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Remote collaboration fuses fewer 
breakthrough ideas

Yiling Lin1, Carl Benedikt Frey2,3,4 ✉ & Lingfei Wu1,4 ✉

Theories of innovation emphasize the role of social networks and teams as facilitators 
of breakthrough discoveries1–4. Around the world, scientists and inventors are more 
plentiful and interconnected today than ever before4. However, although there are 
more people making discoveries, and more ideas that can be reconfigured in new 
ways, research suggests that new ideas are getting harder to find5,6—contradicting 
recombinant growth theory7,8. Here we shed light on this apparent puzzle. Analysing 
20 million research articles and 4 million patent applications from across the globe 
over the past half-century, we begin by documenting the rise of remote collaboration 
across cities, underlining the growing interconnectedness of scientists and inventors 
globally. We further show that across all fields, periods and team sizes, researchers in 
these remote teams are consistently less likely to make breakthrough discoveries 
relative to their on-site counterparts. Creating a dataset that allows us to explore the 
division of labour in knowledge production within teams and across space, we find 
that among distributed team members, collaboration centres on late-stage, technical 
tasks involving more codified knowledge. Yet they are less likely to join forces in 
conceptual tasks—such as conceiving new ideas and designing research—when 
knowledge is tacit9. We conclude that despite striking improvements in digital 
technology in recent years, remote teams are less likely to integrate the knowledge  
of their members to produce new, disruptive ideas.

The past half-century has seen a marked increase in the scale and com-
plexity of scientific research4, to which researchers have responded 
by lengthening their education and training10, specializing more  
narrowly11 and working in teams2,4,11. The last of these has been aided 
by recent advances in remote work technology, allowing researchers 
to form distributed teams to take advantage of complementary yet 
geographically dispersed knowledge and expertise12–16. A widely held 
view is that by permitting more specialization and better matching, the 
rise of remote collaboration promises larger “collective brains”3 and 
accelerated innovation7. Indeed, seen through the lens of recombinant 
growth theory7, a larger number of possible collaborations increases 
the number of possibilities for new discoveries. Yet, in contradiction 
to this promise, recent work has shown that “ideas are getting harder 
to find”5,6.

One possible explanation for this apparent puzzle is that although 
remote collaboration among specialized researchers permits more 
new combinations of knowledge, it also makes it harder for teams to 
integrate the pieces17. In the early stages of a project, when an idea is 
hard to articulate and knowledge is tacit, collaboration at a distance 
is particularly challenging18. However, when an idea crystallizes and 
knowledge becomes more codified, the comparative advantage of 
on-site teams is gradually diminished. It follows that scientists in on-site 
teams are better placed to fuse knowledge and conceive the next break-
through idea12,19,20, whereas they tend to coordinate technical work and 
develop established ideas when switching to remote13,21.

In this article, we show how the roles of team members change as 
scientists and inventors switch from on-site to remote collaboration. 
Analysing 20 million research articles from between 1960 and 2020 
and 4 million patent applications from between 1976 and 2020 across 
the globe, we confirm that remote teams develop and on-site teams 
disrupt both in science and technology. Inspired by a recent study 
linking disruptive innovation to team structure22, we examine author 
contribution disclosures and find that despite striking advances in 
remote work technology, collaboration at a distance still centres on 
late-stage, technical project tasks rather than conceptual tasks. The 
tendency of remote teams to execute and not conceptualize is robust 
to controlling for a host of potential confounders, and seemingly asso-
ciated with the continued importance of face-to-face interactions. We 
conclude by showing that established and emerging researchers are 
much less likely to jointly conceive new ideas when working remotely, 
reducing the exposure of new talent to disruptive discovery.

Our article makes three key contributions to the existing literature. 
First and foremost, we shed new light on the deceleration of innovation, 
despite the rising number of possibilities for discovery and increased 
research efforts5. Shifting the research focus from the performance of 
individual scientists6,10,23,24 to their team roles, we show that although 
remote collaboration involves more people in science and technol-
ogy, it does not necessarily engage them in the core task of conceiving 
research. In other words, the creative potential of many researchers, 
especially emerging scholars, has not been fully realized. Second, 
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although large teams have long been emphasized as a way of mobilizing 
greater collective knowledge to push the frontiers of science4,8, recent 
research shows that small teams and solo researchers are more likely 
to disrupt both in science and technology25. We add to this literature 
by analysing interactions within teams and their importance for fusing  
breakthrough ideas. Finally, although recent research has documented 
that remote work can increase productivity in routine activities, such as 
in call centres26, another set of studies shows that it hampers creative 
activities20,27,28. Reconciling these findings, we show how the compara-
tive advantage of remote work shifts as a project progresses. Whereas 
on-site teams evolve early-stage ideas, remote teams extend established 
knowledge as it becomes more codified. Taken together, our results 
point to the critical role that in-person interaction plays in fusing dis-
ruptive discoveries and training the next generation of talent in science 
and technology, even in the age of remote work.

Research design
To compare the innovative performance of on-site teams (with all team 
members in the same city) and remote teams (with team members 
spread across two or more cities), we start by creating and analysing two 
large datasets representing the full spectrum of science and technol-
ogy fields. The first dataset includes data for scientific research teams 
responsible for 20,134,803 papers published by 22,566,650 scientists 
across 3,562 cities between 1960 and 2020. The name-disambiguated 
authors and their respective institutions with latitude and longitude 
values were obtained from the archived version of Microsoft Aca-
demic Graph and were verified in two ways: by two human coders who 
manually checked a random sample of the data, and by comparing 
our sample against self-reported records in ORCID (Open Researcher 
and Contributor ID). The second dataset includes data for patenting 
teams responsible for 4,060,564 patents filed by 2,732,326 inventors 
across 87,937 cities between 1976 and 2020. The name-disambiguated 
inventors and their addresses with latitude and longitude values were 
obtained from PatentsView, an online data platform of the US Patent 
and Trademark Office, and verified by two human coders (Methods). 
These two datasets cover teams of different fields, periods and team 
sizes, which allows us to examine the robustness of the relationship 
between collaboration distance and inventive outcomes when these 
variables are accounted for. However, without information on what col-
laborators actually do within teams, it is hard to explain any observed 
correlation. To overcome this data limitation, we extend our analysis of 
scientific research teams by including data for self-reported author con-
tributions. Doing so, we collect 89,575 author contribution disclosures 
published between 2003 and 2020 from the websites of Nature, Science, 
Proceedings of the National Academy of Sciences of the United States 
of America and PLOS ONE, and map them to the name-disambiguated 
scientists in our data. This allows us to provide the first quantitative 
evidence of how roles change when the same scientist switches from 
on-site to remote collaboration. We also probe the robustness of our 
key results in three ways. First, we trace the roles of the same scientists 
when they work either remotely or on-site. Second, we zoom in on 
teams that collaborate repeatedly to investigate how roles change when 
members split geographically as an event study. Third, using machine 
learning techniques that infer team roles for papers for which author 
contributions are not explicit, thereby increasing our sample size, 
we check that differences in team roles between on-site and remote 
teams hold more broadly. We turn to describe these robustness tests 
in greater detail in Methods.

For each paper or patent, we calculate a newly proposed yet exten-
sively verified measure, ‘disruption’ or D score, which assesses to 
which extent an idea disrupts the state of science or technology6,25,29 
(Methods). Distinguishing between disruptive discoveries and devel-
oping ones is crucial, as breakthroughs open up new avenues for pro-
gress, whereas incremental developing projects eventually run into 

diminishing returns6. The intuition of the D score is straightforward: 
if subsequent work that cites a product also cites its references, the 
focal product can be seen as building on that previous knowledge. If 
the converse is true—future works cite a paper or patent but ignore its 
acknowledged forebears—those future works recognize that output 
as disruptive by eclipsing the old ones referenced. The D score varies 
from −1 (developing) to 1 (disruptive) as it is calculated as the difference 
between the probabilities of observing these two types of subsequent 
citation pattern25. Thus, the D score allows us to uncover the distinct 
roles that research teams play in unfolding the advance of science and 
technology. For example, the 1953 paper on DNA by Watson and Crick30 
is among the most disruptive works (D = 0.96, top 1%), whereas the 2001 
paper on the human genome by the International Human Genome 
Sequencing Consortium31 is highly developing (D = −0.017, bottom 
6%). For robustness, building on the intuition that radical innovation 
is typically accompanied by new terminology, we also complement our 
D-score measure with a variable identifying papers that proposed new 
scientific concepts (for example, time-evolving block decimation)32 and 
patents introducing new technology codes (for example, Web-crawling 
techniques for indexing)33. We further outline the overall research 
design and our empirical strategies in the Methods.

Remote teams produce fewer breakthroughs
Over the past half-century, research teams have expanded geographi-
cally across all sciences and technology fields (Fig. 1a–d). The average 
distance between team members has increased from 100 km to nearly 
1,000 km in papers and from 250 km to 750 km in patents. In tandem, 
the fraction of extremely long-distance collaborations over 2,500 km, 
corresponding to the width of the south Atlantic from Brazil to Liberia, 
increased substantially from 2% to 15% for papers, and from 3% to 9% 
for patents (Fig. 2a–c). However, the contribution of remote teams to 
breakthrough innovation has been far less impressive. Across papers 
and patents, the probability of disruption P(D > 0) falls from 28% to 22% 
for papers (P value < 0.001 for two-sided Student’s t-test), and 67% to 
55% for patents (P value < 0.001), as collaboration distance increases 
from 0 km to more than 600 km—approximately the distance between 
Paris and Frankfurt (Fig. 3a). In relative terms, the remote work penalty 
is around 3–4%, with P(D > 0) declining from 20.4% to 19.5% for papers 
(P value < 0.001 for two-sided Student’s t-test), and 58.2% to 56.5% for 
patents (P value < 0.001), when we add our full set of controls, includ-
ing fields, periods, team sizes, average career age, knowledge diversity 
and tie strength, as well as author fixed effects (Extended Data Fig. 1 
and Extended Data Tables 1 and 2). This pattern is also robust against 
alternative measures of collaboration distance34 (Extended Data Fig. 2) 
and breakthrough discoveries (Extended Data Fig. 3). Inspired by previ-
ous studies on coordination challenges originating both from fewer 
in-person interactions owing to spatial separation and from more 
working schedule conflicts across time zones27,35, we disentangle these 
effects and observe a significant decline in the probability of disruption 
between local teams and remote teams across times zones as well as 
within a time zone (Fig. 3b,c). Overall, our findings consistently point to 
the continued value of geographic proximity for disruptive innovation.

On-site ideation; remote execution
With this in mind, we next turn to examine the core hypothesis of this 
paper: that although remote collaboration permits more new combi-
nations of knowledge, it also makes it harder for teams to integrate 
the pieces. Indeed, if maintaining frequent, in-person communica-
tion is challenging when team members are spread across cities, and 
some activities rely more on in-person interaction than others, even 
the same scientists should change team roles when they switch from 
on-site to remote collaboration. To test precisely this, we analyse the 
roles of scientists in teams across four functional research activities, 
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including conceiving research, carrying out experiments, analysing 
data and writing the paper. We note that the probability of the same 
scientist contributing to conceiving research declines most mark-
edly (from 63% to 51%, P value < 0.001) relative to all other activities 
(Fig. 4a). On average, scientists in remote teams are less likely to engage 
in conceptual tasks than their peers in on-site teams (48% versus 42%, 
P value < 0.001), including conceiving research or writing the paper, 
and correspondingly, more likely to contribute to technical tasks, such 
as carrying out experiments and analysing data (Fig. 4a inset). These 
patterns hold when we control for potential confounders, includ-
ing research fields, periods and team sizes (Methods and Extended 
Data Table 3). In addition, when we switch our focus from the role of 
individual scientists to their interactions within the team, we find the 
same pattern: the relative probability of two authors joining forces 
in conceiving research declines from 34% to 28% (P value < 0.001) 
when they switch from on-site to remote collaboration (Extended  
Data Table 4).

Our findings have implications for the future of scientific and techno-
logical progress. Building on the result that on-site teams involve more 
talent in conceiving research, we turn to explore how this affects the 
next generation of researchers, distinguishing between team members 
by their citation impacts. Doing so, we find that among on-site teams, 
the probability of two authors joining forces in conceiving research 

(34%) barely changes with the difference in their citation impacts. How-
ever, in remote teams, this probability decreases markedly from 33%, 
when two authors have the same level of citations, to 23%, when one has 
four orders of magnitude more citations than the other (Fig. 4b). The 
least and most impactful authors, in other words, are much less likely 
to jointly conceive new ideas in remote teams than in on-site teams 
(Fig. 4b inset). This striking pattern, whereby on-site teams engage  
less established researchers in conceptual work, whereas remote teams 
merely assign them technical tasks, means that in the latter case, the 
opportunities for idea generation do not trickle down the hierarchy 
of citation impacts from established scholars to emerging ones. We 
conclude that on-site teams are particularly important as they serve 
as an escalator for new talent to co-lead in conceptualizing the next 
breakthrough.

Discussion
In this paper, we shed new light on one of the great puzzles of our time: 
why the connectivity brought by the Internet has not led to the upsurge 
in innovation that recombinant theory predicts. Our key finding is that 
although remote collaboration permits more new combinations of 
knowledge in principle, it also makes it harder for teams to integrate 
the pieces.
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Fig. 1 | Mapping the global collaboration of scientists and inventors.  
a–d, Our dataset includes 20,134,803 papers published by scientists across 
3,562 cities between 1960 and 2020 (a,b), as well as 4,060,564 patents filed by 
2,732,326 inventors across 87,937 cities between 1976 and 2020 (c,d). a,c, We 
visualize the geographical distribution of these scientists (a) and inventors (c). 
Each dot is a city in our dataset. Note that although there are nearly an order of 
magnitude fewer patents than papers, there are still over an order of magnitude 
more patenting cities than paper-producing cities. The greater geographical 
span of patenting reflects that industry is more dispersed than academia.  
b,d, Building on a,c, we show where disruptive (D > 0) papers (b) and patents  

(d) are produced. A dot represents all on-site teams based in that city, and an 
edge between two cities represents all remote teams with members in both 
cities37. The colours of dots and edges indicate whether disruptive work is 
observed at a higher (red) or lower (blue) probability relative to the population 
baseline. We analyse dots and edges that contain five or more teams to 
effectively calculate the probability of observing disruptive work, and find that 
on-site teams are more disruptive: 76% of cities in science (representing 58% 
on-site teams) and 48% of cities in patents (representing 76% on-site teams) are 
red. We also note that remote teams tend to be more developing: 71% of city 
pairs in science and 63% of city pairs in patents are blue.
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Fig. 2 | The growth of collaboration distance across all sciences and 
technologies. We analysed the geographical distribution of scientists and 
inventors underlying 20,134,803 research papers published between 1960 and 
2020, as well as 4,060,564 patent applications filed between 1976 and 2020.  
a, The average distance between co-authors (collaboration distance) has 
increased markedly from less than 100 km to nearly 1,000 km for papers and 

from 250 km to nearly 750 km for patents during the investigated period.  
b,c, This increase in collaboration distance holds across all fields for papers  
(b) and technology domains for patents (c). In b,c, we show raw data (points) 
and also the moving average using a long, 16-year window (curves). The trends 
remain the same if alternative window sizes (for example, 2, 4 or 8 years) are used.
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At a time when scientific talent is increasingly moving across the 
globe36, and workplaces are rethinking their remote work policies in 
the aftermath of the coronavirus disease 2019 pandemic, our results 
have important implications for both managers and policymakers.  
As we have shown, colocation still plays a key role in the fusion of radical  
ideas, suggesting that the post-pandemic shift towards remote work 
will probably favour incremental innovation at the expense of disrup-
tive discoveries. From a managerial point of view, projects aiming at 
disruptive innovation are best allocated to on-site teams, whereas 
projects focusing on incremental improvements can be assigned to 

their distributed counterparts. Our study also underlines an impor-
tant trade off that policymakers face: although remote collabora-
tion might allow for the effective exploitation of existing ideas in the 
short run, it might also curtail the kind of innovation breakthroughs 
that drive progress and productivity over the long run. Therefore, 
for policymakers interested in reviving productivity growth and 
innovation, physical infrastructure investment to reduce travel 
costs and make housing affordable where knowledge industries 
cluster should not take the backseat to the construction of digital  
infrastructure.
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Fig. 4 | On-site teams conceive; remote teams carry out. a, We analysed the 
contribution disclosures of 89,575 papers from Nature, Science, Proceedings of 
the National Academy of Sciences of the United States of America and PLOS ONE 
(2003–2020) and identified four research activities. In our sample, the 
probability of conceiving, writing and analysing decreased by 12% (from 63%  
to 51%), 11% (from 60% to 49%) and 8% (from 58% to 50%), respectively (with 
P values < 0.001, n = 21,373), when scientists switched from on-site to remote. 
Conversely, the probability of carrying out increased by 1% (from 42% to 43%; 
P value < 0.05, n = 21,373). To ease comparison, we show relative probabilities, 
or the probability ratio between what the same scientist does in on-site and 
remote teams. For robustness, we use a larger sample of 16,397,750 papers, 
utilizing machine learning models (Methods) to predict the distinct roles of 
conceptual workers (engaged in conceiving and writing) and technical workers 
(engaged in carrying out and analysing). Again, we find that scientists are more 

likely to conceive in on-site teams and less likely to carry out technical work 
(inset). b, On the basis of the contribution statements, we find no relationship 
between two co-authors joining forces in conceiving research and their 
citation difference (calculated when their paper was published) among  
on-site teams (ordinary least squares regression indicated by the green line, 
coefficient = 0.0002, P value > 0.05, n = 155,842), which might partly reflect 
more student–adviser relationships. By contrast, among remote teams, the 
co-conceive probability declines, from 33% to 23%, when the citation difference 
increases from zero to four orders of magnitude (ordinary least squares 
regression indicated by the orange line, coefficient = −0.022, P value < 0.001, 
n = 296,861). When we consider only the co-authors with the least and most 
citations, we observe a similar decline (inset). In all figures, the 95% bootstrap 
confidence intervals are shown as error bars centred at the mean. All statistical 
tests use a two-sided Student’s t-test.
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Fig. 3 | Remote teams produce fewer breakthrough innovations. We analysed 
the same datasets as in Fig. 2. a, We find that the probability of producing 
disruptive work (D > 0) declined from 28% to 22% for papers (P value < 0.001, 
n = 14,485,326) and 67% to 55% for patents (P value < 0.001, n = 3,411,366), 
respectively, as collaboration distance increased from 0 km to more than 
600 km. In addition, the inset of a shows that the average citation impact within 
5 years after publication increases with collaboration distance for both papers 
and patents, confirming that our disruption measure is distinct from citations. 
b,c, We further distinguish between three groups of papers (b) and patents (c), 
including local teams as the first group, remote teams within a time zone as the 
second group, and remote teams across time zones as the third group. We 

observe a substantial decline in the probability of disruption when moving 
from local to remote within a time zone (from 28% to 24% for papers and from 
67% to 61% for patents), as well as when moving from remote within a time  
zone to across time zones (from 24% to 22% for papers and from 61% to 55% for 
patents), with P values < 0.001 in both comparisons. To facilitate the comparison 
between papers and patents, we show the relative probability of disruption, 
which is calculated as the ratio of disruption probability for the group of a given 
collaboration distance to the disruption probability of the entire population 
(grey dashed lines). In all panels, the error bars indicate a 95% bootstrap 
confidence interval centred at the mean. All statistical tests use a two-sided 
Student’s t-test.
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Methods

Research design summary
We begin by tracing the change in collaboration distance, measured 
as the average geographical distance between the cities of team 
members, underlying all analysed papers and patents over the past 
half-century (Figs. 1 and 2). We then chart the probability of a team 
producing innovative breakthroughs, measured by disruption scores, 
against their collaboration distance (Fig. 3a). We control for a host of 
potential confounders, including fields, periods, team sizes, average 
career age, knowledge diversity and tie strength, as well as author fixed 
effects (Extended Data Fig. 1 and Extended Data Tables 1 and 2), and 
use alternative measures of collaboration distance and breakthrough 
innovation (Extended Data Figs. 2 and 3), for robustness. We also disen-
tangle the effects of time and spatial separations to elucidate the disrup-
tion decline that directly corresponds to the increase in geographical 
distance within the same time zone, which points to fewer in-person 
interactions as a key hurdle to innovation (Fig. 3b,c). To understand 
why remote teams are less likely to disrupt more concretely, we further 
investigate how remote and on-site teams organize research activities 
differently (Extended Data Figs. 4 and 5), and find that the same scien-
tists tend to lead conceptual tasks on-site, but deliver technical tasks 
remotely (Fig. 4a). This role change is robust when fields, periods and 
team sizes are accounted for (Extended Data Table 3) and holds broadly 
when we scale up our sample (Fig. 4a inset and Extended Data Fig. 6). 
We conclude by exploring how the interaction between team members 
changes from on-site teams to remote teams and find that new talent 
is much less likely to co-conceive research with established scholars 
remotely than on-site (Fig. 4b and Extended Data Table 4).

Identifying on-site and remote teams underlying research 
articles and patent applications
Scientific research teams. Microsoft Academic Graph (MAG) provides 
name-disambiguated authors (22,566,650) and institutions (22,679) of 
papers,  utilizing verified machine learning models38. The latitude and 
longitude values of these institutions are also provided, such as the 
University of Pittsburgh (latitude 40.4445648, longitude −79.95328) or 
Carnegie Mellon University” (latitude 40.44332, longitude −79.94358). 
However, we also verify the quality of MAG’s name disambiguation of 
scientists. Specifically, we selected a random sample of 50 research-
ers who published 873 papers. Then, two human coders were used to 
examine a random sample of 30 papers. All examined papers are con-
firmed to be correctly assigned, implying 100% accuracy. We also com-
pared all of the 873 papers against self-reported publication records 
downloaded from ORCID and calculated the average recall across 50 
scientists as 84%. Again, we used two human coders to verify the quality 
of MAG’s name disambiguation on institutions and their geographical 
coordinates, indicating 99% accuracy on the same dataset. Only one 
incorrect linkage was identified from 131 author–location pairs across 
30 papers; the author was assigned to the right research institution but 
the wrong local branch.

After these verifications, we map the 22,679 institutions to 3,562  
cities using the GeoPy API (https://github.com/geopy/geopy). We calcu-
late the geographic distance between co-authors using the geographic 
coordinates of cities instead of institutions, so that we identify team 
members from the same city as on-site, regardless of city size and the 
distance between institutions within the city. This way, the collabora-
tion distance between a scientist from the University of Pittsburgh 
and another from Carnegie Mellon University is 0 km, as both institu-
tions are located in Pittsburgh, PA. By contrast, the collaboration dis-
tance between a scientist from the University of Pittsburgh and a team  
member from the Massachusetts Institute of Technology is 916 km, rep-
resenting the geographic distance between the centres of Pittsburgh, 
PA, and Cambridge, MA. Of the papers studied, 68% of authors are in the 
same city, and 32% are distributed across cities. Among remote teams, 

22% of the sample have a collaboration distance of 0–200 km, and 11%, 
7% and 60% of the papers have a collaboration distance of 200–400 km, 
400–600 km and more than 600 km, respectively.

Patenting teams. PatentsView is a patent data-sharing initiative sup-
ported by the Office of the Chief Economist in the United States Patent 
and Trademark Office. It provides name-disambiguated authors of 
patents and their respective residences. The corresponding latitude 
and longitude values associated with the reported addresses are also 
provided by PatentsView. We conducted extensive entity matching 
work to disambiguate city names (for example, both Osaka-fu and 
Osaka are represented as Osaka, Japan) and merge different versions of 
geographic coordinates under the same city. This way, we obtain 87,937 
cities of unique latitude and longitude values. Finally, we verify the 
quality of PatentsView’s name disambiguation of inventors as follows. 
We selected a random sample of 50 inventors who filed 1,975 patents. 
Two human coders then examined a random sample of 30 patents from 
the selected patents. All examined US Patent and Trademark Office 
patents are confirmed to be correctly assigned, giving us 100% accu-
racy. In the same way, we also verify the quality of PatentsView’s name 
disambiguation on residences and their geographical coordinates 
with 100% accuracy. No incorrect linkages were identified among the 
98 inventor–location pairs across 30 patents.

The archived version of MAG we downloaded included 245,253,596 
entities, among which 166,274,891 entities have known types, including 
journal articles (87,285,913), patents (58,972,869), theses (5,204,930), 
conference papers (4,803,560), books (4,373,655), book chapters 
(3,795,548), repositories (1,715,435) and datasets (122,981). We create 
our paper dataset by selecting the 87 million journal articles, the largest 
category of scientific papers. We did not combine them with conference 
papers or theses, as different categories might follow different citation 
practices that make the calculated disruption score hard to compare. 
We then select the papers that have two or more authors to focus on 
teamwork. This leaves us with 58 million papers. We also restrict our 
sample to papers for which all scientists have provided their affiliation 
information, so we can retrieve author cities and distinguish between 
on-site and remote teams. This leaves us with 22 million papers. Finally, 
we keep the papers for which each author provides only one affiliation 
to ensure that the retrieved location information is precise. We are left 
with 20 million papers.

We also experimented with four different versions of the distance 
threshold to distinguish between on-site teams (that is, teams with a 
collaboration distance equalling or below the threshold) and remote 
teams (with a collaboration distance above the threshold), including 
0 km, 1 km, 5 km and 10 km. Specifically, we consistently map scien-
tists to cities before calculating the geographical distance between 
them. Therefore, these different distance thresholds apply to the dis-
tance between cities. We find that the reduced disruption in remote 
teams is robust across these thresholds. For simplicity, we use the 0 km 
measure, meaning that all team members are in the same location. 
We use this definition of on-site teams throughout the paper unless 
specified otherwise. We note that although there are nearly an order 
of magnitude fewer patents than papers, there are more than an order 
of magnitude more patenting cities than paper-producing cities. The 
main reason why the patent dataset contains less teamwork but more 
cities is that paper authors are highly concentrated in universities, 
which cluster in large cities or campus towns. By contrast, the greater 
geographical span of patenting reflects that industry is more dispersed 
than academia. To ensure the quality of both datasets, we verified that 
the identified 87,937 patenting cities are all unique addresses—which 
excludes the possibility that their total number is incorrectly inflated 
owing to repeated records. We also find that the patenting cities span 
not only most (95%) of the large cities and campus towns included in 
the 3,562 paper-producing cities, but also many other smaller towns 
that are not included (for example, in Central Africa). Of the patents 
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examined, 25% of authors are in the same city, and 75% are distributed 
across cities. Among remote teams, 70% of our sample have a collabo-
ration distance of 0–200 km, and 7%, 3% and 20% of the patents have a 
collaboration distance of 200–400 km, 400–600 km and more than 
600 km, respectively.

Calculating D scores
Subsequent research can reference the primary work in three ways:  
(i) citing only the focal work, (j) citing both the focal work and its refer-
ences, or (k) citing only the references. The ‘disruption’ or D score of a 
focal paper, denoted as D, can be quantified by analysing the divergence 
between two categories of subsequent papers:

D p p n n n n n= − = ( − )/( + + )i j i j i j k

in which pi is the proportion of papers solely referencing the focal paper 
without including its references, and pj is the proportion of papers 
that reference both the focal paper and its associated references.  
A paper may disrupt earlier research by introducing new ideas that come 
to be recognized independently from the previous work (0 < D < 1), 
develop existing research by providing supportive evidence or exten-
sions that come to be recognized as incremental additions to previous 
work (−1 < D < 0), or remain neutral, meaning that the disruptive and 
developmental character of its contribution balances out (D = 0).

Quantifying time-zone differences underlying inventive 
teamwork
For 20,273,444 papers and 3,709,940 patents, we map the time zone 
of each team member from the latitude and longitude values of their 
respective cities using PYTZ, a Python API (pytz.sourceforge.net/). We 
then calculate the hour differences between these time zones. For each 
team, we calculate the average time-zone difference between all pairs 
of team members as a proxy for the underlying temporal separation.

Identifying the fields of study for research articles and patent 
applications
Research articles. We rely on the scientific taxonomy published by 
the MAG team, consisting of a six-level hierarchy. The level-zero labels 
cover 19 research fields, such as Mathematics, Biology and Chemistry, 
the level-one labels cover 292 subfields, and level-two to level-five la-
bels contain 543,454 unique keywords or phrases. Each MAG paper is 
linked to one or more labels through a machine learning model devel-
oped and verified by the MAG team39. Within a paper, each label is also  
associated with a probability value between zero and one that reflects 
the confidence level of machine prediction. In our analysis, we use the 
level-zero label of each paper, and if a paper has two or more labels, we 
select the one with the highest confidence level.

Patent applications. The technological taxonomy included in the Pat-
entsView data is the Cooperative Patent Classification, a four-level clas-
sification system. The level-zero labels have nine sections, including, 
for example, “Mechanical Engineering; Lighting; Heating; Weapons; 
Blasting” in Section F and “Performing Operations; Transporting” in 
Section B. Under these nine sections, the Cooperative Patent Classifica-
tion also provides 128 subsections, 666 groups and 229,109 subgroups. 
Each patent has several labels that may span across these four levels. For 
each patent, we first assign all labels to one of the nine section labels at 
level zero and then select the most popular section label.

Quantifying knowledge diversity of inventive teamwork
We calculate the interdisciplinarity of team members and use it as a 
proxy for the diversity of knowledge to which the team has access. This 
allows us to account for team heterogeneity in our regression analysis 
(Extended Data Tables 1 and 2). To construct this measure for research 
articles, we first identify the ‘home discipline’ of a scientist from the 

nineteen top-level MAG field-of-study labels such as Mathematics, 
Biology and Chemistry, if they have published three or more papers 
over half of which are within a single field of study. We then distinguish 
monodisciplinary teams, for which all team members are from the 
same home discipline, from interdisciplinary teams, for which team 
members are from different disciplines. Across the 7,883,633 research 
teams for which this variable was constructed, we find that the prob-
ability of interdisciplinary collaboration is higher in remote teams 
than in on-site teams (35.6% versus 28.9%). Leveraging the Cooperative 
Patent Classification classification, we apply the same computational 
method to patent applications and construct disciplinary and interdis-
ciplinary labels for 1,752,307 innovating teams. Again, remote teams 
outperform on-site teams in interdisciplinary collaboration (19.3% 
versus 19.2%). These findings support the view that remote teams are 
more heterogeneous than on-site teams1,14,16.

Quantifying tie strength within research and innovation 
teamwork
We construct a social network comprising 22,566,650 scientists and 
67,226,924 co-authoring relationships using our dataset of research 
articles. Following a recent study40, we calculate the strength of the 
tie between two scientists as the ratio of their common collaborators 
to their total collaborators. This measure, in other words, defines tie 
strength as the extent to which two scientists share their collabora-
tors. However, one limitation of this approach is that it may overrate 
the tie strength between pairs of scientists who published only one or 
two papers with the same set of co-authors. To address this issue (and 
for consistency with our analysis of knowledge diversity), we focus on 
scientists who published three or more papers, over half of which are 
within a single field of study, when calculating the tie strength. We then 
distinguish weak ties (below the median) from strong ties (above the 
median). If a team contains one or more weak ties between co-authors, 
we label this team as a weak-tie collaboration. Doing so, we find that the 
probability of weak-tie collaboration is higher in remote teams than in 
on-site teams (94.4% versus 82.1%). Leveraging the same computational 
model, we calculate tie strength on the social network comprising 
2,732,326 inventors and 10,476,225 co-authoring relationships using 
our dataset of patent applications. Again, the probability of weak-tie 
collaboration is higher for remote teams than on-site teams (76.4% 
versus 73.1%). These observations support the view that remote teams 
include more knowledge brokers and weak ties than on-site teams1,14.

Evaluating the robust, negative relationship between remote 
teams and disruption
We run several regressions to evaluate the negative relationship 
between remote teams and disruption. From our dataset of scientific 
teams, we selected 7,681,669 scientists who published two or more 
papers. These scientists have published 13,711,470 papers between 
1960 and 2020, which yields 45,078,179 paper–author records. We 
use this dataset to build stepwise regression models and explore the 
relationship between remote collaboration (the value equals one if 
the team members are spread across cities, and zero otherwise) and 
disruption, starting from a model without any control variables or fixed 
effects. We then add controls for team size, period, average career age, 
knowledge diversity, tie strength, the field of study and author fixed 
effects. These linear models, inspired by previous studies41, confirm 
that remote teams are consistently less disruptive than on-site teams for 
papers (Extended Data Table 1). From our dataset of patenting teams, 
we selected 1,253,090 inventors who filed two or more patents. These 
inventors have filed 2,903,964 patents between 1976 and 2020, which 
yields 9,031,126 patent–author records. We use this dataset to build 
stepwise regression models in the same way as mentioned above. 
Among patents, we confirm a robust, negative relationship between 
remote teams and disruption when control variables and author fixed 
effects are included (Extended Data Table 2). Finally, we show that the 

https://pytz.sourceforge.net


Article
lower innovative performance of remote teams is robust against the 
interaction between the remote collaboration and periods.

Identifying author contributions to scientific papers
Our author contribution data cover 89,575 contribution disclosures 
collected from the website of four journals, including Nature, Science, 
Proceedings of the National Academy of Sciences of the United States 
of America and PLOS ONE, between 2003 and 2020. Following exist-
ing studies22,42, we identify four functional research activities from  
contribution statements using natural language processing techniques, 
including conceiving research, writing the paper, carrying out experi-
ments and analysing data. We then link authors with their contributions  
classified into these four categories. We also note that these four categories  
cohere into two broad roles, including: conceptual work leaders, who 
conceive research and write papers; and technical work supporters, 
who carry out experiments and analyse data.

Evaluating the robust, negative relationship between remote 
teams and conceiving research
To investigate how scientists interact differently when the collaboration 
distance between them increases, we compare the team role of the same 
scientists when in on-site and remote teams. For 21,373 scientists who 
published both on-site and remote team papers, their average prob-
ability of contributing to conceiving research is 63% in on-site teams 
and 51% in remote teams. We confirm that this decline is statistically 
significant (P value < 0.001 for the Student’s t-test). For comparison, 
their probability of writing the paper and analysing data decreased 
by 11% (from 60% to 49%, P value < 0.001) and 8% (from 58% to 50%, 
P value < 0.001), respectively, whereas the probability of carrying out 
experiments increased by 1% (from 42% to 43%, P value < 0.05), when 
switching from on-site to remote collaboration.

We next verify the relationship between this role shift—from lead-
ing conceptual tasks to delivering technical tasks—and collaboration 
distance in three ways. First, among the 21,373 scientists who worked 
in both on-site and remote teams, our regression analysis confirms the 
robustness of their role change when fields, periods and team sizes 
are accounted for (Extended Data Table 3). Doing so, we note that the 
reduced engagement in conceptual tasks in remote teams cannot  
be explained by their larger team size, distinct research fields or time 
periods.

Second, to assess the impact of collaboration distance on team roles, 
we conducted a team-split analysis of the same group of scientists who 
repeatedly collaborated before and after team members moved. For 
15,294 pairs of scientists, across all team sizes, who collaborated in both 
on-site and remote teams, their probability of jointly contributing to 
conceiving research decreases from 33.5% in on-site teams to 28.3% in 
remote teams (P value < 0.001). The reduction in co-conceiving prob-
ability is robust when fields, periods and team sizes are accounted for 
(Extended Data Table 4). For 2,343 groups of three or more scientists 
who published in both on-site and remote teams, their probability of 
contributing to conceiving research is 21.6% in on-site teams and 17.8% 
in remote teams (P value < 0.01).

Third, we build machine learning models that effectively infer team 
roles for papers with implicit author contributions to examine whether 
the difference in team roles between on-site and remote teams holds in 
a much larger sample. Specifically, using our data of author contribu-
tions, we train a neural network to infer the two distinct author roles 
of interest—that is, leading conceptual tasks and delivering technical 
tasks—across 16,397,750 papers. These papers are selected from the 
20,134,803 papers in our sample, with the criteria for selection being 
that each selected paper contains variables that are used in the machine 
learning model. Specifically, we use eight different variables to predict 
the dichotomy of author roles, including the following: contribution 
to references, defined as the overlap between references of the focal 
paper and all references across previously published papers for each 

author; contribution to topics, defined as the overlap between MAG 
topic keywords for the focal paper and all keywords across previously 
published papers for each author; contribution to leading the research, 
defined as the probability of being the first author(s); contribution to 
managing correspondence and presentation, defined as the probability 
of being the corresponding author(s); career age, defined as the number  
of years from the first publication to the publication of the focal paper 
for a given author; citation impact, defined as the total number of cita-
tions an author has received to all previous publications; topic diversity, 
defined as the total number of unique MAG topic keywords across 
previous publications; and publication productivity, defined as the 
total number of previous papers until the publication of the focal paper. 
The missing papers did not have these variables for all authors. The 
machine learning model gives a precision of 0.79 and a recall of 0.793 
in predicting author roles. The predicted and empirical values of the 
fraction of conceptual workers in ground-truth data are highly corre-
lated (Pearson correlation coefficient 0.66, P value < 0.001). Analysing 
these inferred author roles, we find that remote team members are 
less likely to contribute to conceptual work than their peers in on-site 
teams (42% versus 48%) and, correspondingly, more likely to contribute 
to technical work.

Examining alternative explanations for the reduced disruption 
of remote teams
We also consider several alternative explanations for the negative 
relationship between collaboration distance and idea disruptiveness.

Team size effect. Previous work has shown that large teams are less 
likely to make disruptive discoveries22,25. This finding raises the concern 
that systematic size differences between remote and on-site teams 
might drive our results, not least if remote teams have grown faster 
over the investigated period. In response to this concern, we first com-
pare the size of remote and on-site teams over time and confirm that 
the size of remote teams has grown faster than on-site teams for both 
papers and patents. Specifically, the average team size increased by 
100% (from 2.6 to 5.2) among remote teams but only by 65% among 
on-site teams (from 2.6 to 4.3) in papers. The same pattern holds for 
patents: the average team size increased by 40% (from 2.7 to 3.9) among 
remote teams, but it only increased by 32% among on-site teams (from 
2.5 to 3.3). However, we also find that accounting for both team size and  
periods in our regression models does not alter the negative coefficient 
of remote teams (Extended Data Tables 1 and 2). These findings lead us 
to conclude that the difference in average team size or growth rate is 
unlikely to fully explain the observed differences in inventive output 
between on-site and remote teams.

Team composition effect. Remote teams might also differ from on-site 
teams in their composition of diverse expertise. Previous research has 
suggested that remote teams might be more heterogeneous, as geo-
graphically distant ties serve as channels for diverse knowledge1,14,16. 
From this perspective, the reduced disruptiveness of remote teams 
could simply reflect the challenge of integrating more diverse knowl-
edge, regardless of distance. To address this concern, we calculate team 
member interdisciplinarity and use it as a proxy for diverse knowledge 
to which the team members have access. We confirm that remote teams 
are more heterogeneous than on-site teams1,14,16. We then include the 
constructed variable in our regression models and find that the negative 
impact of remote teams on disruption remains intact (Extended Data 
Tables 1 and 2). We conclude that differences in team heterogeneity 
are unlikely to explain the observed difference between on-site and 
remote teams.

Age effect. Previous research has associated the innovation perfor-
mance of scientists with their age. On the one hand, if acquiring a certain 
amount of knowledge is a prerequisite for a breakthrough10, then age 



and working experience are likely to contribute towards more impor-
tant discoveries. On the other hand, ageing scholars might experience 
‘cognitive entrenchment’23, and established scholars could become 
gatekeepers against new ideas24,43. In both scenarios, the age differ-
ences between remote and on-site teams present a potential cofounder 
against collaboration distance underlying the reduced disruptiveness 
of remote teams. Consistent with this reasoning, on-site team members 
have lower career ages than remote team members on average (9.6  
versus 11.8), possibly reflecting a greater prominence of student–advis-
er relationships among on-site teams. However, when we include career 
age in our regression analysis, the negative impact of remote teams on 
disruption remains unchanged. We conclude that the age structure of 
remote and on-site teams cannot account for our key findings.

Selection bias. Another possibility is that more creative scientists 
are part of on-site teams rather than remote teams. If this is true, the 
observed reduced disruptiveness of remote teams originates from 
differences in individual characteristics rather than from individuals 
interacting and collaborating in different ways in remote and on-site 
teams. To that end, we note that the same scientists act differently 
across team contexts—they are more likely to conceive research and 
write papers in on-site teams, and more likely to carry out experiments 
and analyse data in remote teams, as Fig. 4a shows. Second, to fur-
ther mitigate concerns over selection bias, we run author fixed effects  
regressions and confirm that the negative impact of remote teams is 
still statistically significant (Extended Data Tables 1 and 2), although 
the magnitude of the coefficient is reduced, possibly because less 
disruptive scholars end up at more marginal universities, where they 
benefit more from the opportunities for remote collaboration. We con-
clude that selection or individual differences cannot fully explain the  
observed difference between on-site and remote teams.

Weak-tie effect. Remote teams are likely to include more distant, weak 
ties44 between team members than on-site teams. However, the impact 
of these weak ties on innovative performance remains unclear. On the 
one hand, brokers (that is, people with diverse and distant contacts) 
tend to contribute to team innovation because they have access to 
more diverse knowledge14,40. On the other hand, these brokers also tend 
to do worse in gathering the support or interest of their colleagues in 
delivering innovative ideas1. To explore the role of weak ties in team 
innovation, we quantified tie strength in both publishing and patenting 
teams and confirmed that remote teams include more weak ties than 
on-site teams1,14. We then include a binary variable of weak-tie collabora-
tion in our regression model and confirm that although weak ties are 
associated with more disruptive discoveries, the negative relation-
ship between distance and disruption remains intact (Extended Data  
Tables 1 and 2). Hence, even although remote teams have access to more 

diverse knowledge through weak ties, they fail to exchange, fuse and 
integrate that knowledge to generate disruptive ideas.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets used in this paper are available at https://lyl010.github.io/  
and https://doi.org/10.6084/m9.figshare.21295725. Source data are 
provided with this paper.
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Extended Data Fig. 1 | The robust, negative relationship between 
collaboration distance and disruption probability against team sizes, 
periods, and fields. For 20,134,803 research papers published between 1960 
and 2020, and 4,060,564 patent applications filed between 1976 and 2020,  
we show that the negative association between collaboration distance and the 
probability of producing disruptive work (D > 0) is robust against team sizes  
(a,d), team periods (b,e), and fields of study (c,f). For each value of the controlled 
variable (e.g., team size equals two for the blue curve in Panel a), the gray dotted 
line marks the average disruption probability across all distances. We then 

display the relative probability of disruption (colored curves), calculated as  
the ratio of disruption probability for the group of given collaboration distance 
to the average probability across all distances. The plotted curves have been 
normalized by dividing their raw values by the group mean, so that the 
intercepts are not meaningful. We note that Panels b and e appear to show  
that the remote penalty has strengthened after 2000. However, this effect is 
confounded by the increase in team size over this time period. See Extended 
Data Table 1–2 for the effect of distance on innovation when a host of control 
variables are accounted for.



Extended Data Fig. 2 | Verifying the lower performance of remote teams 
using alternative measures of collaboration distance. For 20,134,803 
research papers published between 1960 and 2020, and 4,060,564 patent 
applications filed between 1976 and 2020, we calculate three different, 
alternative measures of collaboration distance other than our main 
specification—the average geographic distance between team members. 
These include the maximum distance between team members34 (a); the 
average distance between the unique cities where team members are located 
(b); and a colocation index varying from zero to one, which measures the 

probability that a randomly selected pair of team members are in the same 
location45 (c). This colocation index is a continuous variable that complements 
the binary measures of onsite and remote teams, as it captures boundary cases 
where some but not all members of a remote team are onsite. In Panel a–c, the 
gray dotted lines mark the average disruption probability for papers and 
patents across all distances. The colored curves (or bars) mark the relative 
probability of disruption, calculated as the ratio of disruption probability for 
the analyzed group to the average probability across all distances.
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Extended Data Fig. 3 | Verifying the lower performance of remote teams 
using alternative measures of innovation. For 20,134,803 research papers 
published between 1960 and 2020, and 4,060,564 patent applications filed 
between 1976 and 2020, we calculate two alternative measures of innovation 
and find that remote teams are consistently less likely to disrupt science and 
technology than onsite teams. The percentile of the average D-score falls from 
89 to 84 for papers (a) and from 76 to 67 for patents (b) across the full sample. 

The probability of proposing new scientific concepts decreases from 0.40%  
to 0.32% for papers and the probability of introducing new technology codes 
decreases from 3.33% to 3.22% for patents, when switching from onsite to 
remote (c). The gray dotted line marks the probability of introducing new 
concepts or code for an average paper (0.37%) or patent (3.24%). The color  
bars show the relative probability, calculated as the ratio of probability for the 
analyzed group relative to the population’s average probability.



Extended Data Fig. 4 | Onsite teams conceive, and remote teams perform. 
We analyzed 89,575 author contribution disclosures underlying papers across 
four journals, including Nature, Science, PNAS, and PLOS ONE, between 2003 
and 2020. We associate authors with their contribution to four research 
activities, including “conceiving research,” “performing experiments,” 
“analyzing data,” and “writing the paper.” For each of the 21,373 scientists who 
worked in both onsite and remote teams, we track the distribution of their 
contributions across four activities within each paper and average this 
distribution within the onsite-team and remote-team papers they published, 
respectively. This way, we obtained two distributions for each scientist. We 
then averaged these two distributions across all the 21,373 scientists in our 
sample. Finally, we displayed the obtained distributions using the Gaussian 
kernel density estimate. We observe that the key contribution of the same 
scientist, marked by the peak of the density curves, shifted from “conceiving 
research” to “performing experiments” when they switched from onsite to 
remote. These two distributions are significantly different from each other 
(Chi-squared test statistic = 3188, p-value < 0.001).
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Extended Data Fig. 5 | Different scaling patterns of conceptual and 
technical activities. Our author contribution data covers disclosures from 
PNAS (18,354), Nature (9,364), Science (1,176), and PLOS ONE (60,681) between 
2003 and 2020. We select PNAS (a) and PLOS ONE (b), which have the most 
observations, and explore the distinct scalability of engagement across research 
activities. We group four research activities into two broad categories according 

to their different scalability, including 1) conceptual tasks that contain 
conceiving and writing, which scale up slowly with team size (red curves),  
and 2) technical tasks comprising performing and analyzing, which scale up 
fast with team size (blue curves). As shown in the insets, while the fraction of 
performing members stabilizes at 0.6 as the team size increases from two to 
ten, the fraction of conceiving members even decreases from 0.9 to 0.4.



Extended Data Fig. 6 | Inferring conceptual and technical activities.  
Using the ground-truth dataset mentioned in Extended Data Fig. 5, we train a 
neural-network model to infer these two author roles within 16,397,750 papers 
where author contributions are not explicit. This machine learning model uses 
eight different variables to predict the dichotomy of author roles, including  
1) contribution to references, defined as the overlap between references of  
the focal paper and all references across previously published papers for each 
author; 2) contribution to topics, defined as the overlap between MAG topic 
keywords for the focal paper and all keywords across previously published 
papers for each author; 3) contribution to leading the research, defined as  
the probability of being the first author(s); 4) contribution to managing 
correspondence and presentation, defined as the probability of being the 
corresponding author(s); 5) career age, defined as the number of years from 
the first publication to the publication of the focal paper for a given author,  
6) citation impact, defined as the total number of citations an author has 
received to all previous publications; 7) topic diversity, defined as the total 
number of unique MAG topic keywords across previous publications, and 
finally; 8) publication productivity, defined as the total number of previous 
papers until the publication of the focal paper. The machine learning model 
gives a precision of 0.790 and a recall of 0.793. The predicted and empirical 
values of the fraction of conceptual workers are highly correlated (Pearson 
correlation coefficient 0.66, P-value < 0.001). The eight predictors and their 
contribution to the prediction are displayed. The figure is reproduced from 
our earlier research22.
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Extended Data Table 1 | Assessing the robustness of declined disruption with increased collaboration distance in science

From our dataset of scientific teams, we selected 7,681,669 scientists who published two or more papers. These scientists have published 13,711,470 papers between 1960 and 2020, yielding 
45,078,179 paper-author records. We use this dataset to build stepwise regression models and explore the robustness of the relationship between remote collaboration (the value equals one 
if team members spread across cities, zero otherwise) and disruption, starting from a model without any controls, and then adding team size, time period, average career age, knowledge 
diversity, tie strength, the field of study, author fixed effects, and finally, an interaction term between time and remote. We note that the remote work penalty—the negative relationship between 
remote collaboration and disruption—is robust across all specifications. When teams move from 0 km to more than 600 km collaboration distance, for example, the predicted disruption  
probability, holding other variables constant, declines from 20.4% to 19.5% (p-value < 0.001 for two-side Student’s t-test), or 4.4% in relative terms. 
Note: All statistical tests are two-sided t-test and no adjustments were made for multiple comparisons. For Model 5-7, standard errors (in parentheses) are clustered at the author level. * p < 0.05; 
** p-value < 0.01; *** p-value < 0.001. We used the REGHDFE package in STATA1646 to implement the fixed-effects regressions.



Extended Data Table 2 | Assessing the robustness of declined disruption with increased collaboration distance in 
technology

From our dataset of patenting teams, we selected 1,253,090 inventors who filed two or more patents. These inventors have filed 2,903,964 patents between 1976 and 2020, yielding 9,031,126 
patent-author records. We use this dataset to build stepwise regression models in the same way as for scientific teams. We note that the remote work penalty—the negative relationship 
between remote collaboration and disruption—is robust across all specifications. When teams move from 0 km to more than 600 km collaboration distance, for example, the predicted  
disruption probability, holding other variables constant, declines from 58.2% to 56.5% (p-value < 0.001), or 2.9% in relative terms. 
Note: All statistical tests are two-sided t-test and no adjustments were made for multiple comparisons. For Model 5-7, standard errors (in parentheses) are clustered at the inventor level.  
* p < 0.05; ** p-value < 0.01; *** p-value < 0.001. We used the REGHDFE package in STATA1646 to implement the fixed-effects regressions.
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Extended Data Table 3 | Assessing the robustness of the reduced probability of conceiving research for the same scientist 
when switching from onsite to remote

From our dataset of author contributions, we select 21,373 scientists who worked in both onsite and remote teams. These authors published 31,815 papers in total, which gives us 65,143 
paper-author records. Using author-fixed effect regressions41,46, we find that the same scientist is less likely to conceive research and more likely to perform experiments when switching from 
onsite to remote, when fields, periods, and team sizes are accounted for. 
Note: All statistical tests are two-sided t-test and no adjustments were made for multiple comparisons. For Model 1-2, standard errors (in parentheses) are clustered at the author level. * p < 0.05; 
** p-value < 0.01; *** p-value < 0.001. We used the REGHDFE package in STATA1646 to implement the fixed-effects regressions.



Extended Data Table 4 | Assessing the robustness of the reduced probability of co-conceiving research for the same pair of 
scientists when switching from onsite to remote

From our dataset of author contributions, we select 15,294 pairs of scientists who collaborate in both onsite and remote teams. These pairs of authors published 11,313 papers in total, which 
leaves us with 36,253 paper-author-pair records. Using fixed effect regressions to control the difference between author pairs41,46, we confirm that the same pair of scientists are less likely to 
co-conceive research and more likely to co-perform experiments when switching from onsite to remote, when fields, periods, and team sizes are accounted for. 
Note: All statistical tests are two-sided t-test and no adjustments were made for multiple comparisons. For Model 1-2, standard errors (in parentheses) are clustered at the author-pair level.  
* p < 0.05; ** p-value < 0.01; *** p-value < 0.001. We used the REGHDFE package in STATA1646 to implement the fixed-effects regressions.
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