGAGTGCGT (barcode = CACATATCAGAGT 
GCG); bcAd1002: /5′Phos/ACTCACAGTCTGTGTGTATCTCTCTCTTTTC 
CTCCTCCTCCGTTGTTGTTGTTGAGAGAGATACACACAGACTGTGAGT 
(barcode = ACACACAGACTGTGAG); bcAd1003: /5′Phos/ACTCTCACGA 
GATGTGTATCTCTCTCTTTTCCTCCTCCTCCGTTGTTGTTGTTGAGAG 
AGATACACATCTCGTGAGAGT (barcode = ACACATCTCGTGAGAG); 
bcAd1008: /5′Phos/ACGCAGCGCTCGACTGTATCTCTCTCTTTTC 
CTCCTCCTCCGTTGTTGTTGTTGAGAGAGATACAGTCGAGCGCTGCGT  
(barcode = ACAGTCGAGCGCTGCG).

Modified HiDEF-seq library preparation trials to remove ssDNA 
T>A artefacts. Below are details of trials to remove ssDNA T>A arte-
facts arising from ssDNA nicks that remain after nick ligation. The 
final protocol that completely removes these artefacts (HiDEF-seq 
without A-tailing) is described in the main ‘HiDEF-seq library prepara-
tion’ section.
Polynucleotide kinase. The standard HiDEF-seq protocol was followed 
with the exception that, before nick ligation, the DNA was treated in a 
30 µl reaction containing 12 U T4 polynucleotide kinase (NEB), 1 mM 
ATP (NEB), 4 mM DTT (Promega) and 1× CutSmart buffer (NEB) at 37 °C 
for 1 h. The sample then proceeded into the nick ligation reaction in 
a higher reaction volume of 35 µl, with reaction components scaled 
proportionally to the higher volume and a final 1× CutSmart buffer 
concentration.
Alternative A-tailing polymerases. The standard HiDEF-seq protocol 
was followed with the exception of replacing Klenow fragment 3′→5′ 
exo- polymerase with one of the following: 9.6 U Bst large fragment 
(NEB), 9.6 U Bst 2.0 (NEB), 9.6 U Bst 3.0 (NEB) or 9 U Isopol SD+ (Arctic-
Zymes). The reaction temperatures and times for these polymerases 
were as follows: (1) Bst large fragment and Bst 2.0: 30 min at 45 °C;  
(2) Bst 3.0: 30 min or 150 min at 45 °C, or 210 min at 37 °C; and (3) Isopol 
SD+: either 30 min or 210 min at 37 °C.



Pyrophosphatase. The standard HiDEF-seq protocol was followed 
with the exception of adding 0.15 U of E. coli inorganic pyrophos-
phatase (NEB).
Klenow reaction without dATP or without dATP/ddBTP. The standard 
HiDEF-seq protocol was followed with the exception that the Klenow 
reaction was performed without dATP or without dATP/ddBTP.
No Klenow reaction. The standard HiDEF-seq protocol was followed, 
except that, after the post-nick ligation bead purification, the DNA was 
diluted to 30 µl in a final 1× NEBuffer 4 concentration and taken directly 
to adapter ligation using blunt adapters. After the post-nuclease treat-
ment bead purification, an additional size-selection step was performed 
with 0.75× diluted AMPure beads as this would ordinarily have occurred 
after the Klenow reaction. Note that this protocol produces a CCT>CGT 
ssDNA artefact that does not occur when the Klenow reaction is per-
formed without dATP or ddBTP, indicating that Klenow polymerase 
removes this artefact likely through a pyrophosphorolysis mechanism 
(Extended Data Fig. 5d and Supplementary Table 3).

HiDEF-seq library preparation with uracil DNA glycosylase/endonu-
clease VIII treatment. Libraries were prepared according to the above 
HiDEF-seq library protocol with A-tailing, except that 3 µl of a mixture of 
uracil DNA glycosylase/endonuclease VIII (NEB USER enzyme, M5505) 
was added to the nuclease treatment step.

HiDEF-seq library preparation with multi-glycosylase/endonu-
clease treatment. Libraries were prepared according to the above 
HiDEF-seq library protocol without A-tailing, except that, after the 
bead purification/size selection that occurs after the Klenow ddBTP 
reaction, an additional enzyme treatment step was performed. This 
enzyme treatment occurred in a total volume of 60 µl in a final 1× Ther-
moPol Buffer (NEB) at 37 °C for 30 min, with the following enzymes: 
(1) 10 U endonuclease IV (NEB); (2) 8 U formamidopyrimidine DNA 
glycosylase (Fpg) (NEB); (3) 10 U T4 pyrimidine dimer glycosylase 
(NEB); (4) 2 µl of a mixture of uracil DNA glycosylase/endonuclease 
VIII (NEB USER enzyme); (5) 10 U endonuclease VIII (NEB); (6) 10 U 
human alkyl adenine DNA glycosylase (hAAG) (NEB); and (7) 5 U hu-
man single-stranded selective monofunctional uracil DNA glycosy-
lase (hSMUG1) (NEB). This reaction was cleaned up with a ratio of 1.2×  
diluted AMPure bead volume to sample volume, with two 80% ethanol 
washes, and elution of DNA with 22 µl of 10 mM Tris pH 8. The eluted 
DNA was then adjusted to a total of 30 µl with 3 µl of 10× NEBuffer 4 and 
NFW before proceeding to adapter ligation according to the standard 
HiDEF-seq protocol.

HiDEF-seq large fragment library preparation. Large-fragment-size 
libraries (range, 1–10 kb; median, 4.1 kb) were prepared according to 
the above HiDEF-seq library protocol, except (1) fragmentation was 
performed with 30 U PvuII-HF enzyme (NEB) instead of Hpy166II;  
(2) post-nick ligation and post-A-tailing cleanups were performed with 
1.8× undiluted AMPure PB beads, and DNA was not diluted to <10 ng µl−1 
(since size selection is not being performed); and (3) final post-nuclease 
treatment bead purification was performed with 1× undiluted AMPure 
PB beads.

HiDEF-seq library preparation with random fragmentation. Librar-
ies were prepared according to the above HiDEF-seq library protocol 
without A-tailing (that is, Klenow reaction without dATP and using 
blunt adapters), except that (1) a higher amount of input DNA was used 
(4 µg per sample); (2) instead of restriction enzyme fragmentation, 
DNA was acoustically fragmented in miniTUBE Clear tubes (2 µg per 
tube, that is, 2 × 2 µg aliquots per sample), with each 2 µg DNA aliquot 
diluted to 200 µl in a final buffer of 10 mM Tris pH 8 and 50 mM NaCl, 
on an ME220 instrument (Covaris) using the following settings: tem-
perature, 7 °C; treatment time, 900 s; peak incident factor, 8 W; duty 
factor, 20%; and cycles/burst, 1,000; (3) each 2 µg fragmented DNA 

aliquot was blunted in a 200 µl reaction containing 0.5 U µl−1 nuclease 
P1 (NEB) and 1× NEBuffer r1.1 (NEB) at 37 °C for 30 min, after which 
the reaction was stopped by adding 8 µl of 0.5 M EDTA and 2 µl of 1% 
SDS; (4) after the Nuclease P1 reaction, the protocol continued with 
the 0.8× diluted AMPure bead purification as is usually performed 
after restriction enzyme fragmentation, and the two aliquots of each 
sample were combined at the elution stage for a final elution volume 
of 22 µl; (5) before nick ligation, the DNA was treated with 0.4 U µl−1 
T4 polynucleotide kinase (NEB), 1 mM ATP and 4 mM DTT in a 30 µl 
volume of 1× rCutSmart buffer (NEB) at 37 °C for 1 h; (6) nick ligation 
was performed immediately after by adding the required reagents to 
the T4 polynucleotide kinase reaction to a final volume of 35 µl; (7) the 
bead-purification step after the Klenow reaction was performed with a 
1.2× ratio of diluted AMPure bead volume to sample volume, instead of 
a ratio of 0.75×; (9) after nuclease treatment, libraries underwent a 1.2× 
diluted AMPure bead purification, then libraries for the same sequenc-
ing run were pooled, and a final 1.0× diluted AMPure bead purification 
was performed to remove residual adapter dimers.

HiDEF-seq library sequencing. Libraries sequenced on the same se-
quencing run were multiplexed together based on the final library 
Qubit quantification to achieve at least 50 ng of total library in no more 
than 15 µl volume. When necessary, the concentration of individual 
or pooled libraries can be increased by room temperature centrifugal 
vacuum concentration (Eppendorf Vacufuge) and pausing periodically 
(approximately every 2 min) to avoid increases in temperature, or using 
AMPure PB bead purification.

Sequencing was performed on Pacific Biosciences Sequel II or Sequel 
IIe systems with 8M SMRT Cells by the Icahn School of Medicine at Mount 
Sinai Genomics Core Facility and the New York University Grossman 
School of Medicine Genome Technology Center. Sequencing param-
eters were as follows: Sequel II Binding Kit 2.0 (Pacific Biosciences), 
Sequel II Sequencing Kit 2.0 (Pacific Biosciences), Sequencing primer 
v4 (Pacific Biosciences), 1 h binding time, diffusion loading, loading 
concentrations between 125 and 160 pM (lower concentrations were 
used for blood than for tissues) for standard size libraries (Hpy166II 
libraries) or 80 pM for large-fragment libraries (PvuII libraries), 2 h 
pre-extension, and 30 h movies.

Germline and tumour sequencing data processing
The HiDEF-seq computational pipeline can filter germline variants 
using either standard short-read or long-read genome sequencing of 
the same individual (Extended Data Fig. 3k,l).

Illumina germline and tumour sequencing data processing. Reads 
were aligned to the CHM13 v.1.0 reference genome58 using BWA-MEM 
(v.0.7.17)59 with the standard settings, followed by marking of optical 
duplicates and sorting using the Picard Toolkit v3.1.0 (Broad Institute). 
Variants were called from the aligned reads with two different variant 
callers: (1) Genome Analysis Toolkit (GATK)60 v.4.1.9.0 using the Haplo-
typeCaller tool with the parameters ‘-ERC GVCF -G StandardAnnotation 
-G StandardHCAnnotation -G AS_StandardAnnotation’ followed by 
the GenotypeGVCFs tool with the default parameters; (2) DeepVari-
ant61 v.1.2.0 with the parameter: ‘--model_type=WGS’. Both GATK and 
DeepVariant variant calls were used during the subsequent analysis.

Pacific Biosciences germline sequencing data processing. Circular 
consensus sequences were derived from raw subreads (a subread is 
one sequencing pass of a single strand of a DNA molecule) using pb-
ccs v.5.0.0 (ccs, Pacific Biosciences) with the default parameters, and 
consensus sequences were filtered to retain only high-quality ‘HiFi’ 
reads, that is, reads with predicted consensus sequence accuracy 
‘rq’ tag ≥ 0.99 (rq is calculated by ccs as the average of the per base 
consensus qualities of the read). These reads were then aligned to the 
CHM13 v.1.0 reference genome with pbmm2 v.1.4.0 (Pacific Biosciences) 
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with the parameters ‘--preset CCS --sort’. Variants were called from the 
aligned reads with DeepVariant61 v.1.2.0 with the parameter ‘--model_
type=PACBIO’.

HiDEF-seq primary data processing
HiDEF-seq data first undergoes a two-part primary data processing 
pipeline that transforms the raw data into a format suitable for subse-
quent analysis. Primary data processing also produces quality-control 
plots generated by custom scripts and by SMRT Link (Pacific Bio-
sciences) software (for example, distributions of polymerase read 
lengths and number of passes). Note that, for simplicity, we use the 
term ‘call’ to refer to both dsDNA mutations and ssDNA mismatch and 
damage events. The pipeline analyses calls in sequencing reads that 
are single-base mismatches relative to the reference genome (that is, 
not insertions and deletions).

The first part of the primary data-processing pipeline uses a com-
bination of bash and awk scripts to process raw subread sequencing 
data (a subread is one sequencing pass of a single strand of a DNA mol-
ecule) into a strand-specific aligned BAM format62 with additional tags 
needed for call analysis62. The steps of this first part of data processing 
are as follows:
(1) Subreads for which an adapter was not detected on both ends of 

the molecule (‘cx’ tag not equal to 3) are removed.
(2) Consensus sequences are created separately for each strand of the 

DNA molecule (that is, forward and reverse strand separately) using 
pbccs v.6.2.0 (Pacific Biosciences) with the parameters: --by-strand, 
--min-rq 0.99 (minimum predicted consensus sequence accura-
cy > Q20 (Phred quality score) to remove low-quality consensus 
sequences) and --top-passes 0 (unlimited number of full-length 
subreads used per consensus).

(3) Demultiplexing of samples according to adapter barcodes using 
lima v.2.5.0 (Pacific Biosciences) with the parameters: --ccs --same 
--split-named --min-score 80 --min-end-score 50 --min-ref-span 0.75 
--min-scoring-regions 2.

(4) Filter to remove any DNA molecules (also known as zero-mode 
waveguides, which are sequencing wells containing a single DNA 
molecule) that did not successfully produce both one forward- and 
one reverse-strand consensus sequence.

(5) Align forward- and reverse-strand consensus sequences to the 
CHM13 v.1.0 reference genome58 using pbmm2 v.1.7.0 (Pacific Bio-
sciences), an aligner based on minimap263, with the parameters: 
--preset CCS. We use the telomere-to-telomere CHM13 human ref-
erence genome, which was itself constructed using long reads, to 
reduce genome alignment artefacts58. Note that the CHM13 v.1.0 
reference genome contains only nuclear chromosomes 1–22, chro-
mosome X and the mitochondrial genome—but not chromosome 
Y, which is therefore not part of the analyses.

(6) Filter to retain only DNA molecules that produce only one for-
ward strand primary not-supplementary alignment and one 
reverse-strand primary not-supplementary alignment, where the 
forward and reverse alignments overlap (reciprocally) in the genome 
by at least 90%.

(7) Sort alignments by reference position.
(8) Add five tags, detailed below, to each alignment in the final BAM 

file, with each tag containing a comma-separated array with a length 
corresponding to the number of single-base mismatches in the 
alignment (relative to the reference genome) per the alignment 
CIGAR string:
•  qp: positions of bases in the read sequence (query) that are mis-

matches relative to the reference genome; 1-based coordinates 
with the left-most base in the alignment record’s SEQ column = 1;

•  qn: sequences of bases in the read (query) that are mismatches 
relative to the reference genome (base sequences are according 
to the forward genomic strand, that is, they are taken from the 
SEQ column of the SAM alignment record);

•  qq: qualities of bases in the read that are mismatches relative to 
the reference genome (taken from the QUAL column of the SAM 
alignment record);

•  rp: positions in reference genome coordinates of read bases that 
are mismatches relative to the reference genome;

•  rn: sequences of the reference genome at positions of read bases 
that are mismatches relative to the reference genome.

The second part of the primary data processing pipeline is an R64 
script (R v.4.1.2, requiring the packages Rsamtools65, GenomicAlign-
ments66, GenomicRanges66, vcfR67, plyr68, configr69, qs70) that further 
processes and annotates the aligned BAM file into an R data file as 
follows:
(1) Load the aligned BAM file into R, including the custom tags that  

annotated the positions of base mismatches relative to the refer-
ence genome.

(2) Annotate calls (bases mismatched relative to the reference genome) 
for which the reference genome base is ‘N’, to exclude these from 
subsequent analysis.

(3) Annotate the positions of indels in each alignment, based on the 
alignment CIGAR string.

(4) Annotate each call if it was present in any of the VCF variant call files 
of the corresponding individual’s germline sequencing, along with 
details of the VCF variant annotation.

(5) Save positions of indels from the VCF variant call files of the cor-
responding individual’s germline sequencing.

(6) Transform the dataset so that forward- and reverse-strand consen-
sus reads and ssDNA and dsDNA calls (and tag information) from the 
same DNA molecule are linked to each other as dsDNA molecules.

(7) Save the final R dataset to a file.

HiDEF-seq call filtering
The call-filtering pipeline implements a series of filters that were opti-
mized to maximize the number of true calls while minimizing the num-
ber of sequenced bases and regions of the genome that are filtered out. 
During the development of the pipeline, filters and filter parameters 
were iteratively optimized using low-mutation-rate samples (that is, 
tissues from infants and sperm) to identify patterns that are common 
to false positives. These false positives were apparent as clusters of 
mutations in low-quality regions of the genome and as regions with 
low-quality alignment of sequencing reads. For example, when a metric 
of low-quality genome regions was found to correlate with clusters of 
low-quality calls, this metric was added as a filter, and its threshold was 
iteratively tuned to maximally remove false positives while minimizing 
the number of sequenced bases and genomic regions that are filtered.

Additional optimization of filter thresholds was performed using 
sperm samples that have a known low mutation burden. Specifically, 
we plotted the dsDNA and ssDNA burdens with a range of thresholds 
for three key filters: (1) minimum predicted consensus accuracy (0.99 
to 0.999); (2) minimum number of passes per strand (5 to 20); and (3) 
minimum fraction of subreads (passes) detecting the mutation (0.5 
to 0.8) (Extended Data Fig. 3c–j). We examined these plots for thresh-
old settings above which burden estimates are stable. Since burdens 
were corrected for sensitivity (based on total interrogated bases and 
detection of known germline variants; see the ‘HiDEF-seq calculation of 
call burdens’ section), a decrease in burden estimates with increasing 
threshold settings indicates removal of sequencing artefacts. These 
plots showed that sperm dsDNA mutation burden estimates were sta-
ble even down to the lowest (most lenient) thresholds (Extended Data 
Fig. 3d,e,g). By contrast, ssDNA burdens required higher threshold 
settings before burden estimates stabilized (Extended Data Fig. 3i,j). 
Individually increasing the thresholds of each of the above three filters 
stabilized ssDNA burden estimates at approximately 20%, 15% and 10% 
lower levels, respectively, compared to the least stringent settings, 
and applying all three filters together with these higher thresholds 



reduced the ssDNA burden estimate by approximately 25% (that is, 
the three filters are not independent). Specific thresholds used for 
dsDNA and ssDNA mismatch filtering are detailed in the below sections 
detailing each filter.

The call-filtering pipeline uses the following R packages: Genomi-
cAlignments (v.1.30.0)66, GenomicRanges (v.1.46.1)66, vcfR (v.1.12.0)67, 
Rsamtools (v.2.10.0)65, plyr (v.1.8.6)68, configr (v.0.3.5)69, Mutational-
Patterns (v.3.4.1)71, magrittr (v.2.0.2)72, readr (v.2.1.2)73, dplyr (v.1.0.8)74, 
plyranges (v.1.14.0)75, stringr (v.1.4.0)76, digest (v.0.6.29)77, rtracklayer 
(v.1.54.0)78, qs (v.0.25.2)70; and the following software tools: bcftools 
(v.1.14)79, samtools79, wigToBigWig (v.2.8)80, wiggletools (v.1.2.11)81, 
pbmm2 (v.1.7.0; Pacific Biosciences), zmwfilter (v.1.2.0; Pacific Bio-
sciences), SeqKit (v.2.1.0)82 and KMC (v.3.1.1)83.

Additional filters used in the pipeline were created using REAPR 
(v.1.0.18)84. REAPR was originally designed to identify regions with 
errors in reference genome assemblies, but we found that it calcu-
lates metrics that are useful for identifying regions of the genome 
prone to generating false-positive and false-negative variant calls in 
Illumina (short-read) sequencing data. First, Illumina whole-genome 
sequencing reads from a sperm sample were aligned to CHM13 v.1.0 
using SMALT (v.0.7.6)85 with the parameters ‘-r 0 -x -y 0.5’ and a CHM13 
v.1.0 index created with SMALT using parameters ‘-k 13 -s 2’. Next, reads 
were sorted and duplicates were marked. The REAPR perfectfrombam 
command was then run on the resulting BAM file using the parameters 
‘min insert=266, max insert=998, repetitive max qual=3, perfect min 
qual=4, and perfect min alignment score=151’ (min and max insert size 
are the 1 and 99 percentiles of insert sizes calculated from the sequenc-
ing data using the Picard Toolkit CollectInsertSizeMetrics tool). REAPR 
metrics for each base of the genome were obtained from the output 
stats.per_base file and a bigwig86 annotation file was created for each 
metric.

The mutation analysis filters were applied serially as described below. 
Unless otherwise specified, the filters were applied to both ssDNA and 
dsDNA calls. Note that the computational pipeline has the capability to 
implement additional filters not listed here, as specified in the pipeline 
configuration documentation available online.

Filters based on DNA molecule quality and alignment metrics. 
Retain only DNA molecules that meet all of the below criteria:
(1) ccs predicted consensus accuracy ≥ 0.99 in both forward and reverse 

strand (that is, rq tag of ccs ≥ 0.99) for dsDNA calls, and ≥Q30 (that 
is, rq ≥ 0.999) for ssDNA calls.

(2) Minimum of 5 (for dsDNA calls) and 20 (for ssDNA calls) sequenc-
ing passes for each of the forward and reverse strands (using the 
‘ec’ BAM file tag, which is computed by ccs as the average subread 
coverage across all consensus calling windows).

(3) Both forward and reverse strands have mapping quality ≥ 60.
(4) Maximum difference in number of ssDNA calls between the for-

ward and reverse strands of 5, before germline variant filtering. 
This removes artefacts from rare chimeric molecules and residual 
low-quality molecules.

(5) Average of the number of indels relative to the human reference 
genome in the forward and reverse strands of ≤20, before germline 
variant filtering. This removes low-quality molecules with many 
indels.

(6) Average of the number of soft-clipped bases in the forward and 
reverse strands of ≤30. This removes low-quality molecules and 
molecules that align to complex regions of the genome with long 
stretches of mismatched bases.

Filters based on germline sequencing variant calls. 
(1) Filter out calls that were also identified in any of the individual’s 

germline sequencing VCF files with read depth ≥3, allele quality 
(QUAL column in VCF) ≥ 3, genotype quality (GQ tag in VCF) ≥ 3, 
and variant allele fraction ≥ 0.05.

(2) Filter out DNA molecules with >8 dsDNA calls remaining after VCF 
germline filtering. This removes molecules with misalignment to 
complex regions of the genome leading to many clustered calls 
and regions of the genome for which Illumina short reads are not 
effective in identifying and filtering out germline variants.

For tumour analysis, variant calls were used in this step from both 
germline blood sequencing and standard fidelity (Illumina) tumour 
sequencing to focus the analysis on low-level mosaic calls.

Filters based on genomic regions. Filters that remove the entire DNA 
molecule if it meets any of the following criteria:
(1) For analyses using either Illumina or PacBio germline sequencing 

data: (i) segmental duplication regions: any overlap with the DNA 
molecule’s forward or reverse consensus sequence alignments. This 
annotation was obtained from the file chm13.draft_v1.0_plus38Y.
SDs.bed created by the Telomere-to-Telomere consortium87. How-
ever, for analysis of mitochondrial mutations, this region filter is 
not used because it contains the region chrM:10000–14910 due to 
a similar nuclear genome sequence on chromosome 5, which would 
cause unnecessary filtering of reads aligning to this region of the 
mitochondrial genome. There is negligible risk of nuclear genome 
sequences falsely aligning to this mitochondrial region since we 
obtain long reads, we require high mapping quality, and we exclude 
reads with many mismatches—and these mitochondrial and nuclear 
genome regions have only 94% identity. (ii) Satellite sequence re-
gions: ≥20% of the DNA molecule’s forward- and reverse-strand 
consensus alignments (average for the two strands) overlaps the 
region. The satellite sequence region annotation was created for 
CHM13 v.1.0 using RepeatMasker (v.4.1.1)88 with the parameters ‘-pa 
4 -e rmblast -species human -html -gff -nolow’, followed by extrac-
tion of ‘Satellite’ regions.

(2) Only for analyses that use Illumina germline sequencing data, be-
cause short-read data is more prone to missing true germline vari-
ants in these regions: (i) telomere regions: any overlap with the DNA 
molecule’s forward or reverse consensus sequence alignments. This 
annotation was obtained from the file chm13.draft_v1.0.telomere 
created by the Telomere-to-Telomere consortium58. (ii) 50-mer map-
pability score: ≥30% of the DNA molecule’s forward- and reverse-
strand consensus alignments (average for the two strands) has a 
mappability score < 0.4. This annotation was created for CHM13 
v.1.0 using Umap (v.1.2.0)89. This annotation calculates the map-
pability for every base in the genome. (iii) The fraction of Illumina 
short reads aligning to the region that are orphaned reads (that is, 
the read’s mate is either unmapped or mapped to a different chro-
mosome), averaged across the genome in 20 bp non-overlapping 
bins, is ≥0.15 for ≥20% of the DNA molecule’s forward- and reverse-
strand consensus alignments (average for the two strands). The 
fraction of orphaned reads metric used in this filter is the average 
of the orphan_cov and orphan_cov_r REAPR metrics, which are the 
fraction of forward- and reverse-strand reads that are orphaned, 
respectively.

Filters that remove only the portions of the DNA molecule that over-
lap any of the following regions, while the remaining bases of the DNA 
molecule are still included in analysis:
(1) Regions of the reference genome whose sequence is ‘N’.
(2) For analyses using either Illumina or PacBio germline sequencing 

data: (i) satellite sequence regions: any base that overlaps one of 
these regions. (ii) Bases with gnomAD (v.3.1.2)90 single-nucleotide 
variants with ‘PASS’ flag and population allele frequency > 0.1%, 
lifted over from the hg38 to the CHM13 v.1.0 reference genome 
using the liftOver tool80. This filter removes 27,476,828 genome 
bases from the analysis. It is required to remove residual germline 
variants that were not detected in the germline sequencing of the 
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individual, and it reduces the risk of false-positive mosaic event 
calls due to very low level contamination that may occur between 
samples of different individuals8.

(3) Only for analyses that use Illumina germline sequencing data, bec-
ause short-read data are more prone to missing true germline vari-
ants in these regions: (i) 100-mer mappability score: any base with a 
mappability score < 0.95, with mappability scores averaged across 
the genome in 20 bp non-overlapping bins (binning smoothes the 
mappability score signal). The primary mappability scores were 
calculated as described for the above 50-mer mappability score.  
(ii) The fraction of Illumina short reads aligning to the region that are  
properly paired (that is, aligned in the correct orientation and within 
the expected distance based on insert size distribution), averaged 
across the genome in 20 bp non-overlapping bins, is <0.7. The frac-
tion of properly paired reads metric used in this filter is the average 
of the prop_cov and prop_cov_r REAPR metrics, which are the frac-
tion of forward-strand and reverse-strand reads that are properly 
paired, respectively. (iii) The fraction of Illumina short reads align-
ing to the region that are orphaned reads (that is, the read’s mate is 
either unmapped or mapped to a different chromosome), averaged 
across the genome in 20 bp non-overlapping bins, is ≥0.2. The frac-
tion of orphaned reads metric used in this filter is the average of 
the orphan_cov and orphan_cov_r REAPR metrics, which are the 
fraction of forward- and reverse-strand reads that are orphaned, 
respectively. (iv) The number of Illumina short reads aligning to 
the region to either the forward or the reverse strand and that are 
soft-clipped at the left end or the right end (that is, the sum of the 
REAPR clip_fl, clip_fr, clip_rl, clip_rr metrics), divided by [4 × number 
of mapped reads/100,000,000], averaged across the genome in 
200 bp non-overlapping bins, is ≥0.09. (v) The number of Illumina 
short reads with mapping quality 0 aligning to the region, divided 
by [4 × number of mapped reads/100,000,000], averaged across the 
genome in 20 bp non-overlapping bins, is ≥0.1. Note that this general 
filtering annotation was calculated using Illumina whole-genome 
sequencing data of one representative sample.

Base quality filter. Filter out dsDNA calls whose consensus sequence 
base quality is <93 (from QUAL column in BAM file) in either the forward-  
or reverse-strand consensus, and filter ssDNA calls whose base quality 
is <93 in the strand containing the call.

Filter based on location within the read. Filter out calls that are ≤10 
bases from the ends of the consensus sequence alignment (alignment 
span excludes soft-clipped bases). For ssDNA calls, this filter is applied 
to the strand containing the call and, for dsDNA calls, this filter is ap-
plied to both the forward- and reverse-strand consensus sequence 
alignments. Although this only negligibly alters call burdens (Extended 
Data Fig. 3h), it removes rare alignment artefacts.

Filter based on location near germline indels. Regions near germline 
indels are prone to alignment artefacts that can lead to false-positive 
calls. This filter removes calls located near an indel within a distance less 
than or equal to twice the length of the indel or less than or equal to 15 
bases of the indel (whichever range is larger), using indels called in any 
of the germline sequencing data of the individual (that is, both GATK 
and DeepVariant indel calls when using Illumina germline sequencing 
data, and only DeepVariant indel calls when using PacBio germline 
sequencing data). For GATK indel calls, only indels with read depth ≥ 5, 
QUAL ≥ 10, genotype quality ≥ 5 and variant allele fraction ≥ 0.2 were 
used in this filtering. For DeepVariant indel calls, only indels with read 
depth ≥ 3, QUAL ≥ 3, genotype quality ≥ 3 and variant allele fraction ≥ 0.1 
were used in this filtering.

Filter based on location near consensus sequence indels. Regions 
near HiDEF-seq consensus sequence indels are prone to alignment 

artefacts that can lead to false-positive calls. This filter removes calls 
located near a consensus sequence indel within a distance less than or 
equal to twice the length of the indel or less than or equal to 15 bases of 
the indel (whichever range is larger). For dsDNA calls, the call must pass 
this filter on both forward and reverse consensus strands. For ssDNA 
calls, this filter applies only to the strand containing the call.

Filters based on germline sequencing read depth and variant  
allele fraction. 
(1) Filter out calls in locations where the germline sequencing data has 

<15 total reads coverage, as these low-coverage germline sequencing 
regions will be prone to false-negative germline variant calls that 
would then lead to false-positive HiDEF-seq calls.

(2) Filter out calls detected with variant allele fraction > 0.05 or read 
depth > 3 in the germline sequencing data to remove variants that 
were not called by the previous germline variant callers (due to low 
variant allele fraction or due to different local haplotype assembly 
in GATK/DeepVariant that calls variants in a different nearby loca-
tion than the bwa alignment of the consensus molecule sequence). 
This filter is less stringent than a recent somatic mutation analysis 
method8, but may still remove a small number of very early devel-
opmental mosaic variants shared between HiDEF-seq data and the 
individual’s germline sequencing.

The above two filters use the samtools mpileup command to deter-
mine total read depth and variant allele fraction, using the param-
eters ‘-I -A -B -Q 11 --ff 1024 -d 10000 -a “INFO/AD”’ for Illumina germline 
sequencing data and the parameters ‘-I -B -Q5 --ff 2048 --max-BQ 50 
-F0.1 -o25 -e1 --delta-BQ 10 -M399999 -d 10000 -a “INFO/AD”’ for PacBio 
germline sequencing data.

For tumour analysis, this filter step used both germline blood 
sequencing and standard fidelity (Illumina) tumour sequencing to 
focus the analysis on low-level mosaic calls.

Filters based on fraction of subreads (passes) detecting the call and 
fraction of subreads overlapping the call. We filter out calls detected 
in <50% (for dsDNA calls) and <60% (for ssDNA calls) of the subreads of 
the DNA molecule that detected the call. For dsDNA calls, this filter is 
applied to forward and reverse subreads separately, and the call must 
pass the filter in both strands. For ssDNA calls, this filter is applied only 
to subreads of the strand in which the call was detected.

This removes false-positive calls in the consensus sequence that 
are not well-supported by the subreads. The filter is implemented by 
first extracting the subreads of all of the DNA molecules containing 
calls from the raw subreads BAM file using the zmwfilter tool (Pacific 
Biosciences) and aligning them to the CHM13 v.1.0 reference genome 
with pbmm2 v.1.7.0 with the parameters ‘--preset SUBREAD --sort’. 
The bcftools mpileup command is then used with the parameters ‘-I 
-A -B -Q 0 -d 10000 -a “INFO/AD”’ to calculate the fraction of subreads 
detecting the call (excluding subreads with the supplementary align-
ment SAM flag).

In rare DNA molecules, a large fraction of subreads is soft-clipped, 
leading to false-positive calls in the small fraction of remaining subreads 
aligned to the soft-clipped region. We therefore also filter out calls for 
which the percentage of subreads overlapping the call (regardless of 
whether they contain the call) out of the total subreads aligned to the 
genome is <50%, calculated separately for subreads of each strand 
for the molecule in which the call was made. This filter is applied to 
the strand containing the call for ssDNA calls, and to both strands for 
dsDNA calls (that is, a dsDNA call must pass this filter in both strands).

HiDEF-seq calculation of call burdens
After application of all of the above filters, DNA molecules are further 
filtered to retain only those with a maximum of one dsDNA call for 
dsDNA call burden calculations, and a maximum of one ssDNA call per 



strand for ssDNA call burden calculations. This removes a small number 
of the remaining DNA molecules that contain multiple post-filtering 
calls that, after manual inspection, are due to residual regions of the 
genome prone to false positives.

The raw dsDNA mutation burden (that is, mutations per bp) of a 
sample is then calculated as the [number of dsDNA calls]/[number 
of interrogated dsDNA base pairs], and the raw ssDNA call burden 
(that is, calls per base) is calculated as the [number of forward strand 
calls + number of reverse strand calls]/[number of interrogated for-
ward strand read bases + number of interrogated reverse strand read 
bases]. Note that we subsequently use the term ‘interrogated bases’ 
for simplicity, even though, for dsDNA mutation analysis, it refers to 
interrogated base pairs. The number of interrogated bases takes into 
account all of the relevant filters that were applied, both filters that 
remove entire DNA molecules and filters that remove only portions of 
DNA molecules. Specifically, the number of interrogated bases is the 
total number of bases of DNA molecules that passed all of the filters 
that remove full DNA molecules (described in the ‘Filters based on 
DNA molecule quality and alignment metrics’ and ‘Filters based on 
genomic regions’ (first part) sections), excluding the bases of those 
remaining DNA molecules removed by the following filters (described 
above) that remove only portions of DNA molecules: (1) ‘Filters based  
on genomic regions’ (second part); (2) ‘Base quality filter’; (3) ‘Filter 
based on location within the read’; (4) ‘Filter based on location near 
germline indels’; (5) ‘Filter based on location near consensus sequence 
indels’; and (6) the minimum germline sequencing total read coverage 
filter described in the ‘Filters based on germline sequencing read depth 
and variant allele fraction’ section.

We also calculated ‘corrected’ call burdens that correct both for:  
(1) differences in trinucleotide sequence context of the genome  
relative to interrogated bases; and (2) sensitivity of detection. These 
corrections were applied as follows:

First, we corrected raw call counts for the trinucleotide frequency dis-
tribution of the genome (specifically, the CHM13 v.1.0 sequences of chro-
mosomes being analysed; that is, chromosomes 1–22 and X for nuclear 
genome analysis, and the mitochondrial sequence for mitochondrial 
genome analysis) relative to the trinucleotide frequency distribution of 
interrogated bases in sequencing reads. This correction for ‘trinucleo-
tide context opportunities’ is necessary because interrogated bases may 
have a different distribution of trinucleotides compared to the genome 
due to restriction enzyme fragmentation and computational filters, 
and this may affect burden estimates8. Specifically, we first calculate 
the distribution of trinucleotides (the fraction of each trinucleotide out 
of all trinucleotides) across the genome. We then calculate the distribu-
tion of trinucleotides across interrogated bases of sequencing reads 
in the sample. Next, for each trinucleotide, we calculate the ratio of 
its fractional distribution in the full genome to its fractional distribu-
tion in the interrogated bases. The trinucleotide-corrected count of 
HiDEF-seq calls is then obtained by multiplying the raw call count for 
each trinucleotide context by that context’s genome/interrogated bases 
trinucleotide ratio. For dsDNA calls, trinucleotide context corrections 
are performed using all possible 32 trinucleotide contexts where the 
middle base is a pyrimidine. For ssDNA calls, trinucleotide context cor-
rections are performed using all 64 possible trinucleotides and using 
strand-specific trinucleotide sequences of calls, interrogated bases and 
the genome. The trinucleotide contexts of ssDNA calls reflect the origi-
nal DNA molecule’s ssDNA change—that is, for calls in strands aligning to 
the forward strand of the reference genome, the reverse complements 
of the call, interrogated read sequences and genome are used for trinu-
cleotide context corrections, and vice versa for calls in strands aligning 
to the reverse strand. This is because the sequence data produced by the 
sequencer has the directionality of the sequencer-synthesized strand 
rather than the original (template) DNA molecule.

Second, we corrected call counts for sensitivity of detection 
separately for each sample using a set of high-quality, true-positive 

heterozygous germline (dsDNA) variants detected in the HiDEF-seq 
data of the sample. This specifically accounts for single-molecule sen-
sitivity loss due to the ‘Filters based on fraction of subreads (passes) 
detecting the call and fraction of subreads overlapping the call’ that 
are applied to calls detected in the final interrogated bases (they are 
applied to each strand separately, and dsDNA calls must pass the fil-
ters in both strands). All of the other filters remove DNA molecules 
and bases from the final set of interrogated bases and therefore do 
not require sensitivity correction. To generate the true-positive set of 
heterozygous germline variants for each sample, we extracted all of the 
autosomal dsDNA calls detected in the final interrogated HiDEF-seq 
bases of the sample that were also called in all of the germline vari-
ant call sets of the individual with ≥50th percentile VCF QUAL score, 
≥50th percentile VCF genotype quality, ≥50th percentile total read 
depth, and variant allele fraction between 30% and 70%. We retain only 
calls that meet these criteria across every one of the variant call sets 
of the individual and that are present in gnomAD v.3.1.2 with ‘PASS’ 
flag and population allele frequency > 0.1%. If more than 10,000 such 
true-positive germline calls are identified, a random subset of 10,000 
calls is selected for the sensitivity calculation. We then extract sub-
reads corresponding to the DNA molecules that detected these calls 
in the sample, realign them to the genome with pbmm2 v.1.7.0 with the 
‘--preset SUBREAD --sort’ settings and annotate the variants using the 
same process described in the ‘Filters based on fraction of subreads 
(passes) detecting the call and fraction of subreads overlapping the 
call’ step of the call-filtering pipeline. We next calculate germline vari-
ant sensitivity for the sample as the number of true-positive germline 
variant calls that pass the same filtering thresholds used in the ‘Filters 
based on fraction of subreads (passes) detecting the call and fraction 
of subreads overlapping the call’ step of the call-filtering pipeline, 
divided by the total number of true-positive germline variant calls. 
Each sample’s dsDNA call counts are then corrected for sensitivity by 
dividing by that sample’s calculated germline variant sensitivity. Each 
sample’s ssDNA call counts are corrected by dividing by the square 
root of that sample’s germline variant sensitivity, because the above 
dsDNA germline variant sensitivity estimate corrects for filters applied 
to both strands separately.

Finally, ssDNA and dsDNA burdens corrected for both trinucleotide 
context and sensitivity are calculated as the sum of the trinucleotide 
context- and sensitivity-corrected call counts divided by the number 
of interrogated bases (ssDNA burdens) or base pairs (dsDNA burdens). 
For all analyses and figures, unless otherwise specified, we use burden 
estimates corrected for both the full genome trinucleotide distribu-
tion and sensitivity.

The Poisson 95% confidence intervals of a sample’s corrected burden 
were calculated as the corrected burden × [Poisson 95% confidence 
interval of raw call counts, calculated using the poisson.test function 
in R]/[raw call counts]. Weighted least-squares linear regressions of 
call burdens versus age were performed using the ‘lm’ function in R 
(via the ggplot91 package), with weights equal to 1/[raw call counts].

HiDEF-seq estimate of fidelity for dsDNA mutations
The fidelity for dsDNA mutations was estimated for each sample as 
follows: (1) for each of the 192 possible trinucleotide contexts (that is, 
both central pyrimidine and central purine contexts), the number of 
single-strand calls at that context was divided by the total number of 
interrogated bases with that trinucleotide context to obtain a ssDNA 
call burden for that context; (2) for each central pyrimidine trinucleo-
tide context, a dsDNA mutation error probability was calculated by 
multiplying the single-strand call burdens of the corresponding cen-
tral pyrimidine and reverse-complement central purine trinucleotide 
contexts; and (3) all of the resulting central pyrimidine trinucleotide 
context dsDNA mutation error probabilities were summed. The main 
text reports the average fidelity across samples from healthy individu-
als, excluding sperm samples (as these have an outlier high ssDNA 
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C>T burden) and post-mortem samples processed with HiDEF-seq 
with A-tailing.

Comparison of HiDEF-seq and standard PacBio HiFi molecule 
characteristics
Standard PacBio HiFi raw subread data for comparison to HiDEF-seq 
(Fig. 1b and Extended Data Fig. 1d,f) were obtained from the Human 
Pangenome Reference Consortium (HPRC) public data repository92 
(samples HG02080, HG03098, HG02055, HG03492, HG02109, 
HG01442, HG02145, HG02004, HG01496, HG02083). Circular con-
sensus sequences were derived from raw subreads using the same ccs 
version and ccs parameters used to analyse HiDEF-seq data.

Comparison of HiDEF-seq mutation burdens in sperm to 
paternally phased de novo mutation burdens
Paternally phased de novo mutation (DNM) burdens were calculated 
for each paternal age (in one-year intervals) from data published in a 
previous study of 2,976 trios14 (supplementary files aau1043_datas5_
revision1.tsv and aau1043_datas7.tsv), and using additional methodo-
logical details obtained from its associated study93. Paternally phased 
DNM burdens were first calculated for each child as [total number 
of paternally phased DNMs]/[fraction of the child’s DNMs that were 
either paternally or maternally phased (which corrects for each child’s 
phasing rate)] × [the Jónsson et al.93 correction factor of 1.009 (which 
accounts for its false-positive and false-negative rate)]/[the Jónsson 
et al.93 interrogated genome size of 2,682,890,000] (refs. 14,93). We 
then compare the dsDNA mutation burden of each HiDEF-seq sperm 
sample to the DNM burdens of children whose fathers’ age at their birth 
is one year higher than the age at which the sperm sample was collected 
(to account for around 9 months difference between the father’s age 
at conception and the child’s birth).

Comparison of HiDEF-seq and NanoSeq call burdens and 
patterns
NanosSeq data were processed using the NanoSeq analysis pipeline 
v.3.2.1 (https://github.com/cancerit/NanoSeq) for chromosomes 1–22 
and X (hs37d5 reference genome). NanoSeq dsDNA burdens corrected 
for trinucleotide context opportunities were obtained from the ‘results.
mut_burden.tsv’ output file of the NanoSeq pipeline. NanoSeq ssDNA 
call burdens were calculated as the sum of the values in the ‘results.
mismatches.subst_asym.tsv’ output file, divided by 2 × [the sum of 
the values in the ‘results.mismatches.subst_asym.tsv’ output file + the 
number of interrogated dsDNA base pairs obtained from the ‘results.
mut_burden.tsv’ output file]. NanoSeq ssDNA call counts for each 
context were obtained from the ‘results.SSC-mismatches-Pyrimidine.
triprofiles.tsv’ and ‘results.SSC-mismatches-Purine.triprofiles.tsv’ 
output files. Because the NanoSeq pipeline does not correct ssDNA calls 
for trinucleotide context opportunities, we compared the burdens of 
NanoSeq ssDNA calls in each context to the burdens of HiDEF-seq ssDNA 
calls that are also not corrected for trinucleotide context opportunities 
(that is, to HiDEF-seq burdens corrected only for sensitivity) (Fig. 1f,g 
and Extended Data Fig. 6b,c).

For more informative comparison of Poisson 95% confidence inter-
vals of HiDEF-seq and NanoSeq (Fig. 1c,e,f and Extended Data Fig. 4a) 
despite a different number of interrogated bases (for ssDNA calls, or 
base pairs for dsDNA calls) measured by each method, for each sample, 
the number of calls of the method with the higher number of inter-
rogated bases (or base pairs) was downsampled proportionally to the 
ratio of the number of interrogated bases of the two methods. The 
downsampled method’s burden was then recalculated as the down-
sampled call count divided by the number of interrogated bases of the 
method with fewer interrogated bases, and the downsampled method’s 
Poisson 95% confidence interval was recalculated using the downsam-
pled number of raw call counts. This downsampling does not affect 
burden estimates, and it normalizes the confidence intervals of the 

two methods to reflect an equivalent number of interrogated bases (or 
base pairs). Confidence intervals before downsampling are provided 
in Supplementary Table 2.

Transcription level and transcription strand analysis of sperm 
HiDEF-seq ssDNA C>T calls
We obtained RNA-seq data of purified human spermatozoa from supple-
mentary table 2 of ref. 94 (‘Expression’ sheet, average of the Control 1,  
Control 2, and Control 3 samples’ fragments per kilobase of transcript 
per million mapped reads (FPKM) values) and annotated each gene 
that had non-zero expression with its expression quartile. We joined 
these data to the UCSC CHM13 v.1.0 genome browser ‘CAT Gene + 
LiftOff Annotations V4’ transcript annotation track using Ensembl 
gene IDs. We then annotated each ssDNA C>T call in HiDEF-seq sperm 
samples with the transcript expression data, and further annotated 
for each call if it was present on the transcribed or non-transcribed 
strand. We excluded from analysis the small number of calls overlap-
ping transcripts expressed on both strands. We next calculated the 
sum of the lengths of transcripts in each expression quartile, excluding 
regions with transcripts expressed on both strands. We then normal-
ized the number of ssDNA C>T calls in each quartile and each tran-
scribed/non-transcribed strand category by the sum of the lengths of 
transcripts in that quartile. We then normalized these values for each 
transcribed and non-transcribed strand category by the sum of that 
category’s values.

Signature analysis
Signature analysis for dsDNA mutations was performed using the ‘sigfit’ 
package95 v.2.2, with input of raw mutation counts for each trinucleotide 
context, and the ‘opportunities’ parameter set to the ratio of the frac-
tional abundance of each trinucleotide context in interrogated bases 
of that sample versus the fractional abundance of that trinucleotide 
context in the human reference genome. The correction for trinucleo-
tide context opportunities performed above for burden analyses used 
the fractional abundance of trinucleotides in CHM13 v.1.0, but the 
correction for trinucleotide context opportunities performed here for 
signature analysis and figures used the fractional abundance of trinucle-
otides in the full GRCh37 genome (for both nuclear and mitochondrial 
genome analyses and figures) so that the obtained spectra and signa-
tures can be compared to standard COSMIC signatures. The ‘plot_gof’ 
function was used to determine the optimal number of signatures to 
extract. As COSMIC SBS1 was not well separated from other signatures 
during de novo extraction96, we used the ‘fit_extract_signatures’ func-
tion to fit SBS1 while simultaneously extracting additional signatures 
de novo. De novo extracted signatures were compared to the COSMIC 
SBS v.3.2 catalogue23 to identify the most similar known signature by 
cosine similarity. To obtain more accurate estimates of signature expo-
sures, the fitted COSMIC SBS signature and the extracted signatures 
were then re-fit back to the mutation counts using the ‘fit_signatures’ 
function, along with correction for trinucleotide context opportunities. 
SBS5 is a ubiquitous clock-like signature23, and often de novo extraction 
produced more than one signature with weak or moderate similarity 
to SBS5, for example, both SBS5 and SBS40 (cosine similarity = 0.83) 
or both SBS3 and SBS40 (cosine similarity = 0.88). In these cases, we 
either reduced the number of de novo extracted signatures so that 
only one of these similar signatures was extracted, or we instructed 
‘fit_extract_signatures’ to fit both COSMIC SBS1 and COSMIC SBS5.

ssDNA signatures were extracted by taking advantage of sigfit’s 
ability to analyse 192-trinucleotide context mutational spectra that 
distinguish transcribed versus untranscribed strands. Instead, we use 
this feature to distinguish central pyrimidine versus central purine 
contexts. We do this by arbitrarily setting central pyrimidine and cen-
tral purine ssDNA calls to the transcribed and untranscribed strands, 
respectively (by setting the strand column to ‘−1’ for all calls that are 
input into sigfit’s ‘build_catalogues’ function, without collapsing central 

https://github.com/cancerit/NanoSeq


pyrimidine and central purine contexts). We then extract ssDNA sig-
natures as described above for dsDNA signatures, with correction for 
trinucleotide context opportunities. Cosine similarities of ssDNA and 
dsDNA signatures are calculated after projecting ssDNA signatures to 
96-central pyrimidine contexts, which is performed by summing values 
of central pyrimidine contexts with values of their reverse-complement 
central purine contexts.

To help to qualify the significance of cosine similarities, we per-
formed simulations of random 96-element and 192-element number 
vectors (n = 10,000 random vector pairs each), which showed that 
5.9%, 0.06% and 0% of random 96-context cosine similarities are above 
cut-offs of 0.8, 0.85 and 0.9, respectively, and 1.2%, 0% and 0% of random 
192-context cosine similarities are above cut-offs of 0.8, 0.85 and 0.9, 
respectively. Thus, for 96-context comparisons (that is, dsDNA and 
projected ssDNA to dsDNA comparisons), we use the qualitative terms 
‘weak similarity’ for 0.8 ≤ cosine similarity < 0.85, ‘moderate similar-
ity’ for 0.85 ≤ cosine similarity < 0.9, and ‘strong similarity’ for cosine 
similarity ≥ 0.9. For 192-context comparisons (that is, ssDNA to ssDNA 
comparisons), we use the terms ‘moderate similarity’ for 0.8 ≤ cosine 
similarity < 0.85 and ‘strong similarity’ for cosine similarity ≥ 0.85.

Replication strand asymmetry (fork polarity) analysis
ENCODE replication timing (Repli-seq) data97 (wavelet-smoothed sig-
nal) were obtained from the UCSC Genome Browser80 (hg19) for the 
lymphoblastoid cell lines GM12878, GM06990, GM12801, GM12812 
and GM12813. We calculated the average of the Repli-seq signal (higher 
values indicate earlier replication) across these samples at each posi-
tion, and then lifted over the data to CHM13 v.1.0. For each analysed 
HiDEF-seq call, we calculated the fork polarity98 as the slope versus 
position of the Repli-seq data points spanning −5 to +5 kb from the 
call using the ‘lm’ function in R. Positive and negative fork polarities 
indicate the genome non-reference (−) strand is synthesized more 
frequently in the leading- and lagging-strand direction, respectively. 
This was also performed for a set of 50 iterations of 1,000 randomly 
selected genomic positions with either the sequence or the reverse 
complement of the sequence corresponding to the trinucleotide con-
text being analysed (that is, AGA or TCT for POLE samples). We next 
calculated the fork polarity quantile values at quantiles ranging from 
0 to 1.0 in 0.1 increments, and then for each of these quantile bins 
(combining 0.4–0.5 and 0.5–0.6 quantile bins into one bin, as these 
span fork polarity 0), we counted the number of loci whose sequence 
is AGA in the genome non-reference (−) strand and the number of loci 
whose sequence is AGA in the reference genome (+) strand. Loci with-
out annotated Repli-seq data were excluded. Next, for each genome 
strand, we calculated normalized call counts by dividing the quantile 
bin call counts by the total number of calls in that strand. For each of 
the nine quantile bins, we then calculated the ‘strand ratio’ as the ratio 
of non-reference to reference strand normalized call counts. We also 
calculated this strand ratio for positive and negative fork polarities 
(that is, two bins rather than nine quantile bins), as there were not 
enough ssDNA calls in individual quantile bins for analysis. Analyses 
were also repeated after excluding loci within genic regions annotated 
in the CHM13 v.1.0 LiftOff Genes V2 annotation obtained from the 
UCSC Genome Browser.

Kinetics analysis
Signatures of sequencing polymerase kinetics have been previously 
identified for diverse base modifications in synthetic oligonucleotides, 
and they have been used to detect a small number of base modifica-
tions in genomic DNA such as cytosine methylation43,99. However, this 
approach has not yet been used to detect uracil-species in genomic 
DNA with single-molecule fidelity. We performed the kinetics analysis 
as follows.

For each sample, consensus sequences for each strand were cre-
ated using pbccs v.6.4.0 (Pacific Biosciences) with the parameters: 

--by-strand --hifi-kinetics --min-rq 0.99 --top-passes 0. pbccs v.6.4.0 
was used because, with these parameters, it outputs consensus kinet-
ics values for each strand separately, which previous versions of pbccs 
do not. Consensus sequence reads were then aligned to the CHM13 
v.1.0 reference genome with pbmm2 with the parameters ‘--preset 
CCS --sort’.

Next, we extracted the list of ssDNA C>T sequence calls in the 72 °C 
heat-treated blood DNA and the sperm samples (profiled by HiDEF-seq 
with nick ligation). Owing to the very high number of ssDNA C>T calls 
in blood DNA samples that were heat treated in water-only or Tris-only 
buffer, for these samples, we selected a random subset of 800 calls. We 
then extracted from these samples and from 85 other HiDEF-seq sam-
ples all of the consensus reads that overlapped the C>T call positions, 
from the strand synthesized by the sequencing polymerase opposite 
to the strand on which the call is present in the molecule. As kinetics is 
affected by sequence context43, this enables calculation of differences 
in kinetics between molecules with and without the event within the 
same sequence context. We next performed kinetic analyses of IPD and 
PW. Kinetics values (IPD or PW, reported by the sequencing instrument 
at a 10 ms frame rate) for each consensus read were transformed into 
units of time (seconds) and normalized by the average kinetics values 
of all bases in the consensus read to correct for baseline sequencing 
kinetics differences between molecules. For each C>T call, we extracted 
the kinetics values of all overlapping reads for ±30 bp flanking the event 
position relative to the reference genome coordinates using each read’s 
CIGAR value to account for insertions or deletions in the read relative to 
the reference genome. Next, for each C>T call, we calculated the ratio 
of kinetics values for each base position by dividing the kinetics values 
(IPD or PW) of the molecule with the call by the weighted average kinet-
ics values of molecules without the call (the weighted average weights 
by each molecule’s number of passes; that is, its ‘ec’ tag value). Finally, 
for each flanking and mutant base position, we calculated the average 
and s.e.m. of the kinetics value ratios across all C>T calls of each sample 
or sample set of interest. The same kinetic analysis was performed 
for dsDNA C>T mutation calls (that is, bona fide cytosine to thymine 
double-strand mutations) in non-heat-treated blood DNA, 56 °C and 
72 °C heat-treated blood DNA, sperm, kidney, and liver samples (all 
profiled by HiDEF-seq with nick ligation), for the strands synthesized 
by the sequencing polymerase opposite the strand containing the 
C>T mutation; this shows the kinetic profile of true C>T changes, as a 
comparator for C>T calls arising from cytosine damage. Note that the 
dsDNA C>T mutations used for this kinetics analysis were called with 
the same thresholds used for ssDNA C>T calls. Both these ssDNA and 
dsDNA analyses were additionally conducted after randomization of 
labels among molecules with and without the C>T call to confirm that 
the kinetic signal was specific to molecules with the C>T call. The kinetic 
profile heat map and clustering were performed using the Complex-
Heatmap R package100.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study (FASTQ files for Illumina 
sequencing; subreads BAM files for PacBio data) are available at the 
NCBI database of Genotypes and Phenotypes under accession code 
phs003604 (all of the samples except those from the International Rep-
lication Repair Deficiency Consortium and participants D1 and D2) and 
at the European Genome–Phenome Archive under accession number 
EGAS50000000318 (samples from the International Replication Repair 
Deficiency Consortium). Sequencing data of participants D1 and D2 
were not deposited in these databases due to consent limitations. Acces-
sion IDs of specific samples are provided in Supplementary Table 1.

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003604
https://ega-archive.org/studies/EGAS50000000318
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Code availability
The source code for the HiDEF-seq analysis pipeline is available at 
GitHub (https://github.com/evronylab/HiDEF-seq), and the version 
used for this manuscript (v.1.1) is archived in Zenodo (https://doi.
org/10.5281/zenodo.10898439).
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Extended Data Fig. 1 | HiDEF-seq library preparation and sequencing 
metrics. a, Representative DNA sizing electropherogram after Hpy166II 
restriction enzyme digestion (top) and after completion of the HiDEF-seq 
library preparation, which removes fragments <1 kb (bottom). b, Two- 
dimensional histogram of all molecules from a representative HiDEF-seq 
sequencing run of each molecule’s longest strand read length (bp, base pairs) 
versus its total polymerase read length (PRL). Dashed line signifies the expected 
strand length distribution. The red diagonal line reflects 18% of molecules with 
<1 strand pass, which is typical in PacBio sequencing. c, Histogram (200 bp 
bins) for representative HiDEF-seq samples (n = 51) of molecule consensus 
sequence lengths (i.e., molecule sizes). Line and shaded region show average 
and standard deviation, respectively, across samples for each bin. The average 
of these samples’ median lengths is 1.7 kilobases (kb). d, Histogram as in panel 
(c), showing HiDEF-seq (n = 51 representative samples) yields smaller molecule 
lengths than standard PacBio (HiFi) samples (n = 10 samples). The average  
of samples’ median lengths are 1.7 kb and 18.3 kb for HiDEF-seq and HiFi, 
respectively. e, Two-dimensional histogram of the number of passes (bin width 
of 5 passes) vs. consensus sequence lengths (bin width of 200 bp) for molecules 
from the 51 representative HiDEF-seq samples plotted in panels (c,d). Bins are 

coloured if there is at least one molecule in the bin. f, Box plots of the fraction  
of a molecule’s consensus sequence bases (average of forward and reverse 
strands) that have the maximum predicted quality (quality=93, as predicted by 
ccs, Methods) versus the number of passes per strand, across all molecules of 
the same samples included in panels (c-e). Note: 93 is the quality required for 
HiDEF-seq analysis. This plot illustrates that the number of passes is a key 
determinant of consensus quality in both HiDEF-seq and HiFi. b, Plot generated 
by SMRT Link (Pacific Biosciences) software. c-e, The single-molecule 
consensus sequence length is the average of the forward and reverse strand 
lengths. Bin values are normalized to the bin with the highest molecule count. 
e,f, The number of passes per strand is the average of the forward and reverse 
strand ‘ec’ tags (Methods). c-f, Plots show data of HiDEF-seq molecules that are 
output by the primary data processing step of the HiDEF-seq analysis pipeline 
and standard PacBio HiFi molecules that are output by the ccs HiFi pipeline 
(Methods). f, Box plot: middle line, median; boxes, 1st and 3rd quartiles; 
whiskers, the maximum/minimum values within 1.5 x interquartile range. 
X-axis: square brackets and parentheses signify inclusion and exclusion of 
interval endpoints, respectively.
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Extended Data Fig. 2 | Schematic of analysis pipeline. Primary data 
processing (blue) is followed by call filtering (green) along with germline 
sequencing analysis (orange), which is then followed by call burden and 
signature analysis (purple). See Methods for full details. On the left of primary 
data processing steps are the average percentage of molecules filtered by each 
step across 17 representative HiDEF-seq sequencing runs. Approximately half 
of molecules filtered by the ‘Generate consensus sequence’ step are molecules 
with less than 3 full-length passes (default setting of the ccs tool that creates 
consensus sequences), and the other half are due to molecules with read 
quality (‘rq’ tag) <0.99. At the end of the call filtering steps are listed the 

percentage of bases filtered by all the call filtering steps, calculated out of the 
total bases of molecules that pass primary data processing, for the same 17 
representative HiDEF-seq sequencing runs. The filter for ‘low-quality genomic 
regions and gnomAD variants with allele frequency (AF) > 0.1% in the 
population’ covers approximately 15% and 7% of the genome when using 
Illumina and PacBio germline sequencing data, respectively (i.e., when PacBio 
germline sequencing data is used, the pipeline uses less restrictive filters due 
to fewer genome alignment errors and artifacts). WGS, whole-genome 
sequencing.
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Extended Data Fig. 3 | Analysis thresholds and comparison of analyses 
using short- versus long-read germline sequencing. a, Histogram of 
predicted consensus sequence accuracy (‘rq’ tag, bin width=0.0001) for DNA 
molecules that pass primary data processing steps from 3 representative 
sperm samples profiled by HiDEF-seq (with nick ligation) (21yo: SPM-1002; 
39yo: SPM-1004; 44yo: SPM-1020; yo, years old). Note, these are consensus 
sequence accuracies predicted by the ccs consensus calling software (Methods), 
which are used to filter low-quality molecules, but these accuracies do not 
reflect the true accuracy that is significantly higher. b, Box plot of passes per 
strand for different consensus sequence accuracy bins, for molecules from the 
3 samples included in the prior panel, showing that higher minimum accuracies 
select for molecules with higher numbers of passes. c, Fraction of post-primary 
data processing molecules that are filtered (left plot) and fraction of post-
primary data processing base pairs that remain for interrogation (right plot) 
using different minimum passes per strand and consensus sequence accuracy 
thresholds. Values show average of the 3 samples included in the prior panels, 
after completing all steps of the mutation filtering pipeline. d,e, dsDNA 
mutation burdens for the 3 samples included in the prior panels using different 
minimum passes per strand and consensus sequence accuracy thresholds. 
Panel (e) shows data from (d) at consensus accuracy of 0.99 with Poisson 95% 
confidence intervals. These data illustrate stability of dsDNA mutation burden 
estimates at broad thresholds using sperm as the most stringent test of fidelity. 
f, Fraction of high-quality, known heterozygous germline variants detected 
using different minimum required fraction of molecule passes (i.e., subreads) 
that detect the variant (filter applied separately to each strand). This value is 
used for sensitivity correction (Methods). Values show average of the 3 samples 
included in prior panels. g,h, dsDNA mutation burdens for the 3 samples 
included in the prior panels using different minimum required fraction of 
molecule passes that detect the variant (filter applied separately to each 
strand), after correcting for sensitivity (g), and using different minimum 

required distances from the end of the read (h). Panel (g) illustrates that 
correcting for sensitivity maintains stable burden estimates. The analysis 
pipeline requires a minimum of 10 bp from the ends of reads to remove rare 
alignment artifacts, although this does not significantly alter burden 
estimates. i, ssDNA call burdens for the 3 sperm samples included in the prior 
panels using different minimum passes per strand and consensus sequence 
accuracy thresholds. Plot shows a small decrease in ssDNA call burdens with a 
higher minimum required passes per strand at low consensus sequence 
accuracy thresholds, and convergence to similar burdens at high consensus 
sequence accuracy thresholds. Data shown with minimum fraction of 0.5 
molecule passes that detect the variant. j, ssDNA call burdens for the 3 sperm 
samples included in the prior panels using different minimum required 
fraction of molecule passes that detect the variant, after correcting for 
sensitivity. Data shown with a minimum consensus sequence accuracy of 0.999 
and a minimum of 20 passes per strand. k,l, Concordant dsDNA mutation and 
ssDNA call burdens obtained by HiDEF-seq using short-read (Illumina) or long-
read (PacBio, Pacific Biosciences) germline sequencing during analysis, for two 
samples (1301 and 1901 blood). a-d,i, Consensus sequence accuracies are the 
average of forward and reverse strand accuracies. b, Box plot: middle line, 
median; boxes, 1st and 3rd quartiles; whiskers, the maximum/minimum values 
within 1.5 x interquartile range. X-axis: square brackets and parentheses signify 
inclusion and exclusion of interval endpoints, respectively. c-e,i, Threshold for 
minimum required passes per strand is applied to both strands. c-j, The 
symbols ‡ and § mark the final thresholds chosen for dsDNA and ssDNA 
analyses, respectively. c,f, Error bars: standard deviation; note, panel (f) error 
bars are small and therefore not well visualized. d,e,g-l, Mutation and call 
burdens are corrected for sensitivity and trinucleotide context opportunities 
of the full genome relative to interrogated bases (Methods). e,g,h,j-l, Dots and 
error bars: point estimates and their Poisson 95% confidence intervals.
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Extended Data Fig. 4 | dsDNA mutation burdens of HiDEF-seq without 
ssDNA nick ligation and removal of ssDNA artifacts by ssDNA nick ligation. 
a, dsDNA mutation burdens in two sperm samples (left to right: SPM-1004, 
SPM-1020) profiled by HiDEF-seq without ssDNA nick ligation and by NanoSeq, 
compared for each age (yo, years old) to paternally phased de novo mutations 
in children from a prior study of 2,976 trios14. See Fig. 1c for sperm samples 
profiled by HiDEF-seq with nick ligation. b, dsDNA mutation burdens versus 
age, measured by HiDEF-seq without nick ligation (see Fig. 1d for samples 
profiled by HiDEF-seq with nick ligation). Dashed lines (liver, kidney): weighted 
least-squares linear regression. Dotted lines (blood, neurons): these only 
connect two data points to aid visualization of burden difference, since 
regression cannot be performed with two samples. c, Mutational signature 
contribution to dsDNA mutations detected in samples profiled by HiDEF-seq 
without nick ligation (see Extended Data Fig. 5i for samples profiled by HiDEF-
seq with nick ligation). All samples, except blood from a 62-year-old individual 
with a history of kidney disease (1901, asterisk), were jointly analysed with 
fitting of SBS1 and de novo extraction of one additional signature SBSi (Methods). 
The blood sample of the 62-year-old was analysed separately together with 5 
other HiDEF-seq (with nick ligation) blood samples from this individual, due to 
identification of an additional signature SBSii with strong and moderate 
similarity to SBS19 and SBS23, respectively. Analysis of samples grouped by 
tissue type, excluding the 62-year-old blood sample, produced similar results. 
For de novo extracted signatures (SBSi and SBSii), the cosine similarities to the 
most similar COSMIC signatures are shown in parentheses. Sperm samples and 
kidney and liver samples from an infant (1443) were not included here since the 
number of mutations is too low for reliable signature extraction. d, Burdens of 
dsDNA mutations (left plot) and ssDNA calls (right plot) of a blood sample 

(individual 1301) measured by HiDEF-seq without versus with nick ligation. 
Nick ligation eliminates T > A ssDNA artifacts that match the illustrated 
GTTBVH motif. The motif was derived using the ggseqlogo R package (ref. 101) 
using all ssDNA T > A calls from the sample profiled by HiDEF-seq without nick 
ligation. Grey bar is calls matching the motif with log-odds score > 2 calculated 
with the score_match function of the universalmotif R package. e,f, Proposed 
mechanism for the GTTBVH motif of ssDNA artifactual calls in HiDEF-seq 
without ssDNA nick ligation. The known GTNNAC motif of the Hpy166II 
restriction enzyme used in HiDEF-seq may arise if Hpy166II operates as a dimer 
(cut sites signified by triangles) with each monomer binding opposite strands, 
and the GTTBVH motif is due to intersection (∩) and union (U) combinatorial 
logic for the outer and inner 2 bases, respectively (e). Without nick ligation, 
ssDNA GT[T > A]BVH artifactual calls may arise from rare Hpy166II monomer 
nicking events, pyrophosphorolysis of the ‘T’ upstream of the nick, and 
addition of a mismatched ‘A’ during the Klenow dATP/ddBTP A-tailing reaction. 
Further extension with ddBTP does not occur due to the mismatch (ref. 102). 
This process is prevented in HiDEF-seq by nick ligation. g, Nick ligation 
increases HiDEF-seq library yield by 66% for post-mortem tissues, likely by 
repairing nicks in the original input DNA so that the molecules are not 
eliminated in the final nuclease treatment step. Bars show average yield for 
each group; number of samples per group (left to right): 8, 8, 5, 9 (**, p = 0.002; 
ns, not significant; two-sided unpaired t-test). a, Box plots: middle line, median; 
boxes, 1st and 3rd quartiles; whiskers, 5% and 95% quantiles. For each sample, 
HiDEF-seq and NanoSeq confidence intervals were normalized to reflect an 
equivalent number of interrogated base pairs (Methods). a,b,d, Error bars: 
Poisson 95% confidence intervals. g, Error bars: standard deviation.
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Extended Data Fig. 5 | HiDEF-seq without A-tailing removes ssDNA artifacts 
of post-mortem tissues with fragmented DNA. a, Fraction of ssDNA calls that 
are T > A (corrected for trinucleotide context opportunities) versus the ssDNA 
T > A burden in all samples profiled by HiDEF-seq with A-tailing (i.e., Klenow 
reaction +dATP/+ddBTP) from healthy individuals and cell lines (i.e., excluding 
cancer predisposition syndromes). Post-mortem kidney and liver consistently 
have the highest fraction of ssDNA calls that are T > A. b, ssDNA call spectrum 
for a liver sample profiled by HiDEF-seq with A-tailing exhibiting a high ssDNA 
T > A burden (6.8⋅10−7 T > A burden; 7.6⋅10−7 total ssDNA call burden), corrected 
for trinucleotide context opportunities. Parentheses show total number of 
calls. c, Correlation between ssDNA T > A artifact burden and the input DNA’s 
DNA Integrity Number measured by TapeStation electrophoresis (ref. 103) 
across all samples profiled by HiDEF-seq with A-tailing from healthy individuals 
and cell lines (i.e., excluding cancer predisposition syndromes). Lower DNA 
Integrity Number corresponds to more fragmented DNA. d, Proposed 
mechanism for the ssDNA T > A artifact calls in fragmented DNA when 
performing HiDEF-seq with A-tailing and its prevention in HiDEF-seq without 
A-tailing. e, Modifications of the HiDEF-seq protocol to eliminate ssDNA T > A 
artifacts in fragmented DNA. All trials were from the same DNA extraction 
aliquot (liver from individual 5697). See Methods for details. PNK, 
polynucleotide kinase; Bst, Bst large fragment; min, minutes. f, ssDNA call 
spectra for three of the samples shown in panel (e): standard HiDEF-seq with 
A-tailing (top, same spectrum as panel (b)), HiDEF-seq with a Klenow reaction 
that does not contain dATP nor ddBTP (middle), and HiDEF-seq with a Klenow 

reaction containing only ddBTP (bottom). The total number of ssDNA calls and 
total ssDNA call burden (calls per base) are shown. g, Fraction of ssDNA calls 
that are T > A (corrected for trinucleotide context opportunities) versus the 
ssDNA T > A burden in post-mortem liver (n = 5) and kidney (n = 5) samples 
profiled by HiDEF-seq without A-tailing (i.e., Klenow reaction -dATP/+ddBTP). 
h, Concordant dsDNA mutation burdens in sperm sample SPM-1013 measured 
by HiDEF-seq with A-tailing (i.e., Klenow reaction +dATP/+ddBTP) and without 
A-tailing (i.e., Klenow reaction -dATP/+ddBTP). yo, years old. i, Mutational 
signature contribution to dsDNA mutations detected by HiDEF-seq in primary 
human tissues from individuals without cancer predisposition. Post-mortem 
liver and kidney samples were profiled by HiDEF-seq without A-tailing. All 
samples, except blood from a 62-year-old individual with a history of kidney 
disease (1901, asterisk), were jointly analysed with fitting of SBS1 and de novo 
extraction of one additional signature SBSiii. Blood samples of the 62-year-old 
profiled by HiDEF-seq were analysed separately (plot shows average signature 
contributions across 5 blood samples) due to identification of an additional 
signature SBSiv. Analysis of samples grouped by tissue type, excluding the 
62-year-old blood sample, produced similar results. For de novo extracted 
signatures (SBSiii and SBSiv), the cosine similarities to the most similar 
COSMIC signatures are shown in parentheses. Sperm, kidney and liver samples 
from an infant (1443) and 18-year-old (1409), and blood from a 4-year-old (5203) 
are not included here since their number of mutations are too low for reliable 
signature extraction. e,h, Bars (e) and dots (h) show point estimates, and error 
bars are their Poisson 95% confidence intervals. e-g, Rxn, reaction.



Extended Data Fig. 6 | Comparison of HiDEF-seq and NanoSeq. a, Comparison 
of HiDEF-seq versus NanoSeq dsDNA mutation spectra for individual 63143.  
b, Comparison of HiDEF-seq versus NanoSeq ssDNA call burdens, separated  
by call type. For each call type (i.e., C > A, C > G, etc.), each bar represents a 
different sample. Samples for each call type, from left to right, are 1105 and 

6501 for healthy blood; 63143 for POLE blood; and 1443 for kidney. Comparison 
for sperm samples is shown in Fig. 1g. c, Comparison of HiDEF-seq versus 
NanoSeq ssDNA call spectra for 6501 (Blood, 43 yo), 63143 (POLE blood), and 
SPM-1060 (sperm, 49 yo). a-c, yo, years old; mo, months old.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | dsDNA mutation burdens and patterns in cancer 
predisposition syndromes. a, Fraction of dsDNA mutations in each context. 
Non-cancer predisposition samples are (left to right): Blood (B) 5203, 1105, 
1301, 6501, and 1901; lymphoblastoid cell line (LCL) GM12812; primary 
fibroblasts GM02036 and GM03348. Cancer predisposition samples are (left-
to-right, in the same order and annotated sample types as top-to-bottom 
cancer predisposition samples in panel (c)): GM16381, GM01629, GM28257, 
55838, 58801, 57627, 1400, 1324, 1325, 60603, 59637, 57615, 63143 (LCL), 63143 
(B), CC-346-253, CC-388-290, CC-713-555. Affected genes annotated below. 
Note, GM02036 (asterisk) has a significant increase in C > T mutations with a 
spectrum matching COSMIC SBS7a (ultraviolet light exposure), likely due to 
the fibroblasts deriving from sun-exposed skin. b, Representative dsDNA 
mutation spectra of a sample for each affected gene, corrected for trinucleotide 
context opportunities. Sample IDs are in parentheses. Ages (yo, years old) are 
listed for blood samples. c, Fraction of dsDNA mutations attributable to 
de novo extracted dsDNA mutational signatures. Sample genotypes are on the 
right (hom., homozygous; compound heterozygous variants separated by ‘/’). 
In parentheses is the cosine similarity to the most similar COSMIC signature 
when the similarity is ≥ 0.8 (weak similarity: 0.8 – 0.85; moderate similarity: 
0.85 – 0.9; strong similarity: ≥ 0.9; Methods). In ERCC6 and ERCC8 mutant cell 
lines, whose mutational patterns are unknown, we identified signature SBSB 
with weak similarity (cosine similarity 0.82) to the COSMIC SBS36 signature. 
For SBSF, the most similar COSMIC signature is SBS10c, but the cosine 
similarity of 0.79 is not considered significant. For SBSG, the most similar 
COSMIC signature is SBS40, but the cosine similarity of 0.76 is not considered 
significant. SBSG had non-significant similarities to SBS18 (0.69) and SBS36 
(0.59), which have been previously associated with MUTYH21. These MUTYH 
signatures were not extracted due to the normal mutation burdens of our 
MUTYH blood samples (see panel (d)), which is expected at these sample ages 
and our interrogated base coverage21. Note that SBS40 resembles SBS18 and 
SBS36 in the C > A spectrum that is enriched in MUTYH syndrome21. Signature 
extraction was performed for samples of each DNA repair pathway (except XPC 
separately from ERCC6/ERCC8), while simultaneously fitting COSMIC SBS1 and 
SBS5 (Methods). Samples are in the same top-to-bottom order as left-to-right 
cancer predisposition samples in panel (a). d, dsDNA mutation burden per base 
pair divided by the age of the individual in years at the time of blood collection, 
corrected for trinucleotide context opportunities and sensitivity. Only blood 
samples are shown, since blood can be annotated with the age of the individual. 
Accordingly, since we did not profile blood samples nucleotide excision repair 
syndrome, this category is not shown. Non-cancer predisposition blood 
samples are the same (left-to-right) as in panel (a) (left-to-right). Cancer 
predisposition blood samples are the same (left-to-right) as blood samples in 
panel (c) (top-to-bottom). Affected genes annotated below. e, Replication 

strand asymmetry based on replication timing data (Methods) of AGA > ATA 
ssDNA mismatches and dsDNA mutations in POLE PPAP samples. Reference (+) 
refers to the human reference genome plus strand. Non-reference (-) strand 
lagging and leading strand synthesis corresponds to negative and positive fork 
polarity values, respectively (Methods). The ‘strand ratio’ (Y-axis) is calculated 
as the fraction of all AGA > ATA non-reference strand events that have the 
specified fork polarity divided by the fraction of all AGA > ATA reference strand 
mutations that have the specified fork polarity (Methods). *, p = 0.015; ***, 
p < 10−15 (chi-squared test; n = 73 ssDNA AGA > ATA mismatches; n = 3,871 
dsDNA AGA > ATA mutations). For dsDNA mutations, bars show the average 
across PPAP samples (n = 4), and for ssDNA mismatches, due to their low 
number, bars show a single estimate for calls pooled across PPAP samples. See 
(f) for analysis of dsDNA mutations separated by fork polarity quantiles (rather 
than positive versus negative polarity), which cannot be plotted for ssDNA 
mismatches due to the low number of ssDNA mismatches per quantile. ssDNA 
strand ratios were calculated using calls of all POLE PPAP samples, since there 
are too few calls to reliably analyse individual samples. dsDNA strand ratios 
were calculated separately for each sample (plot shows average and standard 
deviation). Excluding calls overlapping genes to exclude transcription strand 
biases was still significant for dsDNA mutations (p < 10−15) but not ssDNA 
mismatches, but the latter had significantly reduced power due to a 55% 
reduction in the number of analysed ssDNA calls. f, Replication strand 
asymmetry of AGA > ATA dsDNA mutations in POLE PPAP samples calculated 
for each fork polarity quantile. Fork polarity quantiles divide fork polarity 
values into 9 quantile bins from 0 to 1, with higher values corresponding to a 
greater probability of the non-reference strand being replicated in the leading 
rather than lagging strand direction (Methods). Random loci are the average  
of 50 sets of 1,000 random genomic loci with either the sequence AGA or TCT 
for which there is replication timing data at the locus. The ‘strand ratio’ is 
calculated for POLE PPAP samples as in (e), and it is calculated for random 
genomic loci as the fraction of all AGA non-reference strand loci that are in the 
fork polarity quantile bin divided by the fraction of all AGA reference strand 
loci that are in the fork polarity quantile bin. PPAP samples are the same top- 
to-bottom order in the legend as top-to-bottom PPAP samples in (c). Asterisks 
signify statistical significance in comparison of the POLE PPAP 4-sample 
average (dashed line) to random loci (heteroscedastic two-tailed t.test); 
p-values left-to-right for asterisks: 3.7⋅10−17, 0.001, 0.009, 0.02, 0.003. 
Excluding mutations overlapping genes to exclude transcription strand biases 
produced similar results (p = 3.1⋅10−10, 0.003, and 0.04 for quantiles 0-0.1, 0.1-
0.2, and 0.6-0.7, respectively), but this analysis has reduced power due to the 
55% reduction in the number of mutations. a-f, See additional samples details in 
Supplementary Tables 1–4. e,f, Error bars: standard deviation.
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Extended Data Fig. 8 | Hypermutating tumours deficient in both mismatch 
repair and polymerase proofreading. a, Burdens of dsDNA mutations (left) 
and ssDNA calls (right). Burdens are corrected for trinucleotide context 
opportunities and detection sensitivity (Methods). b,c, Fraction of dsDNA 
mutation burdens (b) and ssDNA call burdens (c) by context, corrected for 
trinucleotide context opportunities. d, ssDNA mismatch signature SBS14ss 
extracted from tumour samples, while simultaneously fitting SBS30ss*.  
e, Fraction of dsDNA mutations attributed to each dsDNA signature. Cosine 
similarity of the extracted signature SBSH to the most similar COSMIC SBS 

signature is shown in parentheses. Cosine similarities of original spectra of 
samples to spectra reconstructed from component signatures are (left to 
right): 0.94 and 0.998. f, Fraction of ssDNA calls attributed to each ssDNA 
signature. Cosine similarities of original spectra of samples to spectra 
reconstructed from component signatures are (left to right): 0.91 and 0.98.  
a, Dots and error bars: point estimates and their Poisson 95% confidence 
intervals. a-c,e,f, MB, medulloblastoma (ID: Tumour 8); GBM, glioblastoma  
(ID: Tumour 10). See Supplementary Table 1 for sample details.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Burdens of ssDNA C > T calls, kinetic interpulse 
duration profiles, and profiling of heat treatment in varied buffers.  
a, Fraction of ssDNA calls that are C > T (corrected for trinucleotide context 
opportunities) across all HiDEF-seq samples from healthy individuals and cell 
lines (i.e., excluding cancer predisposition syndromes), versus the ssDNA C > T 
burden. Data shown for liver and kidney samples profiled by HiDEF-seq without 
A-tailing. Sperm consistently have the highest fraction of ssDNA calls that are 
C > T. LCL, lymphoblastoid cell line. b, Cosine similarity of ssDNA call spectra  
to SBS30 after projecting ssDNA spectra to central pyrimidine contexts.  
c, Average ratio of pulse widths (left) and interpulse durations (right) at C > T 
calls and 30 flanking bases relative to molecules aligning to the same locus 
without the call (sperm: n = 1799 calls; blood DNA 72 °C heat, 3 and 6 h: n = 626 
calls; dsDNA C > T mutations in a larger set of non-heat treated blood DNA, 
56 °C and 72 °C heat treated blood DNA, sperm, kidney, and liver samples: 
n = 1202 mutations; Methods). Positions +1 and +3 (stars) best discriminate 
ssDNA C > T damage from dsDNA C > T mutations. Yellow box is the span shown 
in Fig. 4f. d, Average ratio of pulse width (left column) and interpulse duration 
(right column) after randomizing labels of molecules with and without the 
calls, for the same samples and calls as in panel (c). e, dsDNA mutation and 
ssDNA call burdens of heat-treated blood DNA in an additional experiment 
testing the effect of different buffers and different DNA extraction methods 
(orange underline, Puregene alcohol precipitation; all other samples, 
MagAttract with magnetic beads). MgAc, magnesium acetate; MgCl2, 
magnesium chloride; KCl, potassium chloride; KAc, potassium acetate; Alb, 
albumin; Tris buffer is Tris-HCl except for the MgAc/KAc/Alb that is Tris-Acetate 

(see Supplementary Table 1 for concentrations). Non-heat treated DNA samples 
were placed on ice for 6 h. The percentage of ssDNA sequencing calls that are 
C > T are annotated above each sample. Cosine similarity to COSMIC dsDNA 
signature SBS30 is annotated below each sample, after collapsing ssDNA calls 
to central pyrimidine trinucleotide contexts and correcting for trinucleotide 
context opportunities, except for the no-heat treatment samples that do not 
have sufficient C > T calls (‘N/A’). f, SBS30ss* signature (reproduced from 
Fig. 4d) compared to spectra of ssDNA calls after 72 °C heat damage of blood 
DNA for 6 h (h) in only 10 mM Tris buffer (n = 10,852 calls) or only water  
(n = 2,751 calls). Spectra are plotted after correcting for trinucleotide context 
opportunities. Bottom, odds ratios of spectrum contributions at C > T contexts 
of the Tris-only and water-only samples compared to SBS30ss* (which was 
derived from sperm and salt-buffer heat-treated samples). Pyr, pyrimidine, Pur, 
purine. g, Heat map of average pulse width ratios for ssDNA and dsDNA C > T 
calls for positions −1 to +6, for blood DNA samples heated at 72 °C for 6 h in 
different buffers or water, and for additional samples for comparison. 
Unbiased clustering (dendrogram) separates kinetic profiles of ssDNA C > T 
calls from dsDNA C > T calls and from kinetic profiles after randomizing labels 
of molecules with and without the calls. dsDNA ‘Blood, heat’: blood DNA heat-
treated at 56 °C and 72 °C (both 3 h and 6 h for each); dsDNA ‘Blood’: 4 samples, 
not heat treated. dsDNA ‘Kidney and liver’: 10 samples, not heat treated.  
b, HiDEF-seq spectra are corrected for trinucleotide context opportunities. 
c,d, Error bars: standard error of the mean. e, Bars and error bars: point 
estimates and their Poisson 95% confidence intervals.



Extended Data Fig. 10 | APOBEC3A-induced dsDNA and ssDNA call burdens 
and patterns. a,b, Burdens (corrected for trinucleotide context opportunities 
and sensitivity) of dsDNA mutations (a) and ssDNA calls (b) in fibroblasts 
transduced with lentivirus-expressing green fluorescent protein (GFP) as a 
control or APOBEC3A with or without a nuclear localization signal (NLS). Two 
biological replicates are shown for each condition. c, Spectra of dsDNA 
mutations corrected for trinucleotide context opportunities. d, Fraction of 
dsDNA mutations attributed to each dsDNA signature. Cosine similarity of the 

de novo extracted signature SBSI to the most similar COSMIC SBS signature is 
shown in parentheses. Cosine similarities of original spectra of samples to 
spectra reconstructed from component signatures are (left to right): 0.99, 
0.98, 0.98, and 0.97. e, Spectra of ssDNA calls corrected for trinucleotide 
context opportunities. f, SBS2ss* obtained by de novo signature extraction 
from APOBEC3A samples. Cosine similarity to SBS2 is calculated after 
projecting to central pyrimidine trinucleotide context. a,b, Error bars:  
Poisson 95% confidence intervals.
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Extended Data Fig. 11 | Mitochondrial genome dsDNA mutation rates, 
similarity between SBS30ss* and mitochondrial genome heavy strand A > G 
dsDNA mutations, and mitochondrial ssDNA call spectra. a, Mitochondrial 
dsDNA mutation burdens versus age in liver and kidney samples, including liver 
samples from which mitochondria were enriched. Dashed lines: weighted 
least-squares linear regression. Shaded ribbon: 95% confidence interval.  
b, SBS30ss* (cytosine deamination) spectrum is projected to central 
pyrimidine trinucleotide contexts and compared to mitochondria heavy 
strand A > G dsDNA mutation spectrum (corrected for trinucleotide context 
opportunities), for different sample sets: (i) HiDEF-seq liver and kidney 
samples, including liver samples from which mitochondria were enriched  
(i.e., same set of samples in Fig. 5a, c and Extended Data Fig. 11a); (ii) 5697 

purified liver mitochondria samples only (plot includes 89% of the mutations in 
(i)); (iii) Sample set (i), excluding the 5697 purified liver mitochondria samples 
(plot includes 11% of the mutations in (i)). Note, the contexts of SBS30ss* are 
matched with the reverse complement flanking base contexts of mitochondria 
heavy strand A > G mutations. The number of dsDNA A > G mutations is indicated. 
c, Spectrum of mitochondrial ssDNA calls combined from the liver and kidney 
samples shown in Fig. 5a, c and Extended Data Fig. 11a. The spectrum is corrected 
for trinucleotide context opportunities, separately for each strand. See Fig. 5d 
for a spectrum that includes bulk (i.e., non-mitochondria enriched) samples 
profiled by HiDEF-seq with A-tailing. a, Dots and error bars: point estimates and 
their Poisson 95% confidence intervals.
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