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A meta-analysis on global change drivers and 
the risk of infectious disease

Michael B. Mahon1,2,8, Alexandra Sack1,3,8, O. Alejandro Aleuy1, Carly Barbera1, Ethan Brown1, 
Heather Buelow1, David J. Civitello4, Jeremy M. Cohen5, Luz A. de Wit1, Meghan Forstchen1,3, 
Fletcher W. Halliday6, Patrick Heffernan1, Sarah A. Knutie7, Alexis Korotasz1, Joanna G. Larson1, 
Samantha L. Rumschlag1,2, Emily Selland1,3, Alexander Shepack1, Nitin Vincent1 & 
Jason R. Rohr1,2,3,8 ✉

Anthropogenic change is contributing to the rise in emerging infectious diseases, 
which are significantly correlated with socioeconomic, environmental and  
ecological factors1. Studies have shown that infectious disease risk is modified by 
changes to biodiversity2–6, climate change7–11, chemical pollution12–14, landscape 
transformations15–20 and species introductions21. However, it remains unclear  
which global change drivers most increase disease and under what contexts.  
Here we amassed a dataset from the literature that contains 2,938 observations of 
infectious disease responses to global change drivers across 1,497 host–parasite 
combinations, including plant, animal and human hosts. We found that biodiversity 
loss, chemical pollution, climate change and introduced species are associated with 
increases in disease-related end points or harm, whereas urbanization is associated 
with decreases in disease end points. Natural biodiversity gradients, deforestation 
and forest fragmentation are comparatively unimportant or idiosyncratic as drivers 
of disease. Overall, these results are consistent across human and non-human 
diseases. Nevertheless, context-dependent effects of the global change drivers on 
disease were found to be common. The findings uncovered by this meta-analysis 
should help target disease management and surveillance efforts towards global 
change drivers that increase disease. Specifically, reducing greenhouse gas 
emissions, managing ecosystem health, and preventing biological invasions and 
biodiversity loss could help to reduce the burden of plant, animal and human 
diseases, especially when coupled with improvements to social and economic 
determinants of health.

Emerging infectious diseases are on the rise, often originate from wild-
life, and are significantly correlated with socioeconomic, environmen-
tal and ecological factors1. As a consequence, there is concern that 
anthropogenic global change is contributing to alterations in disease 
risk. For example, several studies have demonstrated that infectious 
disease risk is modified by changes to biodiversity2–6, climate change7–11 
and chemical pollution12–14. Landscape transformations, such as forest 
conversion to agriculture or urban centres, also regularly shift disease 
risk15–20. Moreover, the movement of people, products and animals 
around the planet has resulted in pathogen introductions with mas-
sive health consequences for humans, domesticated plants and ani-
mals, and wildlife21. Mechanistically, global change can alter disease 
by affecting the distribution of epidemiological traits in ecological 
communities, modulating immune defences, and altering contact 
rates among pathogens, wildlife, livestock and humans. For example, 
the COVID-19 pandemic, which reshaped the global economic and 

public health landscape, has been linked to animal trade and global 
travel, and researchers have speculated that there are associations 
with urbanization, climate change, air pollution and habitat loss22. This 
pandemic has also undoubtedly heightened interest in understand-
ing causes of disease outbreaks and investment in infectious disease 
control, mitigation and surveillance.

Although there are many individual studies on infectious disease risk 
and environmental change, as well as syntheses on how some drivers of 
ecosystem change affect infectious diseases1–21, formal meta-analyses 
are lacking examining how infectious diseases of plants, animals and 
humans are modified across global change drivers23. This literature gap 
is critical to fill because resources for infectious disease management 
will always be limited and could be poorly targeted without knowl-
edge of which global change drivers most affect infectious disease 
risk. Moreover, risk might be high for only certain types of pathogens 
or hosts, for wildlife but not human diseases, or for certain ecological 
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conditions. For example, the emergence of zoonotic diseases of humans 
tends to be driven more by interactions with particular mammalian 
and avian taxa than other vertebrate groups24–26. Thus, understanding 
these context dependencies will further enhance the efficacious use 
of limited resources for disease control.

Here our primary goal is to use a traditional meta-analytical approach 
to determine the magnitude with which global change drivers are asso-
ciated with infectious disease risk and whether these associations 
depend on ecological contexts, such as host or parasite/pathogen 
(hereafter referred to as parasite, which refers to all infectious agents 
including bacteria and viruses) taxon or human versus non-human 
disease. To accomplish these goals, we conducted a literature search 
to identify studies on infectious disease that considered at least one of 
the five major drivers of global change highlighted by the Millennium 
Ecosystem Assessment27: biodiversity change, climate change, chemi-
cal pollution, habitat loss/change (defined as anthropogenic destruc-
tion of an ecosystem or the shift in habitat from one type to another; 
for example, slash and burn, clearcutting, urban-to-rural gradient) or 
introduced species (Methods).

Database of infectious disease studies
The database resulting from our literature search includes 972 studies 
and 2,938 observations of global change drivers on disease or parasit-
ism from 1,006 parasite taxa, 480 host taxa and 1,497 host–parasite taxa 
combinations (Fig. 1 and Extended Data Fig. 1). Each continent except 
for Antarctica was well represented with data from field studies across 
the global change drivers (Fig. 1g). In contrast to many meta-analyses, 
we had reasonable coverage of studies within low- and middle-income 
countries (LMICs; that is, more than 20 field studies in the LMICs per 
driver), except for chemical pollution and introduced species (6 and 
3 field studies in the LMICs, respectively; Fig. 1g). Nevertheless, there 
were still less data available for LMICs, highlighting the need for addi-
tional research in these countries.

Each observation in the database contains information on the asso-
ciated global change driver and host and parasite taxa and traits (for 
example, human versus non-human parasite), and whether it was 
derived from freshwater, marine, or terrestrial systems and laboratory 
or field studies (Fig. 1, Extended Data Figs. 2 and  3 and Supplementary 
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Fig. 1 | The number of observations across ecological contexts. a–f, Summary 
of the number of observations (that is, effect sizes) in the infectious disease 
database across the following ecological contexts: global change driver (a), 
parasite taxa (b), host taxa (c), experimental venue (d), habitat of the study (e) 
and human parasite status (f). g, The locations of field studies show broad 
global coverage of studies included in the database. See Extended Data Fig. 2 
for the number of parasite taxa as well as the number of parasite taxa in the 

database partitioned by ecto- and endoparasites, ecto- and endothermic hosts, 
vectors and non-vectors, vector-borne and non-vector-borne parasites, complex 
and direct transmission parasites, parasites with and without free-living stages, 
parasites that do and do not infect humans, microparasites and macroparasites, 
and zoonotic and non-zoonotic parasites. The numbers of effect sizes and 
studies across all of these end points are shown in Supplementary Table 2. The 
base map is from Natural Earth (https://www.naturalearthdata.com/).

https://www.naturalearthdata.com/
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Table 2). Moreover, each response variable was classified as a host end 
point, which captures host symptoms or consequences of infection 
(disease presence, disease severity, survival, growth and reproduction) 
or a parasite end point, which captures parasite pressure in hosts (para-
site prevalence, incidence, intensity, abundance, survival, growth and 
richness). Hedge’s g and log response ratio effect sizes were calculated 
from each study, with positive and negative effect sizes represent-
ing increases and decreases in disease, respectively. The exception  
was for studies on introduced species, for which decreases and 
increases in parasites or disease in the native host received negative 
and positive values, respectively, but the opposite was true for non- 
native hosts because a reduction in disease in non-native hosts and an 
increase in native hosts were both deemed to be potentially detrimental 
(further discussion is provided in the Methods and Supplementary 
Information 1).

Comparing among global change drivers
Among the global change drivers, habitat loss/change caused sig-
nificant reductions in disease, while chemical pollution, climate 
change, introduced species and biodiversity change increased disease 
responses or disease-related harm, in order of increasing magnitude. 
These patterns were similar using Hedge’s g and log response ratios 
(Figs. 2 and 3 and Extended Data Fig. 4) and we therefore focus on 
Hedge’s g hereafter. Biodiversity change was associated with a 393% 
greater increase in disease compared with chemical pollution, a 111% 
greater increase in disease compared with climate change and a 65% 
greater increase in disease compared with introduced species (Fig. 2). 

Importantly, we found no evidence that effect-size patterns among 
global change drivers could be explained by differences in variances 
or sample sizes among global change drivers (Extended Data Fig. 5), 
extreme values (Extended Data Fig. 6a), or publication (Extended Data 
Fig. 6b–d) or time-lag (Extended Data Fig. 6, Supplementary Data 1 and 
Supplementary Information 2) biases.

Comparing among subcategories of drivers
Next, we evaluated global change driver subcategories (Fig. 3). Con-
sistent with previous studies3, the loss of pre-existing biodiversity was 
associated with significantly greater increases in infectious disease 
outcomes (857% more) compared with natural biodiversity gradients 
(for example, latitudinal or elevational gradients in species richness; 
Fig. 3). Enemy release (that is, the notion that introduced species leave 
many of their parasites behind in their native range) reduced infec-
tious diseases in introduced species, but had weaker effects compared 
with biodiversity loss (39% weaker). Mean temperature and carbon 
dioxide similarly increased disease but had weaker effects compared 
with biodiversity loss (55% and 62% weaker, respectively) and enemy 
release (26% and 38% weaker, respectively). Urbanization decreased 
infectious diseases, perhaps because urban development is associated 
with improved water, sanitation and hygiene for humans, and habitat 
loss for many parasites and their non-human hosts18. Specifically, hel-
minths, protists and arthropods were all negatively associated with 
urbanization, whereas viruses were non-significantly positively associ-
ated with urbanization (Extended Data Fig. 7a). Furthermore, disease 
was reduced in urban settings compared with in rural and peri-urban 
settings, whereas there were no differences in disease along urbani-
zation gradients or between urban and natural settings (Extended 
Data Fig. 7b). Similarly, the effect of forest fragmentation on disease 
depended on the type of fragmentation being compared, but the effect 
of deforestation on disease did not depend on the type of land-use 
conversion (Extended Data Fig. 7c). All of the other subcategories had 
non-significant effects on disease (Fig. 3). Given the limited funds for 
infectious disease management, these results suggest that controlling 
or mitigating biodiversity loss, introduced species and climate change 
might be particularly important for infectious disease control.

Context dependencies
Understanding context dependencies is also crucial for properly 
targeting limited resources for disease control. Although the ideal 
approach would have been to compare global change drivers in a sin-
gle model-selection analysis that considered the correlations among 
all independent variables and their interactions, this approach was 
not possible due to missing combinations of variables (Methods and 
Supplementary Table 2). We circumvented these statistical limita-
tions using two approaches. First, we tested for two-way interactions 
between each global change driver and host and parasite taxa and vari-
ous traits of hosts, parasites and studies. Second, to account for the 
covariances among predictors and to identify the most parsimonious 
combinations of predictors, we fit models with all possible combina-
tions of main effects of host, parasite and study factors for each global 
change driver separately (Methods and Supplementary Data 1). We then 
qualitatively assessed the consistency in the results between these 
statistical approaches.

Importantly, these analyses can reveal both when there are and are 
not context dependencies. For example, there were many consistent 
patterns across global change drivers. For several global change driv-
ers, parasite versus host end point was an important moderator in 
either the two-way interaction (Fig. 4a) or model selection (Fig. 4b) 
analyses and, in each case, parasite end points were as sensitive or more 
sensitive to the global change drivers compared with host end points 
(Extended Data Fig. 8a and Supplementary Table 3). Given that parasite 
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Fig. 2 | The effects of five common global change drivers on infectious 
disease responses. Biodiversity change (BC), climate change (CC), chemical 
pollution (CP) and introduced species (IS) are associated with increases in 
disease-related end points or harm (that is, introduced species having fewer 
parasites). Habitat loss or change (HLC) was associated with significant 
decreases in disease end points. The numbers of studies (n) and effect sizes (k) 
for each driver are shown in parentheses. The displayed points represent the 
mean predicted values (with 95% confidence intervals) from a meta-analytical 
model with separate random intercepts for study. Global change driver effects 
are significant when confidence intervals do not overlap with zero and were 
explicitly tested using a two-tailed one sample t-test (indicated by asterisks; 
t50,45 = 5.56, P < 0.001 for BC; t87,75 = 2.04, P = 0.044 for CP; t144,46 = 4.36, P < 0.001 
for CC; t327,51 = −5.13, P < 0.001 for HLC; t61,3 = 4.07, P < 0.001 for IS). Points that  
do not share letters are significantly different from one another (P < 0.05), as 
determined using a two-sided Tukey’s post hoc multiple-comparison test with 
correction for multiple comparisons. Pairwise comparison results are shown in 
Supplementary Table 3. Sampling variance = 0.14%; within-study heterogeneity 
I2 = 89.27%; and between-study heterogeneity I2 = 10.59%.
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abundance can change profoundly without changes in symptoms or 
disease, especially for hosts that have tolerance (that is, ameliorat-
ing the damage that infection causes) rather than resistance (that is, 
‘fighting’ the parasite directly) defence strategies28,29, it is unsurprising 
that parasite end points, which are capturing parasite abundance, are 
more sensitive to global change factors than host end points, which are 
capturing host symptoms or consequences of infection.

The effects of global change drivers on infectious disease outcomes 
also did not consistently depend on continent (Extended Data Fig. 9a 
and Supplementary Table 3), host taxon (Extended Data Fig. 9b and 
Supplementary Table 3) or whether the parasite infected humans or 
not (Fig. 4a). These results indicate that global change drivers are 
having consistent effects on infectious disease risk across space and 
broad host taxa, including humans, non-human animals and plants. 
Parasites of mollusks were the exception because they responded 
more positively to biodiversity change and habitat loss/change 
compared with other host taxa, most likely because mollusks are 
required hosts for all trematodes, which have complex life cycles, 

and theory and evidence indicate that parasites with complex life 
cycles tend to be more sensitive to biodiversity change and habitat 
loss/change compared with those with simple life cycles2. Although 
global change drivers did not differentially affect zoonotic versus 
non-zoonotic parasites (Fig. 4a), end points associated with zoonotic 
parasites measured from wild or domesticated animals responded 
more positively to global change drivers compared with end points 
associated with zoonotic parasites measured from humans, and this 
effect was generalizable across global change drivers (Extended Data 
Fig. 10a). Furthermore, although global change drivers generally 
did not differentially affect host taxa (Extended Data Fig. 8b), end 
points associated with wild animals responded more positively to 
global change drivers compared with end points measured from 
domesticated animals, and this effect was similarly generalizable 
across global change drivers (Extended Data Fig. 10a). These results 
are not surprising given that humans treat and control diseases in 
humans and domesticated animals more so than diseases in wild 
animals, which should dampen the effect of global change drivers on 

Native to introduced
(n = 7, k = 12)

Introduced to native
(n = 28, k = 47)

Enemy release
(n = 62, k = 296)

Urbanization
(n = 468, k = 1,288)

Forest fragmentation
(n = 22, k = 93)

Deforestation
(n = 32, k = 68)

Mean temperature
(n = 144, k = 225)

Mean precipitation
(n = 49, k = 70)

Climate
(n = 32, k = 61)

Climate variability or ENSO
(n = 14, k = 22)

UVB
(n = 4, k = 9 )

Sulfur-containing compound
(n = 2, k = 3 )

Polycyclic aromatic hydrocarbon
(n = 4, k = 9 )

Metal
(n = 16, k = 55)

Insecticide
(n = 23, k = 84)

Herbicide
(n = 18, k = 69)

Fungicide
(n = 3, k = 4)

Fertilizer
(n = 27, k = 64)

CO2
(n = 38, k = 67)

Biodiversity loss
(n = 61, k = 308)

Biodiversity gradient
(n = 19, k = 84)

−6 −4 −2 0
Hedge’s g

642 8

In
tr

od
uc

ed
sp

ec
ie

s
H

ab
ita

t 
lo

ss
or

 c
ha

ng
e

C
lim

at
e 

ch
an

ge
C

he
m

ic
al

 p
ol

lu
tio

n
B

io
d

iv
er

si
ty

ch
an

ge

Fig. 3 | The effects of subcategories within five common global change 
drivers on mean infectious disease responses in the literature. Biodiversity 
gradient covers natural variation in biodiversity (for example, across latitude 
or elevation), whereas biodiversity loss is a loss of biodiversity usually associated 
with an anthropogenic factor3. Forest fragmentation compares different sizes 
of forest patches, whereas deforestation compares forests to the absence of 
forests (that is, two different habitats). Enemy release is defined as cases in which 
an introduced host has fewer parasites in its introduced range than native range 
or than native species in its introduced range21,30,36. Native-to-introduced 
transmission occurs when an introduced host is a competent host for a native 
parasite and amplifies infections in the native host21. Introduced-to-native 

transmission is defined as the spread of a parasite from an introduced to native 
host or from a native to introduced host21. For zoonotic diseases, spillover is 
animal-to-human and human-to-animal transmission. The numbers of studies 
(n) and effect sizes (k) of each subcategory are shown in parentheses. The 
displayed points represent the mean predicted values (with 95% confidence 
intervals) from a meta-analytical model with study as a random intercept. 
Confidence intervals that do not overlap with zero are generally significant 
(P < 0.05), see the main text for details. UVB, ultraviolet radiation B; ENSO,  
El Niño-Southern Oscillation. Sampling variance = 0.14%; within-study 
heterogeneity I2 = 89.27%; and between-study heterogeneity I2 = 10.59%.
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human and domesticated animal end points. The fact that many global 
change drivers increase zoonotic parasites in non-human animals and 
increase all parasites in wild animals suggests that anthropogenic 
change might increase the occurrence of parasite spillover from ani-
mals to humans and, therefore, also pandemic risk.

No clear context dependencies emerged from studies on chemical 
pollution and climate change (no significant two-way interactions 
and all relative importance scores < 0.5; Fig. 4b). This result was prob-
ably due to the enormous diversity in the pollutants tested, making 
it challenging to uncover consistent patterns on infectious disease 
and highlighting the need for further infectious disease research on 
this global change driver, especially given that many contaminants 
can be immunosuppressive13. The lack of context dependencies for 
climate change suggests that disease increases in response to climate 
change will be consistent and widespread, further stressing the need for 
reductions in greenhouse gas emissions to mitigate these detrimental 
impacts of climate change. This result is in contrast to several studies8 
suggesting that parasites with complex life cycles will be disrupted by 
climate change more than those with direct life cycles because they 

have more necessary host species that could be adversely affected by 
climate change.

In contrast to the generally consistent patterns across host taxa and 
certain global change drivers, numerous context dependencies were 
detected across parasite taxa and study system for other global change 
drivers. For example, when compared to viruses, fungi responded 
more positively to introduced species, and helminths responded more 
negatively to habitat loss/change (Extended Data Fig. 9c and Supple-
mentary Table 3). Helminths, which are macroparasites that tend to 
have complex life cycles, also responded more positively to biodiversity 
loss compared with all other parasite taxa (Extended Data Fig. 9c and 
Supplementary Table 3). Similarly, relative to parasites with simple 
(that is, direct) life cycles, parasites with complex life cycles, such as 
vector-borne parasites, experienced greater decreases when exposed to 
introduced species and greater increases when exposed to biodiversity 
loss—results that were generally similar across the two-way interaction 
and model selection analyses (Fig. 4, Extended Data Fig. 8b,c and Sup-
plementary Table 3). As parasites with complex life cycles require more 
host species than those with simple life cycles, there is a greater chance 
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disease responses. a, Coefficients from separate tests of two-way interactions 
between each global change driver and host and parasite taxa and various traits 
of hosts, parasites and studies. The black sections of the heat map could not be 
tested owing to missing data. Here, human parasites are those that can infect 
humans, whereas non-human parasites are those that are not reported to infect 
humans. Zoonotic parasites are those that are spread between humans and 
animals, while non-zoonotic parasites are those that are not known to spread 
between humans and animals. b, The relative importance scores from model 
selection examining the effects of five common global change drivers on mean 

infectious disease responses. In contrast to the two-way interaction analyses, 
the model selection analyses account for the covariances among predictors and 
identify the most parsimonious combinations of predictors. The coefficients 
from these models are shown in Supplementary Data 1. In b, variable definitions 
are end point: host or parasite; free-living stage: free-living stage or not; global 
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taxa (Fig. 1); transmission route: complex or direct; vector-borne: vector-borne 
or not; venue: laboratory or field; ectoparasite: ectoparasite or endoparasite.
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that one of the hosts is sensitive to global change; it is therefore not 
surprising that they tend to be more sensitive to biodiversity loss com-
pared with species with direct life cycles. Moreover, when non-native 
species are introduced to ecosystems, parasites with direct life cycles 
need to find only a single suitable host species (introduced host or 
novel host), whereas hosts with complex life cycles would need to find 
new intermediate and final hosts; thus, parasites with direct life cycles 
might increase more during host species introductions compared with 
those with complex life cycles30. Finally, the biodiversity change results 
are consistent with a meta-analysis highlighting that biodiversity loss 
increases parasites more if they have complex than simple life cycles2. 
Biodiversity loss also increased disease caused by macroparasites more 
than disease caused by microparasites (Extended Data Fig. 8d and Sup-
plementary Table 3). Biodiversity loss also increased disease more in 
laboratory studies compared with field studies (Extended Data Fig. 8e 
and Supplementary Table 3), in aquatic systems compared with ter-
restrial systems (Extended Data Fig. 8f and Supplementary Table 3) 
and in ectothermic compared with endothermic hosts (Extended 
Data Fig. 8g and Supplementary Table 3). Conversely, habitat loss/
change decreased disease caused by macroparasites more than disease 
caused by microparasites (Extended Data Fig. 8d and Supplementary 
Table 3). Habitat loss or change also decreased disease in field studies, 
but not in laboratory studies (Extended Data Fig. 8e and Supplementary 
Table 3); and in terrestrial systems, but increased disease in marine 
and freshwater systems (Extended Data Fig. 8f and Supplementary 
Table 3). Finally, ectoparasites increased more than endoparasites 
when exposed to introduced species (Extended Data Fig. 8h and Sup-
plementary Table 3), which may be because ectoparasites are more 
vulnerable to host species loss (for example, fewer viable host species 
in the introduced range than in the native range) than endoparasites31, 
therefore reducing ectoparasites in introduced hosts.

Caveats and conclusions
Here we revealed that biodiversity loss, climate change, chemical pol-
lution and enemy release associated with introduced species increased 
disease responses or disease-related harm, whereas urbanization 
caused decreases in disease. All of these results were generally con-
sistent across human and non-human diseases, although other context 
dependencies were common. End points from parasites with com-
plex life cycles, such as macroparasites and vector-borne pathogens, 
decreased more with habitat loss/change, increased more with biodi-
versity change, and responded less strongly in response to introduced 
species compared with end points from parasites with simple life cycles, 
and ectoparasites increased more in response to introduced species 
compared with endoparasites.

We hope that our analyses will facilitate disease control, mitigation 
and surveillance efforts globally, ultimately improving wildlife and 
human health and pandemic preparedness; however, there are impor-
tant caveats for using these analyses in decision-making. First, the 
relationships that we identified might not hold past the range of con-
ditions included in this meta-analysis and we therefore advise against 
projecting beyond these conditions. Second, we treated the global 
change drivers in this meta-analysis in an unbiased and equal manner. 
However, from a policy perspective, the rates of change of the drivers 
and their relevance to current and future epidemic and pandemic risk 
are also crucial. For example, some subcategories of drivers, such as 
ultraviolet radiation associated with ozone depletion, require less atten-
tion because they have already been rectified by global agreements. 
Other drivers are expected to asymptote or even improve in certain 
parts of the world, such as habitat loss in upper-income countries as 
they pursue reforestation. Finally, some drivers are expected to worsen 
through time and are associated with increases in disease risk, such as 
climate change and biodiversity loss, and these drivers might therefore 
necessitate the greatest policy attention. The third caveat is that there 

are very few studies in this meta-analysis on interventions to remediate 
the effects of global change on disease. There is considerable evidence 
that simply reversing the magnitude of global change drivers can be 
insufficient to fully counteract their effects32. Consequently, we need 
more tests of interventions to remediate the highest priority drivers 
described herein33 and efforts to evaluate whether ecosystem restora-
tion can be used as a lever to manage disease34.

Finally, most studies in this meta-analysis consider the effects of a 
single stressor or global change driver on infectious disease end points 
despite most organisms experiencing several of these factors concur-
rently and many drivers being interconnected. For example, climate 
change and chemical pollution can cause habitat loss and change, which 
in turn can cause biodiversity loss and facilitate species introductions. 
It is unclear whether global change drivers generally interact additively, 
antagonistically or synergistically and future studies should therefore 
more thoroughly examine their interactions, interdependencies and 
relative contributions to disease risk. Importantly, greater effort is 
needed to identify win–win solutions that address multiple societal 
stressors, such as disease, food, energy, water, sustainability and pov-
erty challenges33,35. Although our data suggest that climate change and 
biological invasions and loss have a part in wildlife and human diseases, 
all of these factors also can contribute to, exacerbate and trap people 
in rural poverty, which is the strongest predictor of environmentally 
transmitted infectious diseases on the planet20. Thus, leveraging the 
intersection among environmental, social, economic and political 
dimensions will not only be necessary to effectively mitigate against 
increases in disease associated with global change, but will also almost 
certainly be required to meet the United Nation’s sustainable develop-
ment goals targeted at managing the numerous co-dependent global 
grand challenges of the twenty-first century20,33.
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Methods

We conducted literature searches in Web of Science, Scopus and Pub-
Med on each of the five global change drivers and infectious disease 
(the dates of searches and search terms are shown in Supplementary 
Table 1). We translated papers in the following languages: Chinese, 
French, Japanese, Polish, Portuguese, Russian and Spanish. Only origi-
nal peer reviewed literature was included. Book chapters, conference 
proceedings, grey literature and review articles were excluded. We 
screened papers to determine whether they drew clear conclusions 
about the impact of the global change driver on a parasite (for exam-
ple, parasite growth, prevalence, abundance, intensity, virulence) or 
host end point (for example, disease, growth rate, survival) through 
experiments or field studies (Supplementary Information). Each of the 
five global change drivers was further categorized into subcategories, 
which are provided in Fig. 3. From each study, we extracted data on the 
effect of the global change driver on each infectious disease end point, 
the subcategory of global change driver, the host and parasite species, 
and various traits of the study, hosts and parasites. We hand-corrected 
all obvious misspellings of parasite and host names and converted those 
parasites with multiple hosts to a broader taxonomic resolution (for 
example, hosts of domestic dogs and humans were converted to ‘mam-
mals’). Moreover, to correct any changes in taxonomy and any other 
non-obvious misspellings, we used the taxize R package (v.0.9.100)37 to 
match parasite and host names to those in 20 existing databases using 
the Global Names Resolver service provided by the Encyclopedia of 
Life. Instances of misspellings were clarified, and current taxonomic 
nomenclature was applied when appropriate.

The list of studies associated with biodiversity change was based on 
a previous study3, which combined studies from four meta-analyses 
(details are provided in Supplementary Table 1 and ref. 3). Each 
meta-analysis included only studies that reported a measure of host 
biodiversity as the independent variable (for example, host richness, 
Shannon diversity, Simpson diversity). Although our meta-analysis 
focuses on anthropogenic change, to remain consistent with ref. 3, 
we included both natural and anthropogenically driven biodiversity 
gradients. With the exception of natural biodiversity gradients, all of 
the other studies included in this meta-analysis had an anthropogenic 
driver. For chemical pollution, contaminants were assigned to 1 of 11 
contaminant classes described previously38, and we excluded papers 
that evaluated the development of a treatment for a parasitic infec-
tion or evaluated how naturally occurring nutrients influence disease 
development. Studies on introduced species focused on enemy release, 
transmission of parasites from native to invasive or invasive to native 
hosts, dilution effects and scenarios in which an introduced host is a 
competent host for a native parasite and amplifies infections in the 
native host (definitions of these terms are shown in Fig. 3). The initial 
study list and related information were then compiled.

Data extraction and effect sizes
We extracted mean values with associated sample sizes and dispersion 
(such as variance, s.d., s.e.m.). Data extraction was then performed and 
data were checked for accuracy. All data in biodiversity change were 
taken from ref. 3. Data presented in the text or tables were directly 
extracted. Data from figures were digitized using WebPlotDigitizer39. 
When available, raw data were used to calculate the mean, dispersion 
and sample size. When studies presented statistics other than mean 
values (such as odds ratio; regression coefficient; correlation coef-
ficient; and t, z, χ2 and f statistics), we extracted these values and their 
subsequent dispersion in place of mean values. Moreover, for data for 
which the disease end point was measured through time, a natural cubic 
spline relationship was generated between time and disease end point 
for each treatment and the area under the curve (AUC) was then calcu-
lated for each natural cubic spline. The resulting AUC and associated 
error were used for the mean and dispersion to calculate an effect size.

We defined our effect size using Hedge’s g, assuming heteroscedastic 
population variances among the two groups (SMDH):
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where y1, y2 and sp are the mean of sample 1, the mean of sample 2 and 
the pooled s.d., respectively. sp is calculated as follows:
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where s1 is the s.d. for sample 1 and s2 is the s.d. for sample 2. When 
observations were statistics rather than mean values, we converted the 
presented statistic to Hedge’s g using standard conversion equations 
within the esc R package (v.0.5.1)40,41.

We also calculated effect sizes using the log response ratio (RR):

y

y
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where y1 and y2 are the mean of sample 1 and sample 2, respectively. 
The variance of the log response ratio is:
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where y1, s1 and N1 are the mean, s.d. and sample size of sample 1, respec-
tively; and y2, s2 and N2 are the mean, s.d. and sample size of sample 2, 
respectively. For observations that were statistics rather than mean 
values, conversion from the presented statistic to the RR were not 
possible; as such, sample sizes between the two effect sizes were not 
equal and all observations within BC did not have associated RR values.

Meta-analyses
All analyses were conducted in R (v.4.2.2)42. All analyses were conducted 
with meta-analytic multilevel mixed-effects models using the rma.mv 
function in the metafor R package (v.4.2-0)43. Our data had multiple 
effect sizes from the same studies, so all meta-analytic models were 
fit with a study-level and observation-level random effect, to account 
for the non-independence of observations from the same study, and 
with a robust variance estimator (that is, CL2 cluster-robust estimate 
of variance-covariance matrix as well as Satterthwaite approxima-
tion of d.f.)44. Test statistics and confidence intervals for fixed effects 
were computed using one-sample, two-tailed t-distributions. Post 
hoc comparisons were conducted using two-tailed Tukey’s tests with 
multiple-comparison adjustments. Moderators in the meta-analysis 
with many consistent effect sizes will result in estimates with small 
confidence intervals and moderators with few or inconsistent effect 
sizes will result in estimates with large confidence intervals. Statisti-
cal significance was assumed when 95% confidence intervals were not 
overlapping zero.

Moderator variables
We first estimated the overall grand mean and the total heterogeneity 
explained by the random effect terms. Second, to test for the effects of 
broad global change drivers on disease, we conducted a meta-analytical 
model with global change driver as the moderator. Third, to test 
whether global change driver subfactors differentially affect disease, 
we conducted a meta-analytical model with the subfactors of global 
change drivers as the moderator. Fourth, we sought to test for context 
dependencies of the effects of global change drivers on disease. The 
ideal approach would have been to compare global change drivers in a 
single model-selection analysis that considered the correlations among 
all independent variables and their interactions, but this approach 
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was not possible due to missing some combinations of variables. For 
example, all habitat loss/change studies were conducted in freshwater 
and terrestrial systems (that is, no laboratory or marine studies), also 
all fungi were ectoparasitic and some host taxa were too infrequently 
tested under certain global change drivers. We therefore conducted 
meta-analytical models with the main and interactive moderators of 
global change drivers and various host, parasite and study moderators. 
The various study moderators taken from each study included host taxa, 
parasite taxa, vector status (vector/non-vector), vector-borne status 
(vector-borne/non-vector-borne), parasite type (endo-/ectoparasite), 
human parasite (human/non-human), transmission route (complex/
direct), free living stages (yes/no), macroparasite versus micropara-
site, host thermy (endo-/ectothermic), experimental venue (field/
laboratory), response variable end point (host or parasite focused) 
and habitat (freshwater/marine/terrestrial); each of these moderators 
were tested separately. Then, to determine whether global change 
drivers may increase occurrence of spillover events and potential risk 
of pandemics, we assessed whether wild or domesticated animal end 
points within the animal diseases only and human or non-human end 
points within the zoonotic diseases only showed differential responses 
to global change drivers. Finally, to determine whether certain context 
dependencies existed within the habitat loss/change data, we assessed 
whether the effect of urbanization on disease varied by parasite taxon 
or land-use comparison (that is, urban land-use compared against rural, 
peri-urban, natural or along an urbanization gradient) and whether 
the effects of deforestation and forest fragmentation depended on 
the land-use conversion type (that is, clearcut and regrowth or agri-
culture for deforestation and patch-size gradient or large/continuous 
patch versus small patch for fragmentation). Differences in the main 
and interactive effects of these moderators was assessed using the 
emmeans R package (v.1.8.5)45. Finally, to determine which moderators 
best explain disease response to specific global change drivers, we 
performed model selection based on AICc in which we fit all possible 
combinations of the main effects of the global change subfactors and 
various host, parasite and study moderators using the dredge function 
in the MuMIn R package (v.1.47.5)46. Model selection was conducted on 
each global change driver separately; owing to the different numbers 
of observations across global change drivers and missing cell issues 
within global change drivers, the replicates varied for each global 
change (biodiversity gradient k = 387; climate change k = 310; habitat 
loss/change k = 1,238; introduced species k = 309; chemical pollution 
k = 336). Model weights and relative importance values for each pre-
dictor variable were calculated from models with a ΔAICc ≤ 4, which 
have moderate to substantial support to be the best model47. All data, 
R scripts and R markdown files are provided.

Publication bias and sensitivity analysis
Publication bias is the selective publishing of certain research findings, 
such as significant or favourable results. Common publication biases  
include small study effects (correlation between observed effects 
sizes and standard errors) and time-lag biases (positive results being 
published before negative results)48. To assess these potential biases, 
we first used funnel plots to visually inspect the relationship between 
model (intercept only) and standard error, but it is important to note 
that funnel plots assume minimal heterogeneity in data and should 
therefore be used as a visual tool only49. Second, we performed multi-
level meta regressions using the inverse sample size or the square root 
of the effective sample size as moderators to clarify small study effects 
(Egger’s test49). Third, we included the publication year as a modera-
tor in this meta regression model to simultaneously test for a time-lag 
bias46. Fourth, to assess the robustness of our results, we performed a 
leave-one-out analysis on the meta-analytical grand mean (intercept 
only) model. From this analysis, we determined whether the removal 
of a single study greatly shifted the grand mean estimate46. Finally, we 
conduced fail-safe N analysis to address the file-drawer problem, we 

used the Rosenthal, Orwin and Rosenberg publication bias methods 
and set our fail-safe N threshold equal to 5Nstudy + 10 such that, if the 
values from the methods are greater than our threshold value, then 
our results can be considered to be robust with respect to unpublished 
non-significant results49.

Given that effect size is a function of variance and sample size, differ-
ences in the distributions of effect sizes on disease end points among 
global change drivers and across contexts might be the product of these 
factors50. To test whether differences in effect sizes were driven by dif-
ferences in sample sizes and/or variances, we tested for differences in 
sample sizes and variances among global change drivers. We applied 
generalized linear mixed effects models (GLMMs; glmer function, lme4 
package, v.1.1-32)51 with ‘study’ as a random intercept to compare vari-
ances and samples sizes among global change drivers, using Gaussian 
errors for variance models and Poisson errors for sample size models.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the data for this Article have been deposited at Zenodo (https://
doi.org/10.5281/zenodo.8169979)52 and GitHub (https://github.com/
mahonmb/GCDofDisease)53.

Code availability
All the code for this Article has been deposited at Zenodo (https://
doi.org/10.5281/zenodo.8169979)52 and GitHub (https://github.com/
mahonmb/GCDofDisease)53. R markdown is provided in Supplemen-
tary Data 1.
 
37. Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Research 

2, 191 (2013).
38. Newman, M. Fundamentals of Ecotoxicology (CRC Press/Taylor & Francis Group, 2010).
39. Rohatgi, A. WebPlotDigitizer v.4.5 (2021); automeris.io/WebPlotDigitizer.
40. Lüdecke, D. esc: effect size computation for meta analysis (version 0.5.1). Zenodo https://

doi.org/10.5281/zenodo.1249218 (2019).
41. Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis (SAGE, 2001).
42. R Core Team. R: A Language and Environment for Statistical Computing Vol. 2022  

(R Foundation for Statistical Computing, 2020); www.R-project.org/.
43. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 

36, 1–48 (2010).
44. Pustejovsky, J. E. & Tipton, E. Meta-analysis with robust variance estimation: Expanding 

the range of working models. Prev. Sci. 23, 425–438 (2022).
45. Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package v.1.5.1 

(2020).
46. Bartoń, K. MuMIn: multi-modal inference. Model selection and model averaging based on 

information criteria (AICc and alike) (2019).
47. Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in 

model selection. Sociol. Methods Res. 33, 261–304 (2004).
48. Marks‐Anglin, A. & Chen, Y. A historical review of publication bias. Res. Synth. Methods 11, 

725–742 (2020).
49. Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary 

meta‐analyses. Methods Ecol. Evol. 13, 4–21 (2022).
50. Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of 

research synthesis. Nature 555, 175–182 (2018).
51. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using 

lme4. J. Stat. Softw. 67, 1–48 (2015).
52. Mahon, M. B. et al. Data and code for ‘A meta-analysis on global change drivers and  

the risk of infectious disease’. Zenodo https://doi.org/10.5281/zenodo.8169979  
(2024).

53. Mahon, M. B. et al. Data and code for ‘A meta-analysis on global change drivers  
and the risk of infectious disease’. GitHub github.com/mahonmb/GCDofDisease  
(2024).

Acknowledgements We thank C. Mitchell for contributing data on enemy release; L. Albert 
and B. Shayhorn for assisting with data collection; J. Gurevitch, M. Lajeunesse and G. Stewart 
for providing comments on an earlier version of this manuscript; and C. Carlson and  
two anonymous reviewers for improving this paper. This research was supported by  
grants from the National Science Foundation (DEB-2109293, DEB-2017785, DEB-1518681,  
IOS-1754868), National Institutes of Health (R01TW010286) and US Department of Agriculture 
(2021-38420-34065) to J.R.R.; a US Geological Survey Powell grant to J.R.R. and S.L.R.; 
University of Connecticut Start-up funds to S.A.K.; grants from the National Science 

https://doi.org/10.5281/zenodo.8169979
https://doi.org/10.5281/zenodo.8169979
https://github.com/mahonmb/GCDofDisease
https://github.com/mahonmb/GCDofDisease
https://doi.org/10.5281/zenodo.8169979
https://doi.org/10.5281/zenodo.8169979
https://github.com/mahonmb/GCDofDisease
https://github.com/mahonmb/GCDofDisease
https://automeris.io/WebPlotDigitizer
https://doi.org/10.5281/zenodo.1249218
https://doi.org/10.5281/zenodo.1249218
https://www.R-project.org/
https://doi.org/10.5281/zenodo.8169979
https://github.com/mahonmb/GCDofDisease


Foundation (IOS-1755002) and National Institutes of Health (R01 AI150774) to D.J.C.; and an 
Ambizione grant (PZ00P3_202027) from the Swiss National Science Foundation to F.W.H.  
The funders had no role in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

Author contributions J.R.R. conceptualized the study. All of the authors contributed to the 
methodology. All of the authors contributed to investigation. Visualization was performed by 
M.B.M. The initial study list and related information were compiled by D.J.C., J.M.C., F.W.H., 
S.A.K., S.L.R. and J.R.R. Data extraction was performed by M.B.M., A.S., O.A.A., C.B., E.B., H.B., 
L.A.d.W., M.F., P.H., A.K., J.G.L., E.S., A.S. and N.V. Data were checked for accuracy by M.B.M. 
and A.S. Analyses were performed by M.B.M. and J.R.R. Funding was acquired by D.J.C., J.R.R., 
S.A.K. and S.L.R. Project administration was done by J.R.R. J.R.R. supervised the study. J.R.R. 

and M.B.M. wrote the original draft. All of the authors reviewed and edited the manuscript. 
J.R.R. and M.B.M. responded to reviewers.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07380-6.
Correspondence and requests for materials should be addressed to Jason R. Rohr.
Peer review information Nature thanks Colin Carlson and the other, anonymous, reviewer(s) 
for their contribution to the peer review of this work. Peer reviewer reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-024-07380-6
http://www.nature.com/reprints


Article

Records identified from:
Databases (n = 3)

Records removed before 
screening:

Duplicate records removed
(n = 10403)

Records screened
(n = 18865)

Records excluded
(n = 17326)

Reports sought for retrieval
(n = 1539)

Reports not retrieved
(n = 8)

Reports assessed for eligibility
(n = 1531)

Reports excluded:
Reason 1 (n = 506) not on 
subject
Reason 2 (n = 130) incomplete 
data

New studies included in review
(n = 895)

Identification of new studies via databases and registers
Id

en
tif

ic
at

io
n

Sc
re

en
in

g
In

cl
ud

ed

Total studies included in review
(n = 972)

Studies included in 
Halliday et al. 2020
(n = 77)

Previous studies

Extended Data Fig. 1 | PRISMA flowchart. The PRISMA flow diagram of the search and selection of studies included in this meta-analysis. Note that 77 studies 
came from the Halliday et al.3 database on biodiversity change.



Extended Data Fig. 2 | Summary of the number of studies (A-F) and parasite taxa (G-L) in the infectious disease database across ecological contexts. The 
contexts are global change driver (A, G), parasite taxa (B, H), host taxa (C, I), experimental venue (D, J), study habitat (E, K), and human parasite status (F, L).
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Extended Data Fig. 3 | Summary of the number of effect sizes (A-I), studies 
( J-R), and parasite taxa (S-a) in the infectious disease database for various 
parasite and host contexts. Shown are parasite type (A, J, S), host thermy (B, 
K, T), vector status (C, L, U), vector-borne status (D, M, V), parasite transmission 

(E, N, W), free living stages (F, O, X), host (e.g. disease, host growth, host 
survival) or parasite (e.g. parasite abundance, prevalence, fecundity) endpoint 
(G, P, Y), micro- vs macroparasite (H, Q, Z), and zoonotic status (I, R, a).



Extended Data Fig. 4 | The effects of global change drivers and subsequent 
subcategories on disease responses with Log Response Ratio instead of 
Hedge’s g. Here, Log Response Ratio shows similar trends to that of Hedge’s g 
presented in the main text. The displayed points represent the mean predicted 
values (with 95% confidence intervals) from a meta-analytical model with 
separate random intercepts for study. Points that do not share letters are 
significantly different from one another (p < 0.05) based on a two-sided Tukey’s 
posthoc multiple comparison test with adjustment for multiple comparisons. 
See Table S3 for pairwise comparison results. Effects of the five common global 
change drivers (A) have the same directionality, similar magnitude, and 
significance as those presented in Fig. 2. Global change driver effects are 
significant when confidence intervals do not overlap with zero and explicitly 
tested with two-tailed t-test (indicated by asterisks; t80.62 = 2.16, p = 0.034 for CP;  

t71.42 = 2.10, p = 0.039 for CC; t131.79 = −3.52, p < 0.001 for HLC; t61.9 = 2.10, 
p = 0.040 for IS). The subcategories (B) also show similar patterns as those 
presented in Fig. 3. Subcategories are significant when confidence intervals  
do not overlap with zero and were explicitly tested with two-tailed one sample 
t-test (t30.52 = 2.17, p = 0.038 for CO2; t40.03 = 4.64, p < 0.001 for Enemy Release; 
t47.45 = 2.18, p = 0.034 for Mean Temperature; t110.81 = −4.05, p < 0.001 for 
Urbanization); all other subcategories have p > 0.20. Note that effect size and 
study numbers are lower here than in Figs. 3 and 4, because log response ratios 
cannot be calculated for studies that provide coefficients (e.g., odds ratio) 
rather than raw data; as such, all observations within BC did not have associated 
RR values. Despite strong differences in sample size, patterns are consistent 
across effect sizes, and therefore, we can be confident that the results presented 
in the main text are not biased because of effect size selection.
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Extended Data Fig. 5 | Average standard errors of the effect sizes (A) and 
sample sizes per effect size (B) for each of the five global change drivers. 
The displayed points represent the mean predicted values (with 95% confidence 
intervals) from the generalized linear mixed effects models with separate 
random intercepts for study (Gaussian distribution for standard error model, 
A; Poisson distribution for sample size model, B). Points that do not share letters 

are significantly different from one another (p < 0.05) based on a two-sided 
Tukey’s posthoc multiple comparison test with adjustment for multiple 
comparisons. Sample sizes (number of studies, n, and effect sizes, k) for each 
driver are as follows: n = 77, k = 392 for BC; n = 124, k = 364 for CP; n = 202, 
k = 380 for CC; n = 517, k = 1449 for HLC; n = 96, k = 355 for IS.



Extended Data Fig. 6 | Forest plots of effect sizes, associated variances, and 
relative weights (A), Funnel plots (B), and Egger’s Test plots (C) for each of 
the five global change drivers and leave-one-out publication bias analyses 
(D). In panel A, points are the individual effect sizes (Hedge’s G), error bars are 
standard errors of the effect size, and size of the points is the relative weight of 
the observation in the model, with larger points representing observations 
with higher weight in the model. Sample sizes are provided for each effect size 
in the meta-analytic database. Effect sizes were plotted in a random order. 
Egger’s tests indicated significant asymmetries (p < 0.05) in Biodiversity 
Change (worst asymmetry – likely not bias, just real effect of positive relationship 
between diversity and disease), Climate Change – (weak asymmetry, again 
likely not bias, climate change generally increases disease), and Introduced 
Species (relatively weak asymmetry – unclear whether this is a bias, may be 

driven by some outliers). No significant asymmetries (p > 0.05) were found in 
Chemical Pollution and Habitat Loss/Change, suggesting negligible publication 
bias in reported disease responses across these global change drivers (B, C). 
Egger’s test included publication year as moderator but found no significant 
relationship between Hedge’s g and publication year (p > 0.05) implying no 
temporal bias in effect size magnitude or direction. In panel D, the horizontal 
red lines denote the grand mean and SE of Hedge’s g and (g = 0.1009, SE = 0.0338). 
Grey points and error bars indicate the Hedge’s g and SEs, respectively, using 
the leave-one-out method (grand mean is recalculated after a given study is 
removed from dataset). While the removal of certain studies resulted in values 
that differed from the grand mean, all estimated Hedge’s g values fell well 
within the standard error of the grand mean. This sensitivity analysis indicates 
that our results were robust to the iterative exclusion of individual studies.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | The effects of habitat loss/change on disease depend 
on parasite taxa and land use conversion contexts. A) Enemy type influences 
the magnitude of the effect of urbanization on disease: helminths, protists, and 
arthropods were all negatively associated with urbanization, whereas viruses 
were non-significantly positively associated with urbanization. B) Reference 
(control) land use type influences the magnitude of the effect of urbanization 
on disease: disease was reduced in urban settings compared to rural and peri-
urban settings, whereas there were no differences in disease along urbanization 
gradients or between urban and natural settings. C) The effect of forest 
fragmentation depends on whether a large/continuous habitat patch is 
compared to a small patch or whether disease it is measured along an increasing 
fragmentation gradient (Z = −2.828, p = 0.005). Conversely, the effect of 
deforestation on disease does not depend on whether the habitat has been 
destroyed and allowed to regrow (e.g., clearcutting, second growth forests, etc.) 
or whether it has been replaced with agriculture (e.g., row crop, agroforestry, 
livestock grazing; Z = 1.809, p = 0.0705). The displayed points represent the 

mean predicted values (with 95% confidence intervals) from a metafor model 
where the response variable was a Hedge’s g (representing the effect on an 
infectious disease endpoint relative to control), study was treated as a random 
effect, and the independent variables included enemy type (A), reference land 
use type (B), or land use conversion type (C). Data for (A) and (B) were only 
those studies that were within the “urbanization” subcategory; data for (C) 
were only those studies that were within the “deforestation” and “forest 
fragmentation” subcategories. Sample sizes (number of studies, n, and effect 
sizes, k) in (A) for each enemy are n = 48, k = 98 for Virus; n = 193, k = 343 for 
Protist; n = 159, k = 490 for Helminth; n = 10, k = 24 for Fungi; n = 103, k = 223 for 
Bacteria; and n = 30, k = 73 for Arthropod. Sample sizes in (B) for each reference 
land use type are n = 391, k = 1073 for Rural; n = 29, k = 74 for Peri-urban; n = 33, 
k = 83 for Natural; and n = 24, k = 58 for Urban Gradient. Sample sizes in (C) for 
each land use conversion type are n = 7, k = 47 for Continuous Gradient; n = 16, 
k = 44 for High/Low Fragmentation; n = 11, k = 27 for Clearcut/Regrowth; and 
n = 21, k = 43 for Agriculture.
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Extended Data Fig. 8 | The effects of common global change drivers on 
mean infectious disease responses in the literature depends on whether 
the endpoint is the host or parasite; whether the parasite is a vector, is 
vector-borne, has a complex or direct life cycle, or is a macroparasite; 
whether the host is an ectotherm or endotherm; or the venue and habitat  
in which the study was conducted. A) Parasite endpoints. B) Vector-borne 
status. C) Parasite transmission route. D) Parasite size. E) Venue. F) Habitat. G) 
Host thermy. H) Parasite type (ecto- or endoparasite). See Table S2 for number 
of studies and effect sizes across ecological contexts and global change 
drivers. See Table S3 for pairwise comparison results. The displayed points 

represent the mean predicted values (with 95% confidence intervals) from a 
metafor model where the response variable was a Hedge’s g (representing the 
effect on an infectious disease endpoint relative to control), study was treated 
as a random effect, and the independent variables included the main effects 
and an interaction between global change driver and the focal independent 
variable (whether the endpoint measured was a host or parasite, whether the 
parasite is vector-borne, has a complex or direct life cycle, is a macroparasite, 
whether the study was conducted in the field or lab, habitat, the host is 
ectothermic, or the parasite is an ectoparasite).



Extended Data Fig. 9 | The effects of five common global change drivers on 
mean infectious disease responses in the literature only occasionally 
depend on location, host taxon, and parasite taxon. A) Continent in which 
the field study occurred. Lack of replication in chemical pollution precluded us 
from including South America, Australia, and Africa in this analysis. B) Host 
taxa. C) Enemy taxa. See Table S2 for number of studies and effect sizes across 
ecological contexts and global change drivers. See Table S3 for pairwise 

comparison results. The displayed points represent the mean predicted values 
(with 95% confidence intervals) from a metafor model where the response 
variable was a Hedge’s g (representing the effect on an infectious disease 
endpoint relative to control), study was treated as a random effect, and the 
independent variables included the main effects and an interaction between 
global change driver and continent, host taxon, and enemy taxon.
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Extended Data Fig. 10 | The effects of human vs. non-human endpoints for 
the zoonotic disease subset of database and wild vs. domesticated animal 
endpoints for the non-human animal subset of database are consistent 
across global change drivers. (A) Zoonotic disease responses measured on 
human hosts responded less positively (closer to zero when positive, further 
from zero when negative) than those measured on non-human (animal) hosts 
(Z = 2.306, p = 0.021). Note, IS studies were removed because of missing cells. 
(B) Disease responses measured on domestic animal hosts responded less 
positively (closer to zero when positive, further from zero when negative) than 
those measured on wild animal hosts (Z = 2.636, p = 0.008). These results  
were consistent across global change drivers (i.e., no significant interaction 
between endpoint and global change driver). As many of the global change 
drivers increase zoonotic parasites in non-human animals and all parasites in 
wild animals, this may suggest that anthropogenic change might increase  
the occurrence of parasite spillover from animals to humans and thus also 
pandemic risk. The displayed points represent the mean predicted values  

(with 95% confidence intervals) from a metafor model where the response 
variable was a Hedge’s g (representing the effect on an infectious disease 
endpoint relative to control), study was treated as a random effect, and the 
independent variable of global change driver and human/non-human hosts. 
Data for (A) were only those diseases that are considered “zoonotic”; data for 
(B) were only those endpoints that were measured on non-human animals. 
Sample sizes in (A) for zoonotic disease measured on human endpoints across 
global change drivers are n = 3, k = 17 for BC; n = 2, k = 6 for CP; n = 25, k = 39 for 
CC; and n = 175, k = 331 for HLC. Sample sizes in (A) for zoonotic disease 
measured on non-human endpoints across global change drivers are n = 25, 
k = 52 for BC; n = 2, k = 3 for CP; n = 18, k = 29 for CC; n = 126, k = 289 for HLC. 
Sample sizes in (B) for wild animal endpoints across global change drivers are 
n = 28, k = 69 for BC; n = 21, k = 44 for CP; n = 50, k = 89 for CC; n = 121, k = 360  
for HLC; and n = 29, k = 45 for IS. Sample sizes in (B) for domesticated animal 
endpoints across global change drivers are n = 2, k = 4 for BC; n = 4, k = 11 for CP; 
n = 7, k = 20 for CC; n = 78, k = 197 for HLC; and n = 1, k = 2 for IS.
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