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Light-enabled deracemization of 
cyclopropanes by Al-salen photocatalysis

Carina Onneken1,4, Tobias Morack1,2,4, Julia Soika1, Olga Sokolova1, Niklas Niemeyer1,3, 
Christian Mück-Lichtenfeld1,3, Constantin G. Daniliuc1, Johannes Neugebauer1,3 ✉ & 
Ryan Gilmour1 ✉

Privileged chiral catalysts—those that share common structural features and are 
enantioselective across a range of reactions—continue to transform the chemical- 
research landscape1. In recent years, new reactivity modes have been achieved 
through excited-state catalysis, processes activated by light, but it is unclear if the 
selectivity of ground-state privileged catalysts can be matched. Although the 
interception of photogenerated intermediates by ground-state cycles has partially 
addressed this challenge2, single, chiral photocatalysts that simultaneously regulate 
reactivity and selectivity are conspicuously scarce3. So far, precision donor–acceptor 
recognition motifs remain crucial in enantioselective photocatalyst design4. Here  
we show that chiral Al-salen complexes, which have well-defined photophysical 
properties, can be used for the efficient photochemical deracemization5 of cyclopropyl 
ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) 
augments the reactivity of the commercial catalyst to enable reactivity and 
enantioselectivity to be regulated simultaneously. This circumvents the need for 
tailored catalyst–substrate recognition motifs. It is predicted that this study will 
stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in 
excited-state processes, ultimately leading to the identification of candidates that 
may be considered ‘privileged’ in both reactivity models.

Strategically harnessing light as an external stimulus to overcome 
ground-state reactivity boundaries is a core research endeavour in 
contemporary catalysis6,7. Advances in catalyst design3,8–10 and stream-
lined operational platforms11 have culminated in a diverse arsenal of 
methods to access excited electronic states through irreversible acti-
vation modes. These strategies mitigate microscopic reversibility12–15 
and reduce the dependency on stoichiometric reagents and hazardous 
operating conditions, thereby allowing reactive species to be generated 
under mild conditions that are compatible with sensitive environments. 
Applications in bioconjugation16 and cellular mapping17,18 further reflect 
the breadth and impact that this renaissance continues to enjoy across 
the scientific landscape. Although this success highlights the effective-
ness of photocatalysis in forging new bonds, the non-covalent nature of 
activation, coupled with the high reactivity of the intermediates that are 
generated, render enantiocontrol a conspicuous challenge (Fig. 1a). An 
expansive solution has proved to be dual catalysis19–21, a regime in which 
the photocatalyst operates together with an established ground-state 
chiral catalysis manifold. Enantioselective bond-forming events typi-
cally occur from a secondary photoreaction involving a light-generated 
intermediate. By contrast, processes that use chiral photocatalysts 
to directly confer enantioselectivity are conspicuously underrepre-
sented: this accentuates the challenges associated with identifying 
and developing ‘privileged chiral photocatalysts’22–24. Seminal work by 

Bach et al. has established the effectiveness of lactam-based scaffolds, 
derived from Kemp’s triacid, in orchestrating enantioselection in pho-
tochemical processes: this blueprint emulates biological recognition 
in which complementary hydrogen-bonding motifs in the catalyst and 
substrate ensure structural pre-organization25. The modularity of this 
venerable organocatalyst chromophore can be tuned to enable both 
enantioselective energy transfer26 and single-electron transfer27 pro-
cesses for substrates bearing a suitable amide group. Substrate-based 
recognition motifs have also been successfully used in the develop-
ment of chiral Ir(III) complexes for enantioselective photocatalysis. 
Elegant studies by Meggers and colleagues have established that acyl 
imidazole substrates engage with chiral Ir(III) Lewis acids to enable 
direct, visible-light-induced asymmetric redox catalysis processes28. 
The importance of precision hydrogen-bonding motifs in this context 
has also been convincingly demonstrated by Yoon, Baik and colleagues 
to enable enantioselective excited-state photoreactions controlled 
by a chiral hydrogen-bonding iridium sensitizer29. Collectively, these 
milestones show that remarkable levels of enantioinduction can be 
achieved under the auspices of a single, chiral photocatalyst when 
complementary (H-bonding) recognition motifs are present. Expand-
ing this model to include substrates bearing common functional groups 
for recognition is highly appealing and would ultimately lead to the 
identification of more general chiral photocatalysts. However, the aim 
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of this endeavour is identifying ground-state recognition modes that 
can be replicated in an excited-state model30,31. This led us to explore 
the strong oxophilicity of earth-abundant aluminium in creating a 
Lewis acid–Lewis base component of an emerging chiral blueprint 
(Fig. 1b). Further confidence in this key interaction stemmed from the 
well-established photochemistry of aryl ketones, particularly under 
Lewis-acid activation32. Motivated by their success in ground-state 
catalytic processes, chiral Al-salen catalysts were identified as attrac-
tive candidates to regulate primary and secondary photoreactions33. 
A combination of Lewis acidity, a privileged chiral ligand sphere and 
well-defined optical properties render Al-salen complexes promising 
candidates to expand the existing chiral photocatalyst portfolio34,35.

To validate the concept of salen photocatalysis, the deracemization 
of cyclopropanes was conceived (Fig. 1b): this stemmed from the inter-
est of our group in photocatalytic alkene isomerization36,37, the reactiv-
ity parallels between olefin π-systems and cyclopropyl Walsh orbitals38, 
and the historic challenges associated with achieving induction39,40. 
The ability to activate cyclopropanes through adjacent low-lying anti-
bonding orbitals rendered cyclopropyl ketones particularly attrac-
tive as substrates for this endeavour41,42. The transformation would 
contribute to the growing interest in light-enabled deracemization 
of small molecules using low-molecular-weight photocatalysts43–53. 
To this growing repertoire, it was predicted that chiral Al-salen com-
plexes could be effectively used in the deracemization of cyclopropyl 
ketones through electron transfer to the carbonyl group: this would be 
achieved through substrate coordination and subsequent excitation 
of the ligand chromophore, followed by electron transfer in a chiral 
environment (Fig. 1c).

The foundation of the study rested on combining the LUMO-lowering 
activation of the aluminium with the strong reducing power of the 
ligand chromophore in the excited state (E1/2(*PC/PC+) ≈ −1.47 V versus 
saturated calomel electrode (SCE))54. It was reasoned that, following 

substrate coordination to the Al center, excitation of the ligand chromo-
phore would induce electron transfer to generate a transient ketyl radi-
cal: this would exist in rapid equilibrium with the achiral, ring-opened 
form. Relaxation to the ground state by means of back-electron transfer 
would ultimately regenerate the cyclopropane in the confines of a chiral 
environment. Accordingly, enantioselectivity would be encoded at the 
single-chiral-photocatalyst level.

To validate the hypothesis described in Fig. 1, the catalytic derace-
mization of cyclopropane rac-1 was investigated using the commer-
cial Al-salen complex Al-1 in acetone (Fig. 2a) at −70 °C. Guided by the 
absorption spectra of photocatalyst and substrate (Fig. 2c), selective 
catalyst excitation was achieved by irradiation of the reaction mixture at 
400 nm (3W light-emitting diode). After 4.5 h, enantioenriched product 
(+)-1 was isolated in 78% yield (e.r. 87:13). Encouraged by this result, 
a process of reaction optimization was initiated (Fig. 2b; for the full 
optimization table, see the Supplementary Information), beginning 
with the addition of a soluble salt to stabilize the charge-separated 
intermediates. The addition of n-Bu4NCl enhanced both the yield (80%) 
and enantioselectivity (e.r. 90:10, entry 1)55.

Rigorous exclusion of oxygen also proved to be essential in achiev-
ing efficient deracemization. The impact of catalyst structural editing 
was then investigated using a selection of established ligand scaffolds. 
Notably, commercial catalyst Al-1 was identified as the optimal cata-
lyst for the transformation of interest. By contrast, the introduction 
of bulky adamantyl substituents (Al-2) proved to be detrimental (e.r. 
58:42, entry 2). Moreover, substituting the cyclohexyl backbone with a 
diphenyl ethane motif (Al-3, entry 3) also resulted in a lower e.r. (80:20) 
relative to the parent catalyst Al-1. Finally, the impact of varying the 
X-ligand at the Al centre was studied. Although oxygen-bridged dimer 
Al-4 was unselective under these reaction conditions (e.r. 48:52, entry 
4), replacing the chloro ligand by fluorine preserved efficiency, result-
ing in only a minor drop in selectivity (e.r. 88:12, entry 5). Altering the 
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reaction medium (for example, to CH2Cl2 or MeCN) resulted in lowered 
reaction efficiency and, therefore, acetone was used for the remain-
der of this study (entries 6 and 7; for details, see the Supplementary 
Information). Notably, the reaction showed a marked concentration 
dependence (entry 8; for details, see the Supplementary Information) 
and running the reaction at c = 0.066 M was found to be ideal to fur-
nish (+)-1 in e.r. 97:3 and 84% isolated yield. The loading of the n-Bu4Cl 
additive could also be lowered to 1.5 eq. without any substantial loss 
to the yield or selectivity (entry 9). Under these optimized conditions, 
rapid deracemization of rac-1, with depletion of (−)-1, was observed 
by reaction monitoring and completion was reached after 100 min 
(Fig. 2d). An assessment of the effect of temperature on the enanti-
oselectivity revealed a classical temperature dependence in the form 
of ln(e.r.) ∝ 1/T (Fig. 2e).

Having established optimized conditions, the scope and limitations 
of this method were investigated (Fig. 3a): this revealed that a variety 
of modifications could be accommodated. High yields and levels of 
enantioselectivity were generally observed with para-substituted sub-
strates (1–5, e.r. 90:10 to 98:2) and single-crystal X-ray analysis of enan-
tioenriched 1 enabled the absolute configuration to be assigned as (S).

In the solid state, an 84° offset between the planes of geminal phenyl 
groups was observed. To explore if this phenomenon is important in 
the transfer of chiral information, constrained fluorene cyclopropane 6 

was subjected to the reaction conditions and a notable drop of selectiv-
ity (e.r. 70:30) was observed. By contrast, meta-substitution was well 
tolerated, generating 7 in 85% yield and with an e.r. of 90:10. To expand 
the scope of the method beyond the geminal diaryl substituted cyclo-
propanes, diester substrates 8–11 were investigated and found to be 
highly compatible with the method (up to e.r. 90:10). Finally, the impact 
of modifying the aryl ketone on the reaction efficiency was explored. 
Notably, introduction of para-substituents was well tolerated, enabling 
compounds 12 (p-F) and 13 (p-Cl) to be generated in 80% (12) and 89% 
(13) yield and with high levels of enantioinduction (e.r. 94:6 and 88:12, 
respectively). Reduced levels of selectivity were observed for the m-F 
derivative 14 (91%, e.r. 79:21). To pivot away from geminal-substitution, 
unsymmetrically substituted cyclopropanes were explored within 
the framework of this salen photocatalysis platform (Fig. 3b). It was 
tempting to speculate that a photostationary composition consist-
ing of a mixture of enantioenriched diastereomers could be reached 
through a formal kinetic resolution process. Indeed, irradiation of 
geminal Ph/ester substrates 15 and 16 in the presence of catalyst Al-1 
at low temperatures did generate a photostationary composition, 
and both diastereomers were generated in almost equal fractions 
with encouraging levels of optical purity. Subjecting trans-rac-17 to 
the reaction conditions resulted in formation of the corresponding 
cis-isomer (diastereometric ratio (d.r.) 45:55 (trans:cis); e.r. 63:37) and 
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Fig. 2 | The deracemization of cyclopropyl ketones by means of Al-salen 
photocatalysis. a, Initial reaction discovery. b, Reaction optimization; 
reactions performed using rac-1 (0.10 mmol), Al-salen catalyst (10 mol%), 
3 Å mol sieves (MS) (15 mg) and n-Bu4NCl in acetone under an argon 
atmosphere. The reaction mixture was irradiated (400 nm) at −70 °C for 4.5 h 
using a quartz-glass rod as an optical guiding rod. Yields are reported on the 

basis of isolated material. The e.r. was determined by high-performance liquid 
chromatography analysis on a chiral stationary phase. c, Absorption spectra  
of racemic substrate 1 (c = 0.10 mM in CH2Cl2) and chiral Al-salen complex Al-1 
(c = 0.05 mM in CH2Cl2). d, Time-course study for the deracemization of 1.  
e, Effect of varying temperatures on the e.r. e.e., enantiomeric excess.
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(+)-trans-17 in e.r. 98:2 after 65 min. However, on extended irradia-
tion of this reaction mixture, further accumulation of cis-17 with up 
to e.r. 72:28 was observed (see the Supplementary Information for a 
more detailed time-course study). Encouraged by these preliminary 
observations, the behavior of trans-di-substituted cyclopropane 
18 was investigated. Notably, the enantioselective formation of the 
cis-diastereomer (e.r. 94:6) was accompanied by enantioenrichment 
of the trans-isomer (e.r. 83:17). It is pertinent to note that extended 
irradiation, and increased catalyst loading, were necessary to reach a 
photostationary composition.

To place this deracemization enabled by Al-salen photocatalysis 
on a mechanistic foundation, and provide support for the working 
hypothesis delineated in Fig. 1, ultraviolet–visible spectroscopic data, 
reaction-progress monitoring and temperature data were reconciled 
with experimental observations (see the Supplementary Informa-
tion for full details). Consistent with a photocatalytic transformation, 
the deracemization was completely suppressed in the absence of the 
Al-salen or light: this enabled cyclopropane rac-1 to be recovered 

quantitatively (Fig. 4a). Furthermore, omitting molecular sieves com-
promised reaction efficiency, highlighting the detrimental effect of 
water on the process. We then turned our attention to the feasibil-
ity of the charge-transfer process that is implicit in the mechanism 
(Fig. 4b). An electron transfer from the excited-state catalyst (E1/2(*PC/
PC+) ≈ −1.47 V versus SCE) to substrate rac-1 (E1/2 = −1.96 V versus SCE) 
was considered and, although formally endergonic, it is conceivable in 
the presence of a Lewis acid56,57. Comparison of compound 19 (versus 1)  
was intended to demonstrate that the replacement of the gem-diPh 
by gem-diEt, although having a marginal impact on the reduction 
potential, lowers the stability of the radical resulting from C-C bond 
scission: this was expected to reduce the rate of this step and thus 
prevent deracemization (e.r. 50:50). This notion is supported by the 
irreversible reduction of 1 (versus 19). Replacing the phenyl ketone by a 
methyl ester, as in the case of compound 20, results in a more negative 
reduction potential (<−2.2 V versus SCE), which suggests that the initial 
photochemical charge transfer from the catalyst is not feasible. Fur-
thermore, control reactions with scalemic 19 and 20 were conducted 
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Fig. 3 | Investigating the scope of the deracemization of cyclopropyl 
ketones. a, Scope of the deracemization; reactions performed using 
cyclopropyl ketones (0.30 mmol), Al-1 (10 mol%), 3 Å mol sieves (MS) (45 mg) 
and n-Bu4NCl (1.5 eq.) in acetone (4.5 ml) under an argon atmosphere. The 
reaction mixture was irradiated (400 nm) at −70 °C for 6 h using a quartz-glass 
rod as an optical guiding rod. Yields are reported on the basis of isolated 
material. The e.r. was determined by high-performance liquid chromatography 
analysis on a chiral stationary phase. b, A formal kinetic resolution of 
unsymmetrically substituted cyclopropyl ketones; reactions performed using 
cyclopropyl ketones (0.30 mmol), Al-1 (10 mol%), 3 Å mol sieves (45 mg) and 

n-Bu4NCl (1.5 eq.) in acetone (4.5 ml) under an argon atmosphere. The reaction 
mixture was irradiated (400 nm) at −70 °C using a quartz-glass rod as an optical 
guiding rod. Yields are reported on the basis of isolated material. The e.r. was 
determined by high-performance liquid chromatography analysis on a chiral 
stationary phase. aReaction time 4.5 h, starting material d.r. 93:7 (cis:trans). 
bReaction time 4.5 h, starting material d.r. 94:6 (cis:trans). cReaction performed 
on a 0.10 mmol scale, reaction time 65 min (trans starting material). dReaction 
time 64 h using 20 mol% of Al-1 (trans starting material). All experiments were 
performed in duplicate (see Supplementary Information for the results of 
single experiments).
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and confirmed that no detectable background racemization occurs (for 
further details see Supplementary Information). To complement these 
experimental data, a detailed computational study was conducted to 
further investigate the deracemization mechanism (Fig. 4c).

A conformational analysis of the complex (R/S)-CP1 formed from 
cyclopropyl ketone (R/S)-1 and catalyst (R,R)-Al-1 revealed non-covalent 
London dispersion interactions between the aryl rings of the ligand 
and substrate, but no O–Al bond in the preferred structures. To lend 
experimental support to this finding, spectroscopic and cyclic voltam-
metry investigations were conducted and shifts in neither the absorp-
tion maxima nor in the cyclic voltammograms were observed (see the 
Supplementary Information). Therefore, Lewis-acid activation of the 
substrate in the ground state was discounted, contrary to our initial 
hypothesis.

Furthermore, no marked energetic discrimination of the two enanti-
omers of 1 at this complexation stage was noted. With time-dependent 
density functional theory, very similar vertical excitation energies 
to the first and second singlet states (S1, S2) of (R/S)-CP1 were found. 
Both excited states were characterized by substantial charge trans-
fer from occupied ligand orbitals of the catalyst to the lowest virtual 
orbitals of the benzoyl moiety in the ketone. To test the assumption 
that the conformational process required for deracemization occurs 
in the long-lived triplet state, the charge-separated triplet diradicals 

(R/S)-3INT1 were considered as initial intermediates after intersystem 
crossing. In contrast to the initial complex, these species exhibit a short 
Al–O bond in the preferred conformations, as expected for a ketyl 
radical. The free-energy barrier for ring opening to triplet diradicals 
3INT2 is rather low for both configurations (6 and 8 kcal mol−1 for (S)-
3INT1 and (R)-3INT1, respectively): this step is associated with the back 
transfer of charge to the metal ligand. During these studies, we did not 
find notable spin density on the catalyst moiety of 3INT2. The configu-
ration of the double bond of the enol radical in 3INT2 depends on the 
cyclopropyl configuration in the low-energy conformation of 33INT1: 
the (Z)-enol radical is formed from (S)-3INT1, whereas the ring opening 
of the (R)-ketyl radical furnishes the (E)-enol radical. Conformational 
analysis of (E)-/(Z)-3INT2 reveals that both isomers attain conforma-
tions that would yield the (R)-cyclopropane on ring closure, as meas-
ured by the dihedral angle around the C∙H–CH2 bond (Supplementary 
Tables 10 and 11). However, conformations (E)-/(Z)-3INT2″, leading 
to the opposite (S)-stereoisomers, can be found within a free-energy 
range of 1 kcal mol−1 for both diradicals, and epimerization could be 
easily achieved by rotation of the diphenyl methyl radical group to 
the opposite side of the enol plane. Furthermore, we have also identi-
fied a possible transition structure for the conversion of (E)-3INT2 to 
(Z)-3INT2, (3TS2) with a free-energy barrier of only 7 kcal mol−1 for this 
thermodynamically favorable process. This confirms that comparably 
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fast processes can shift the conformational population of triplet diradi-
cal (Z)-3INT2 and that the thermodynamic stability of these interme-
diates does not necessarily determine the product configuration. 
Furthermore, we have confirmed by means of spin-flip time-dependent 
density functional theory calculations (Supplementary Table 14) that 
(E)-3INT2 and (Z)-3INT2 are energetically close to the (open-shell) sin-
glet potential-energy surface, which would lead to facile intersystem 
crossing in either case. Our computational investigations indicate that 
there is no substantial stereoselection before and during the excitation 
process and in the formation of the 1,3-diradical. Fast conformational 
interconversions of diradicals (E/Z)-3INT2 can preselect conformations 
that lead to the observed accumulation of the (S)-cyclopropane during 
bond formation in the singlet state, assuming that these processes are 
fast compared with ISC rates.

Finally, to demonstrate the synthetic utility of the method in access-
ing optically enriched, densely functionalized cyclopropane deriva-
tives, the gem-diaryl and gem-diester derivatives (+)-1 and (+)-8/(+)-10 
were further modified (Fig. 5). An operationally simple cleavage of 
the phenyl ketone chromophore was predicted to be advantageous. 
Therefore, direct conversion to the amide or ester through Beckmann 
rearrangement58 or Baeyer–Villiger oxidation59 was validated. Johnson–
Corey–Chaykovsky epoxidation and reduction of (+)-1, to generate 
(+)-22 and (+)-23, proceeded in a fully diastereoselective manner, as 
did the reduction/cyclization sequence to access the fused lactone 
derivative (+)-25 (refs. 60,61). Extensive reduction of (+)-8 was also 
efficient and enabled triol (+)-26 to be prepared without erosion of 
the optical purity.
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