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A vision chip with complementary pathways 
for open-world sensing

Zheyu Yang1,2,5, Taoyi Wang1,5, Yihan Lin1,5, Yuguo Chen1, Hui Zeng1, Jing Pei1, Jiazheng Wang1, 
Xue Liu1, Yichun Zhou2, Jianqiang Zhang2, Xin Wang2, Xinhao Lv2, Rong Zhao1,3 ✉ & 
Luping Shi1,3,4 ✉

Image sensors face substantial challenges when dealing with dynamic, diverse and 
unpredictable scenes in open-world applications. However, the development of 
image sensors towards high speed, high resolution, large dynamic range and high 
precision is limited by power and bandwidth. Here we present a complementary 
sensing paradigm inspired by the human visual system that involves parsing visual 
information into primitive-based representations and assembling these primitives  
to form two complementary vision pathways: a cognition-oriented pathway for 
accurate cognition and an action-oriented pathway for rapid response. To realize  
this paradigm, a vision chip called Tianmouc is developed, incorporating a hybrid 
pixel array and a parallel-and-heterogeneous readout architecture. Leveraging the 
characteristics of the complementary vision pathway, Tianmouc achieves high-speed 
sensing of up to 10,000 fps, a dynamic range of 130 dB and an advanced figure of merit 
in terms of spatial resolution, speed and dynamic range. Furthermore, it adaptively 
reduces bandwidth by 90%. We demonstrate the integration of a Tianmouc chip  
into an autonomous driving system, showcasing its abilities to enable accurate,  
fast and robust perception, even in challenging corner cases on open roads. The 
primitive-based complementary sensing paradigm helps in overcoming fundamental 
limitations in developing vision systems for diverse open-world applications.

Image sensors1 play a crucial part in a broad range of applications2–5. 
However, with the increasing prevalence of open-world applications 
such as autonomous machines6, robotics7 and artificial intelligence8, 
current image sensors face substantial challenges. Despite the devel-
opment of algorithms tailored for open-world applications9, image 
sensors have difficulty in handling dynamic, diverse and unpredictable 
corner cases10 beyond their sensing range, causing algorithm failures11. 
Some of these challenges are aliasing and quantization error, data 
redundancy and limited dynamic range at the sensing level11, as well 
as semantic misalignment, latency problem12 and domain shift13 at the 
perception level14 (Fig. 1a). To effectively address corner cases, image 
sensors must possess exceptional performance in spatial resolution, 
speed, precision and dynamic range simultaneously. Yet, achieving 
this goal is impeded by the power and bandwidth walls15. Traditional 
sensors exhibit escalated power and bandwidth requirements with 
higher spatial resolution, speed and precision, leading to constrained 
capture abilities and excessive data burdens. Moreover, given the rarity 
of corner cases16, these sensors are prone to generating redundant data, 
consequently wasting bandwidth and power resources.

In contrast to the existing image sensors, the human visual sys-
tem (HVS) stands out for its versatility, adaptability and robustness 
in open-world environments. The HVS interprets visual stimuli into 
multiple visual primitives, such as colour, orientation and motion, 

and allocates them to the ventral and dorsal pathways in a com-
plementary manner17. The cooperation between the two pathways 
efficiently provides a unified representation of visual scenes18 (Meth-
ods). Various endeavours have been made to replicate specific fea-
tures of the HVS, including silicon retinas19,20, neuromorphic vision 
sensors21–28, pulse frequency modulation29–32, time-to-first-spike33–35 
and near-sensor-computing chips36–39. However, challenges persist 
in achieving image sensors with high spatial resolution, high speed, 
high precision, and large dynamic range in the constraints of limited 
power and bandwidth.

Here we report a complementary sensing paradigm inspired by the 
multi-level characteristics of the HVS, along with a vision chip designed 
based on this paradigm, named Tianmouc. Our paradigm consists of a 
primitive-based representation and two complementary visual path-
ways (CVPs) that enable the parsing of a visual scene into primitives and 
their subsequent assembly into corresponding pathways. As shown 
in Fig. 1b, these primitives encompass colour, precision, sensitivity, 
spatial resolution, speed, absolute intensity, spatial difference (SD) and 
temporal difference (TD), serving as the foundational elements for a 
comprehensive representation of the scene (Supplementary Note 2). 
The CVP consists of two distinct pathways: the cognition-oriented 
pathway (COP) and the action-oriented pathway (AOP), analogous to 
the ventral and dorsal pathways of the HVS, respectively (Extended 
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Data Table 1). The COP uses primitives of colour, intensity, high spatial 
resolution and high precision to achieve accurate cognition, minimiz-
ing spatial aliasing and quantization errors. By contrast, the AOP uses 
primitives of SD, TD and high speed to achieve fast responses with 
robustness and high sparsity, addressing data redundancy and latency 
problems. The two pathways complement each other in constructing 
representations of normal and corner cases, thereby achieving high 
dynamic range and mitigating semantic misalignment and domain 
shift problems.

Design of the complementary vision chip
Implementing the complementary sensing paradigm in a physical 
sensing system has several challenges that must be addressed. It is 
essential to design the pixel array such that it facilitates the simulta-
neous dissection of optical-to-electrical information conversion for 
corresponding primitives on the same focal plane. Furthermore, the 
readout architectures of the two pathways must incorporate hetero-
geneous building blocks that can encode electrical information with 
different data distributions and formats.

As shown in Fig. 2a, the Tianmouc chip, fabricated using a 90-nm 
CMOS back-side illuminated technology, consists of two centrepieces: 
a hybrid pixel array for converting optical information into electrical 
signals and a parallel-and-heterogeneous readout architecture for 
constructing two CVPs. Inspired by photoreceptor cells, the hybrid 
pixel array comprises cone-inspired and rod-inspired pixels with 
varying characteristics such as colours, response modes, resolutions 
and sensitivities. These pixels can parse visual information into spe-
cific colours (red, green and blue) and a white spectrum, serving as 
colour-opponent primitives. They can also be adjusted for four dif-
ferent sensitivities using high and low charge-to-electrical conversion 
gain, thereby achieving a high dynamic range by using the low noise of 
the high-gain mode and the high saturation capacity of the low-gain 

mode. The cone-inspired pixels are designed with a fine-grained 4-µm 
pitch for absolute intensity sensing, whereas the rod-inspired pixels 
feature two larger receptive fields, 8 µm and 16 µm, for sensing TD 
and SD, respectively. A spatiotemporal consecutive pixel architec-
ture is used to facilitate TD and SD computation through the use of 
high-density in-pixel memory. Specifically, the rod-inspired pixels 
buffer historical voltage signals in a ping-pong behaviour to enable 
continuous computation of TD in the AOP readout. The same memory 
in rod-inspired pixels across a block can be reorganized to compute 
the SD, as shown by the operational phase in Fig. 2b. The full hybrid 
pixel array comprises 320 × 320 cone-inspired pixels and 160 × 160 
rod-inspired pixels. Further details about these two types of pixel are 
provided in the Methods and Extended Data Fig. 2a,b.

The electrical signals travelling along the two pathways exhibit dis-
tinct characteristics, including differences in data distributions and 
sparsity. These disparities require the use of different methods for 
encoding signals into digital data with appropriate speed and precision. 
To address this challenge, the chip adopts parallel-and-heterogeneous 
readout architectures. For the COP, accurate conversion of absolute 
intensity signals to dense matrixes is essential. This is achieved through 
a single-slope analog-to-digital architecture. By contrast, the AOP 
requires rapid encoding of signals with spatiotemporal differences 
characterized by symmetrical Laplacian-like distribution40 and high 
sparsity. Therefore, a specialized readout architecture is used (Fig. 2c), 
in which a programmable threshold filter is used to minimize redun-
dancy and noise in the computed TD and SD signals while retaining 
key information. Subsequently, these signals are quantized using a 
fast polarity-adaptive digital-to-analog converter with configurable 
precision. Moreover, a data packetizer is used to achieve lossless com-
pression of the sparse variable-precision TD and SD signals in a unified 
protocol (Extended Data Fig. 2d). This approach offers adaptive abili-
ties to reduce bandwidth and further enhance the operation speed of 
the AOP. More details on the readout architectures can be found in the 
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the complementary vision paradigm. a, Corner cases of the open world, such 
as dynamic, diverse and unpredictable situations, pose various challenges 
across both sensing and perception levels. b, The complementary visual 
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Methods and Extended Data Fig. 2c,d. An optical micrograph depicting 
the overall layout of the Tianmouc chip is presented in Fig. 2d.

Characterization of Tianmouc
The performance metrics of the Tianmouc chip, including quantum 
efficiency, dynamic range, response speed, power and bandwidth, 
have been evaluated comprehensively. The chip demonstrates high 
quantum efficiency in both COP and AOP, achieving a maximum of 

72% of AOP and 69% of COP at 530 nm (Fig. 3a). It accomplishes a high 
dynamic range by leveraging the dynamic ranges of different gain 
modes in the complementary COP and AOP. As plotted in Fig. 3b, an 
overall dynamic range of 130 dB is achieved by detecting the lowest 
power density of 2.71 × 10−3 µW cm−2 and the highest power density 
of 8.04 × 103 µW cm−2, in accordance with a well-established standard 
(Methods and Extended Data Fig. 4).

The complementary pathways of the Tianmouc chip enable high 
spatial resolution and precision (Fig. 3c) and high robustness in 
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Fig. 2 | The architecture of the Tianmouc chip. a, Schematic of the chip 
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pathways. Various primitives such as colour, intensity, TD, SD, sensitivity, 
spatial resolution, speed and precision are implemented at different levels 
within the chip. b, In phases 1 and 2, photogenerated electrons are integrated 
into photodiodes and then converted to voltages with high- or low-gain 
amplification. In phase 3, the voltages buffered in the pixel are read out for 

spatiotemporal difference computation, whereas the electrons are integrated 
for the next sampling time. In phase 4, the in-pixel buffer behaves in a ping-pong 
manner. c, Electrical schematics of the AOP readout circuits. The TD and SD are 
first calculated by a subtractor circuit, filtered by a programmable threshold 
and then processed by a multi-precision convertor. The sparse TD and SD values 
are packetized at the final stage to achieve maximum bandwidth reduction.  
d, A microscopic image of the Tianmouc chip.
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unpredictable environments (Fig. 3d). To eliminate spatial aliasing 
and quantization errors caused by AOP, the Tianmouc chip comple-
mentally uses spatial resolution and precision. Although the stand-
ard Siemens star chart captured by the AOP-SD in Fig. 3c may appear 
distorted because of its low resolution, the COP accurately records 
it. As shown in Fig. 3d, in a scene with horizontally fast-moving and 
rotating objects, and changing illumination conditions, a sudden flash 
of light disturbs the AOP-TD, but the AOP-SD remains unaffected. By 
using the COP image with the AOP-TD and AOP-SD, a frame-by-frame 

reconstruction of high-speed video (Methods) enables the recovery 
of high-speed motion.

Using the AOP, Tianmouc demonstrates rapid response with recon-
figurable speeds ranging from 757 frames per second (fps) to 10,000 fps 
and precisions varying from ±7 bits to ±1 bit. This complements the 
comparatively slower speed of the COP, which maintains a sustained 
response at 30 fps and a 10-bit resolution. The high-speed ability of 
Tianmouc is assessed by a transient lightning test. As shown in Fig. 3e, 
Tianmouc can operate at 10,000 fps with ±1 bit at a threshold level of 
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50 mV to capture fast lightning bolts. It is worth noting that, owing to 
high sparsity, the AOP consumes only about 50 megabytes per second 
(MB s−1) of peak bandwidth during transient phenomena, representing 
a 90% reduction compared with traditional cameras with equivalent 
spatiotemporal resolution and precision (640 × 320 × 10,000 × 2). More 
demonstrations of high-speed responses and temporal anti-aliasing 
can be found in Extended Data Fig. 5.

We use a comprehensive figure of merit (FOM), similar to that 
proposed in ref. 41, to evaluate the overall performance of the Tian-
mouc chip. This FOM incorporates key performance indicators for 
open-world sensing, integrating the maximum sampling rate (Rmax) 
and dynamic range into a unified metric (Rmax × dynamic range). In 
Fig. 3f, the FOM is plotted against power and bandwidth for various 
sensors, respectively. The power consumption of Tianmouc varies 
based on the operation mode (Extended Data Fig. 5b) and averages 
at 368 mW in a typical mode (±7 bits, 1,515 fps without threshold). As 
shown in Fig. 3f, Tianmouc achieves an advanced FOM, surpassing the 

existing neuromorphic sensors and traditional image sensors, while 
still retaining low power and low bandwidth consumption. Detailed 
calculations and comparisons can be found in the Methods.

Performance in the open world
The complementary sensing paradigm provides a large space of design 
possibilities and serves as an exceptional data source for perception 
algorithms. To assess these abilities in open-world scenarios, we develop 
an automotive driving perception system (Fig. 4a) integrated with a 
Tianmouc chip. The assessment is conducted on open roads, involving 
encounters with various corner cases, such as flash disturbances, high 
dynamic range scenes, domain shift problems (anomalous objects) 
and complex scenes featuring multiple corner cases. To make use of 
the advantages of Tianmouc architecture, we design a multi-pathway 
algorithm specifically tailored to harness the complementary features 
of the AOP and COP. At the sensing level, the completeness of primitives 
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enables the reconstruction of the original scene and adaptation to 
extreme illumination. Meanwhile, at the perception level, the AOP 
provides the immediate perception of variations, textures and motion, 
whereas the COP offers fine semantic details. By synchronizing these 
outcomes, we achieve a comprehensive understanding of the scene.

The first scenario shown in Fig. 4b evaluates the sensing abilities 
involving a sudden light flash that causes rapid changes in illumination, 
potentially affecting sensor robustness. Tianmouc exhibits remarkable 
resilience to such light flashes while maintaining high perception perfor-
mance in normal situations. For real-time high dynamic range perception 
(Fig. 4c), the complementary sensitivity of the two pathways enables the 
Tianmouc to sense high-brightness contrast without sacrificing speed. 
At the perception level, the anomaly detection ability is complemented 
by a high-speed optical flow filter on the AOP, in which the collaboration 
between AOP-TD and AOP-SD enables precise calculation of motion direc-
tion and speed for identifying anomalies (Fig. 4d). Figure 4e shows a com-
plex scene with dim natural illumination, a chaotic traffic environment 
and sudden disturbances from artificial light, demanding diverse sensing 
abilities in terms of sampling speed, resolution and dynamic range. The 
algorithms on CVP provide complementary and diverse results, offering 
ample room for further decisions in these scenarios. According to the 
mAP0.50 (mean average precision; Supplementary Note 8) bars, the CVP 
yields superior overall detection performance compared with using only 
a single pathway across all the cases in Fig. 4. Notably, it achieves this 
while consuming less than 80 MB s−1 bandwidth and an average power 
consumption of 328 mW. The experimental results demonstrate that 
Tianmouc can efficiently adapt to extreme light environments and pro-
vide domain-invariant multi-level perception abilities. Further details of 
the experiment setup and algorithms are provided in the Methods and 
Extended Data Figs. 6–8, whereas the performance evaluation of the 
algorithm is discussed in Supplementary Notes 7 and 8.

Discussion
Tianmouc excels in capturing intricate details of cognition while rapidly 
responding to unpredictable emergencies and motion simultaneously. 
It offers high speed, high dynamic range and high precision, while simul-
taneously maintaining adaptive low bandwidth. Unlike existing sensing 
paradigms, our approach overcomes the inefficiencies caused by homog-
enous representations and accommodates various corner cases in the 
open world. Compared with contemporary neuromorphic vision sensors, 
Tianmouc exhibits superior precision and comprehensive information 
while maintaining a fast and robust response in extreme environments. 
Importantly, its high scalability allows for advanced spatial resolution 
through advanced manufacturing, facilitating resolution-sensitive 
applications with low power and bandwidth requirements. The primi-
tives can also potentially be designed with on-chip reconfiguration and 
pathway allocation flexibility, enabling active adaptation to different task 
requirements. The vision sensor with primitive-based complementary 
pathways provides a unique data source and sensing platform, open-
ing a new avenue for developing advanced computer vision theories, 
algorithms and systems for open-world applications.
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Methods

A brief introduction to HVS
The HVS differs fundamentally from frame-based image sensors, boast-
ing inherent general-purpose functionality, robustness and efficiency in 
the open world. As shown in Extended Data Fig. 1, the use of primitives 
and complementary pathways is apparent throughout the HVS, span-
ning from initial photoreceptor response to high-level visual processing. 
Notably, the retina exhibits distinct responses to input stimuli: cones 
detect colour and converge in the fovea with high acuity, whereas rods 
are colour insensitive and distributed across the retina50. Rather than 
transmitting the entire signal from the retina to the brain, the lateral 
geniculate nucleus parses the response from the retina to different 
characteristics and transmits them to the primary visual cortex by the 
magnocellular and parvocellular (M and P) pathways. The P-pathway 
maintains a sustained response to colour information, offering a high 
spatial resolution but a low temporal resolution. Complementarily, the 
M-pathway, insensitive to colour, are sensitive to transient informa-
tion, exhibiting a fast temporal response albeit at the expense of spatial 
resolution. Subsequently, the primary visual cortex (V1 and V2 regions) 
interprets these inputs into multiple visual primitives, including colour, 
orientation, direction and depth, which are then re-composed into 
ventral and dorsal pathways for high-level perception and immediate 
action, respectively51. These primitives and pathways enable the HVS to 
achieve unified and coherent representations of the open world while 
significantly reducing data redundancy without ignoring emergencies. 
Moreover, even in scenarios in which certain primitives or pathways are 
out of operation in some corner cases, their combination can compen-
sate in a complementary manner. In summary, the HVS serves as a rich 
source of inspiration when tackling open-world challenges. However, 
harnessing these advantages still requires the development of math-
ematical models, theoretical analysis and silicon implementation.

A complementary vision paradigm
Here we present a synthesis of neuroscience findings and the key fea-
tures of the HVS that are implicated in our complementary sensing 
paradigm. The HVS comprises two main processing pathways: one 
dedicated to the vision for perception (ventral pathway) and the other 
to vision for action (dorsal pathway). Although visual perception and 
cognition are often associated with semantic attributes that require 
high precision and high spatial resolution, for vision-guided behav-
iours, the absolute intensity of colours is deemed less important com-
pared with transient and gradient information with higher temporal 
resolution. Drawing inspiration from the ventral and dorsal pathways, 
we introduce the COP and the AOP as shown in Extended Data Table 1. 
Furthermore, we integrate key features from the photoreceptor level, 
the lateral geniculate nucleus and the high-level vision into each path-
way as primitives. Similar to the HVS, our paradigm offers advantages 
across multiple levels. At the photoreceptor level, incorporating dual 
photoreceptors greatly extends sensitivity and dynamic range. At the 
sensor level, incorporating primitive-based representations enables 
high dynamic range, high precision, high spatiotemporal resolution 
and low latency sensing without data redundancy. At the perception 
level, the complementary sensing paradigm provides the potential 
for fast responses to emergencies while having high-precision cogni-
tion for critical objects. To quantitatively assess representation abil-
ity, we introduce the concept of completeness of representation and 
conduct a comprehensive theoretical analysis of the primitive-based 
representations (Supplementary Notes 1–3). The results show that the 
primitive-based representation of Tianmouc maintains completeness 
compared with a high-speed frame-based representation.

Architecture design
The Tianmouc chip adopts a hybrid pixel array and parallel-and- 
heterogenous readout architectures to simultaneously implement 

primitives and complementary pathways on the same focal plane, 
enabling support for the complementary sensing paradigm. Overall, 
the COP captures colour intensity accurately through fine-grained 
cone pixels and high-precision parallel analog-to-voltage conversion, 
whereas the AOP uses rod pixels, which can be reconfigured for vary-
ing high-speed and precision, to facilitate fast, sparse spatiotemporal 
difference sensing and further compression.

A schematic of the hybrid pixel array illuminated from the back 
side is shown in Extended Data Fig. 2a. The colour or white filters and 
microlens array are fabricated on the cone-inspired and rod-inspired 
pixels, respectively. The three-dimensional diagram of the pixel struc-
ture shows the arrangement of the photodiode, high-density storage, 
transistors and metal wires. An optical micrograph of the hybrid pixel 
array is provided on the right. Cone-inspired and rod-inspired pixels use 
the same sensing frontend (Extended Data Fig. 2b) to convert optical 
information to charges in the photodiode and transmit these charges 
through the transfer gate controlled in a global shutter. The charges 
are converted to electrical signals by high or low gain realized by the 
reset and low-gain reset transistors, along with an additional capacitor. 
Keeping the reset transistor always on adds the additional capacitor 
to the signal path to achieve low gain, while keeping the low-gain reset 
transistor always on achieves the high-gain mode. Different sensing 
backends (Extended Data Fig. 2b) in cone-inspired and rod-inspired 
pixels enable the two pathways to read out the voltage in different ways.

Low-noise readout of intensities in cone-inspired pixels is achieved 
by correlated double sampling (CDS) circuits (Extended Data Fig. 2c). 
The value processed by the CDS circuit is further compared with a linear 
ramp generated by a shared digital-to-analog converter (DAC) and 
converted to digital format by a high-precision counter. As shown in 
Extended Data Fig. 2c, the spatiotemporal signals stored in rod-inspired 
pixels are fed simultaneously into the corresponding analog-to-digital 
converters (ADCs). The TD is calculated based on the conservation of 
charges. For SD computing, signals in each rod-inspired pixel are first 
processed in the CDS circuit to reduce noise, and the results of the 
two rows are further subtracted to generate SD values. For high-speed 
conversion of the processed Laplacian-like distributed spatiotempo-
ral difference, we adopt a unified and polarity-adaptive DAC with a 
programmable threshold that filters the spatiotemporal difference 
to preserve the critical information. Using the reconfigurable slope 
generated by the DAC, the digital value of TD and SD is quantized to dif-
ferent precisions from ±7 bits to ±1 bit with various speeds from 757 fps 
to 10,000 fps (see detailed specification in Extended Data Table 2 and 
Supplementary Note 4).

The data representation of the COP is a dense matrix, whereas the 
AOP data are sparse with variable length. The different data representa-
tion poses challenges for efficient data communication and storage. As 
shown in Extended Data Fig. 2d, a packetizer using the unified address 
difference representation to encode the sparse spatiotemporal differ-
ence by assembling the timestamp, the address of pixels that generate 
non-zero values, and the corresponding TD and SD to compact and 
unified packets with compatibility of different types (TD and SD) and 
various precisions.

Experimental setup for chip characterization
The system setup for chip characterization is shown in Extended Data 
Fig. 3. The test board is shown in Extended Data Fig. 3a. As shown in 
Extended Data Fig. 3b, the digital output of the chip is processed by a 
commercial FPGA board (AMD-Xilinx, EK-U1-ZCU106-G-J) and transmit-
ted to the host computer (Nvidia, Jetson AGX Orin) through Peripheral 
Component Interconnect Express (PCIe) protocol for post-processing. 
To miniaturize the system size, the FPGA board is replaced with a smaller 
board (Milianke, MLK-H4-KU040) in the autonomous driving percep-
tion system.

The characterization of Tianmouc is conducted in two setups. 
The first is based on the European Machine Vision Association 1288 



(EMVA1288) standard52. As shown in Extended Data Fig. 4a–c, a uni-
form light is generated by disk-shaped LEDs and monochromators, and 
then projected on the focal plane of the sensor placed in the machine 
(Looglook, ez1288-RD95) for quantum efficiency measurement. The 
digital output of the COP is processed in the host computer. Because 
the AOP generates only spatiotemporal differences, a high-speed ADC 
acquisition card (ART Technology, PCIE8914M) is used to record the 
analog output of the intensity signals of rod pixels to be compatible 
with EMVA1288. The intensity images of both pathways are analysed by 
EMVA1288 standard-based algorithms to generate measurement data.

The signal-to-noise ratio (SNR) curve for dynamic range measure-
ment in Fig. 3b is evaluated using a customized optical setup (Extended 
Data Fig. 4d,e) because the light source in the standard EMVA1288 
machine has a limited dynamic range and cannot be programmed. 
Collimated light from a laser (Fisba, READYBeam) and a collimator 
are filtered by a high-frequency filter consisting of an objective and a 
pinhole, and then expanded by a lens to form a uniform light spot. This 
spot is then projected onto an optical power meter (Thorlabs, PM100D 
with S120C for high laser power characterization and PM160 for low 
laser power measurement) and the sensor chip on the same optical 
path. In both experiments, AOP data are collected by triggering the 
laser to generate flickers projected on the chip and recording the TD 
data with ±7-bit precision.

The key to calculating sensitivity and SNR curve is the calculation of 
SNR using intensity images. The calculation of SNR is outlined below
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Chip and system characterization
Extended Data Fig. 5a demonstrates the ability of Tianmouc to effec-
tively capture unpredictable fast-moving ping-pong balls shot by a 
machine in random directions. Tianmouc accurately captures the static 
background when no balls are shot. The ping-pong balls are ejected 
suddenly by the machine and their trajectory can be detected by both 
AOP-TD and AOP-SD. Moreover, clear textures of other objects are 
captured by the AOP-SD.

The power consumption of the Tianmouc chip is measured using 
multimeters (Fluke, 17B+ digital multimeter) for different operating 
modes, ranging from 328.4 mW to 419.7 mW (Extended Data Fig. 5b). 
Tianmouc achieves relatively low power consumption compared with 
traditional high-speed image sensors41. A breakdown of power for a 
typical operating mode is provided in Extended Data Fig. 5b.

The Tianmouc effectively addresses temporal aliasing by using the 
high speed of AOP. As shown in Extended Data Fig. 5c, the COP records 

the rotation of a car wheel with aliasing, which is then accurately cap-
tured by AOP because of its ability for fast response. Through a recon-
struction algorithm, an anti-aliasing reconstructed video is achieved, 
recovering the actual rotation at a speed of 757 fps.

As a supplement to Fig. 3e, we present the texture of lightning cap-
tured by Tianmouc under different operating modes. As shown in 
Extended Data Fig. 5d, the transient lightning with detailed texture is 
recorded by AOP at 1,515 fps, ±7 bits and a threshold of 50 mV. By apply-
ing an on-chip threshold filter, the peak bandwidth can be reduced to 
about 50 MB s−1 at a mode of 10,000 fps with ±1-bit precision (Fig. 3e), 
and 55 MB s−1 at a mode of 1,515 fps with ±7-bit precision (Extended 
Data Fig. 5d). This presents an 80–90% reduction compared with tradi-
tional cameras with equivalent spatiotemporal resolution and precision 
(640 × 320 × 1,515 × 8). Further details on the calculation of FOM can 
be found in Supplementary Note 5.

Scene reconstruction based on the CVP
For data reconstruction, a neural-network-based reconstructor is 
trained based on a self-supervised model. Two adjacent colour images 
from the COP and the AOP data stream between these images are 
used to reconstruct the original colourful scene. This process requires 
the same sampling rate as the AOP-SD and AOP-TD and the same 
resolution as the COP. The training process is adapted from ref. 53, 
incorporating the COP image at t0 I( )t
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The reconstruction network comprises three parts: a convolutional 
block attention module (CBAM)-based54 tiny-UNet55, an optical flow 
estimator and a fusion network, as shown in Extended Data Fig. 6a. The 
CBAM-based tiny-UNet takes the original COP data and ∑ It t
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added as a complement to the motion information, and the network 
structure is modified corresponding to the number of data channels, 
as shown in Extended Data Fig. 6b. The fusion network is also a UNet. 
Further details of the network structure can be found in Supplementary 
Table 1. The entire network is trained in an end-to-end manner, as shown 
in Extended Data Fig. 6c. By adjusting tf, the reconstruction result of 
an arbitrary frame can be obtained, as shown in Extended Data Fig. 6d. 
Using this approach, at least 757 fps reconstructed colour images with 
a resolution of 640 × 320 can be achieved. Moreover, the network can 
be generalized to high dynamic range scenes, as shown in Fig. 4c. Details 
of the evaluation process of the reconstruction algorithm can be found 
in Supplementary Note 7.

Perception algorithms used in the experiments
For real-time perceptual tasks, we build a parallel and complementary 
data process pipeline, as shown in Extended Data Fig. 7. The system sup-
ports the streaming process of the Tianmouc chip to support CVP-based 
perception processes. To accomplish detection and tracking tasks in the 
open world, two neural network (NN)-based algorithms run parallelly 
in our system, including a multi-tasks network modified on YOLOPv1 
(refs. 57,58), a high-speed detector modified on YOLOv5s originated 
from YOLOv4 (ref. 59), and a multiple-object tracker (MOT) based on 
Kalman filter and an optical flow filter. The complete system contains 
a Tianmouc chip, an FPGA and a host computer (NVIDIA Jetson AGX 
Orin). The Tianmouc serves as the core of the whole system, which 
senses visual signals, converts them into two pathways, encodes the 
signals from the two pathways in compressive digital format and out-
puts the digital data. The output data are transmitted from the chip to 
the FPGA by parallel or serial interfaces and then forwarded to the host 
computer using a PCIe interface without modifications. All perceptual 
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algorithms are executed on the host computer. The training details and 
the evaluation method can be found in Supplementary Notes 6 and 7, 
with detailed evaluation results provided in Supplementary Note 8 
using annotated Tianmouc datasets referenced in Fig. 4.

For complementary perception, the results are synchronized and 
integrated using a MOT based on a Kalman filter. Detection results 
from multiple pathways are time-stamped and transmitted through 
different buffers into a tracking thread. The MOT is set to record the 
historical results for about 150 ms and updates tracking results at the 
same speed as the detector on the AOP. It also gives a tracking trace by 
drawing the centre points of tracked targets. Detection results given 
by different pathways are synchronized in the same trace.

Moreover, an optical flow solver and optical flow filter are introduced 
to the detection-tracking task. We adopt the Horn–Schunck method60 
for real-time dense optical flow calculation. On getting the dense opti-
cal flow (uij, vij) for each point (i, j), we calculate the average of all 
non-zero optical flow values in the FOV to obtain the global optical  

flow 
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motion, where N is the number of pixels with non-zero optical flow 
vectors, and W and H are the width and height of the AOP frame, respec-
tively. Based on this, targets that introduce inconsistencies with global 
motion can be filtered out as potential out-of-distribution obstacles 
through morphological operations. For more details, see Supplemen-
tary Note 9.

Bandwidth and data visualization in different open-world 
scenarios
To demonstrate the efficiency of Tianmouc, we calculate the bandwidth 
consumption for 10 different scenarios, while maintaining consistent 
precision and speed settings of the sensor. The results are presented in 
Extended Data Fig. 8a–d, corresponding to Fig. 4d–g, respectively. In 
Extended Data Fig. 8e, the performance of the algorithm is showcased 
while travelling on a tree-shaded road. Extended Data Fig. 8f shows a 
challenging scenario in which our vehicle passes over a speed bump, 
including notable camera shaking and large-amplitude vibration, a 
corner case in our evaluation. Despite these challenges, Tianmouc 
effectively tracks the target object owing to the high response speed 
of AOP. In Extended Data Fig. 8g, our vehicle navigates through roads 
with heavy traffic, resulting in dense AOP-TD, whereas in Extended Data 
Fig. 8h, the system operates on a highway with almost zero relative 
speed with other vehicles, leading to very sparse AOP-TD. Extended 
Data Fig. 8i shows the performance of Tianmouc when entering and 
leaving a short tunnel with a large variation in light on the same target. 
Extended Data Fig. 8j simulates an artificial anomaly in which many 
people are playing basketball at a tunnel exit and the vehicle keeps 
static. Here, the AOP-TD does not respond effectively, whereas the 
AOP-SD still provides a clear description of the bright part.

On the right of each case, we count and average the bandwidth con-
sumption of the AOP-TD, AOP-SD, COP and their combination across the 
entire sample. The actual average bandwidth of Tianmouc ranges from 
50 MB s−1 to 80 MB s−1, with peak bandwidth generally below 80 MB s−1, 
significantly less than traditional high-speed high-dynamic-range cam-
eras. The main bandwidth consumption of Tianmouc is caused by the 
AOP-TD and AOP-SD because of their high sampling speed. However, 
the data distribution of the AOP-TD and AOP-SD and efficient coding 

methods reduce the bandwidth requirements of the AOP across all 
tested environments.
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Extended Data Fig. 1 | The complementarity of the Human Vision  
System (HVS). The retina is composed of rod and cone cells that operate in  
an oppositional manner to expand the sensitivity range. At the next level, in  
the lateral geniculate nucleus (LGN), the M-pathway and P-pathway encode 
information in a complementary manner. The output information from the 

LGN is then reorganized into a series of primitives, including colour, orientation, 
depth, and direction at the V1 region. Finally, these primitives are transmitted 
separately to the ventral and dorsal pathways to facilitate the recognition of 
objects and visual-guided behavior.
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Extended Data Fig. 2 | Tianmouc architecture. a, Schematic of the pixel 
structure in the back-side illuminated hybrid pixel array. b, Schematic of the 
cone-inspired and rod-inspired pixels. c, Schematic of readout circuits of the 

COP and AOP. d, Schematic of compressed packets generation process through 
the sparse spatiotemporal difference packetizer.



Extended Data Fig. 3 | Tianmouc chip testing systems. a, Testing boards 
equipped with a Tianmouc chip. b, The full system to process the output data of 
Tianmouc chip. The data is first transmitted to the FPGA board, where it collects 

raw data before transferring it to the host computer through PCIe. Subsequently, 
the host takes the charge of data processing for test and other tasks.
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Extended Data Fig. 4 | Experimental setup for chip characterization.  
a, Schematic illustration of the experimental set-up for the chip evaluation 
based on EMVA1288. b, A photograph of the optical setup. c, Photograph of the 
chip evaluation system including chip test board, FPGA board, host computer 

and the high-speed ADC acquisition card. d, Schematic illustration of the 
optical set-up for dynamic range measurement. e, A photograph of the optical 
setup for dynamic range measurement.



Extended Data Fig. 5 | Chip characterization. a, High-speed recording of an 
unpredictable and fast-moving ping-pong ball shot by a machine. b, Power 
consumption of Tianmouc. The left half depicts the distribution of different 
modules including pixel, analog, digital and interface circuits. The right 

illustrates the total power consumption under different modes. c, Anti-aliasing 
reconstruction of the rotation of a wheel. The alias in the wheel recorded by 
COP can be eliminated by the high-speed AOP. d, the AOP of Tianmouc is able to 
capture lightning that is missed by COP and record details of textures.
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Extended Data Fig. 6 | The reconstruction pipeline. a, The structure of the 
whole reconstruction network. b, The light-weight optical flow estimator 
modified from SpyNet, using multi-scale residual flow calculation. In this 
figure, d means down-sampling operation. c, A self-supervised training 

pipeline, where we use the two colour images and the difference data between 
these two images to provide two training samples. d, At the inference stage, we 
adjust the amount of input data to obtain high-speed colour images at any time 
point.



Extended Data Fig. 7 | The streaming perception pipelines for the 
open-world automotive driving tasks. In Tianmouc, different primitive 
combinations are encoded to form the AOP and COP. These two pathways 
maintain separate buffers and support independent feedback control. The 
processed data of the AOP and the COP are then sent to different NN or an 

optical flow solver. Subsequently, the inference results are integrated in a 
multi-object tracker. This approach optimally leverages the CVP at a semantic 
level, preserving both low-latency response ability and high performance 
simultaneously.
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Extended Data Fig. 8 | More cases demonstrate the efficiency of Tianmouc 
in adapting to the open world. The sparse data in the AOP, coupled with the 
encoding method, enables Tianmouc to adaptively adjust its transmission 

bandwidth, typically maintaining it at a bandwidth below 80 MB/s in most 
scenarios. With the complementary perception paradigm, this bandwidth 
proves adequate for efficiently addressing diverse corner cases.



Extended Data Table 1 | The primitive-based representation and complementary sensing paradigm in Tianmouc

Different primitives are combined into specific data modalities, which are sampled and transmitted by the pathways.
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Extended Data Table 2 | Comparison of Tianmouc with existing vision sensors

Notes: 
* The minimum latency of DAVIS 346 is measured at its best conditions for a few pixels. The total latency of the sensor is collectively influenced by multiple factors, such as pixel bias  
configuration, illumination, and the event readout scheme63. 
† The bandwidth of DAVIS 346 is calculated by multiplying the maximum event rate and the bus width of each event including row and column address64.
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