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Mapping behavioural actions to neural activity is a fundamental goal of neuroscience.
As our ability to record large neural and behavioural dataincreases, there is growing
interest in modelling neural dynamics during adaptive behaviours to probe neural
representations'>. In particular, although neural latent embeddings can reveal
underlying correlates of behaviour, we lack nonlinear techniques that can explicitly
and flexibly leverage joint behaviour and neural data to uncover neural dynamics®*.
Here, we fill this gap with a new encoding method, CEBRA, that jointly uses behavioural
and neural datain a (supervised) hypothesis- or (self-supervised) discovery-driven
manner to produce both consistent and high-performance latent spaces. We show
that consistency can be used as ametric for uncovering meaningful differences, and
theinferred latents can be used for decoding. We validate its accuracy and demonstrate
our tool’s utility for both calcium and electrophysiology datasets, across sensory and
motor tasks and in simple or complex behaviours across species. It allows leverage of
single- and multi-session datasets for hypothesis testing or can be used label free.
Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex
kinematic features, for the production of consistent latent spaces across two-photon

and Neuropixels data, and can provide rapid, high-accuracy decoding of natural
videos from visual cortex.

A central quest in neuroscience is the neural origin of behaviour'?.
Nevertheless, we are still limited in both the number of neurons and
length of time we can record from behaving animals in asession. There-
fore, we need new methods that can combine dataacross animals and
sessions with minimal assumptions, thereby generatinginterpretable
neural embedding spaces"’. Current tools for representation learning
areeither linear or, if nonlinear, typically rely on generative models and
they do notyield consistent embeddings across animals (or repeated
runs of the algorithm). Here, we combine recent advances in nonlinear
disentangled representation learning and self-supervised learning to
develop a new dimensionality reduction method that can be applied
jointly to behavioural and neural recordings to show meaningful
lower-dimensional neural population dynamics®.

From data visualization (clustering) to discovery of latent spaces
thatexplain neural variance, dimensionality reduction of behaviour or
neural datahas beenimpactfulin neuroscience. For example, complex
three-dimensional (3D) forelimb reaching canbe reduced to between
only eight and twelve dimensions®’, and low-dimensional embeddings
show some robust aspects of movements (for example, principal com-
ponentanalysis (PCA)-based manifolds in which the neural state space
can easily be constrained and is stable across time®°). Linear methods
suchasPCAare often used toincrease interpretability, but this comes
at the cost of performance'. Uniform manifold approximation and
projection (UMAP)" and t-distributed stochastic neighbour embed-
ding (-SNE) are excellent nonlinear methods but they lack the ability
to explicitly use time information, which is always available in neural

recordings, and they are not as directly interpretable as PCA. Nonlinear
methods are desirable for use in high-performance decoding but often
lack identifiability—the desirable property that true model parameters
can be determined, up to a known indeterminacy®*. This is critical
becauseit ensuresthat the learned representations are uniquely deter-
mined and thus facilitates consistency across animals and/or sessions.

Thereisrecent evidence that label-guided variational auto-encoders
(VAEs) could improve interpretability>>'¢, Namely, by using behav-
ioural variables, such algorithms canlearn to project future behaviour
onto past neural activity, or explicitly to use label priors to shape the
embedding®. However, these methods still have restrictive explicit
assumptions on the underlying statistics of the data and they do not
guarantee consistent neural embeddings across animals>”*, which
limits both their generalizability and interpretability (and thereby
affects accurate decoding across animals).

We addressthese open challenges with CEBRA, a new self-supervised
learning algorithm for obtaining interpretable, consistent embeddings
of high-dimensional recordings using auxiliary variables. Our method
combinesideas fromnonlinear independent component analysis (ICA)
with contrastive learning*'?%, a powerful self-supervised learning
scheme, to generate latent embeddings conditioned on behaviour
(auxiliary variables) and/or time. CEBRA uses a new data-sampling
scheme to train a neural network encoder with a contrastive optimi-
zation objective to shape the embedding space. It can also generate
embeddings across multiple subjects and cope with distribution shifts
among experimental sessions, subjects and recording modalities.
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Fig.1|Use of CEBRA for consistent and interpretable embeddings.

a, CEBRA allows for self-supervised, supervised and hybrid approaches for both
hypothesis-and discovery-driven analysis. Overview of pipeline: collect data (for
example, pairs of behaviour (or time) and neural data (x,y)), determine positive
and negative pairs, train CEBRA and produce embeddings. W, _,representthe
neural network weights. b, Left, true 2D latent, where each pointis mapped to the
spiking rate of 100 neurons. Middle, CEBRA embedding after linear regression to
thetruelatent. Right, reconstructionscoreis R?of linear regression between the
truelatent and resultingembedding from each method. The ‘behaviourlabel’isa
1D random variable sampled from uniformdistribution of [0, 21] thatis assigned
toeach time bin of synthetic neural data, as visualized by the colour map. The
orangelinerepresents the medianand each black dot anindividual run (n =100).
CEBRA-Behaviour shows asignificantly higher reconstruction score compared
with pi-VAE, -SNEand UMAP (one-way ANOVA, F(4,495) = 251, P=1.12 x 10V with

Importantly, our method relies on neither dataaugmentation (as does
SimCLR?) nor a specific generative model, which would limititsrange
of use.

Joint behavioural and neural embeddings

We propose a framework for jointly trained latent embeddings. CEBRA
leverages user-defined labels (supervised, hypothesis-driven) or
time-only labels (self-supervised, discovery-driven; Fig. 1a and Sup-
plementary Note 1) to obtain consistent embeddings of neural activity

posthoc Tukey’s honest significant difference P< 0.001). ¢, Rathippocampus
dataderived fromref.26.Cartoon fromscidraw.io. Electrophysiology data

were collected whilearat traversed al.6 mlinear track ‘leftwards’ or ‘rightwards’.
d, Webenchmarked CEBRA against conv-pi-VAE (both with labels and without),
autoLFADS, t-SNE and unsupervised UMAP. Note: for performance against

the original pi-VAE see Extended DataFig.1. We plot the three latents (all CEBRA-
embedding figures show the first three latents). The dimensionality of the latent
spaceis set to the minimum and equivalent dimension per method (3D for
CEBRA and 2D for others) for fair comparison. Note: higher dimensions for
CEBRA canyield higher consistency values (Extended DataFig. 7). e, Correlation
matrices show R?values after fitting a linear model between behaviour-aligned
embeddings of pairs of rats, one as thetarget and the other as the source (mean,
n=10runs). Parameters were picked by optimization of average run consistency
acrossrats.

that can be used for both visualization of data and downstream tasks
such as decoding. Specifically, it is an instantiation of nonlinear ICA
based on contrastive learning. Contrastive learning is a technique
that leverages contrasting samples (positive and negative) against
each other to find attributes in common and those that separate
them. We can use discrete and continuous variables and/or time to
shape the distribution of positive and negative pairs, and then use
anonlinear encoder (here, a convolutional neural network but can
be another type of model) trained with a new contrastive learning
objective. The encoder features form alow-dimensional embedding

Nature | Vol 617 | 11 May 2023 | 361



Article

of the data (Fig. 1a). Generation of consistent embeddings is highly
desirable and closely linked to identifiability in nonlinear ICA™*?,
Theoretical work has shown that the use of contrastive learning with
auxiliary variablesis identifiable for bijective neural networks using
anoise contrastive estimation (NCE) loss™, and that with an InfoNCE
loss this bijectivity assumption can sometimes be removed* (see also
our theoretical generalization in Supplementary Note 2). InfoNCE
minimization can be viewed as a classification problem such that,
given areference sample, the correct positive sample needs to be
distinguished from multiple negative samples.

CEBRA optimizes neural networks f, f’ that map neural activity to
an embedding space of a defined dimension (Fig. 1a). Pairs of data
(x,y) are mapped to this embedding space and then compared with
a similarity measure ¢(-,-). Abbreviating this process with
Y(x,y) =¢(f(x),f'(y))/t and atemperature hyperparameter, 7, the
full criterion for optimization is

n
B (xy,) +log Y e?™¥),
X~p(x), yi~p(y|x) Xy, gi=zl

Y1 - Yn~q(y1X)

which, depending onthe dataset size, can be optimized with algorithms
for either batch or stochastic gradient descent.

Incontrastto other contrastive learning algorithms, the positive-pair
distribution p and negative-pair distribution g can be systematically
designed and allow the use of time, behaviour and other auxiliary
information to shape the geometry of the embedding space. If only
discrete labels are used, this training scheme is conceptually similar
to supervised contrastive learning?.

CEBRA can leverage continuous behavioural (kinematics, actions)
aswellasother discrete variables (trial ID, rewards, brain-areaID and
soon). Additionally, user-defined information about desired invari-
ancesinthe embeddingis used (across animals, sessionsand so on),
allowing for flexibility in data analysis. We group this informationinto
task-irrelevant and -relevant variables, and these can be leveraged
in different contexts. For example, to investigate trial-to-trial vari-
ability or learning across trials, information such as a trial ID would
be considered a task-relevant variable. On the contrary, if we aim
to build a robust brain machine interface that should be invariant
to such short-term changes, we would include trial information as
atask-irrelevant variable and obtain an embedding space that no
longer carries this information. Crucially, this allows inference of
latentembeddings without explicit modelling of the data-generating
process (as done in pi-VAE® and latent factor analysis via dynamical
systems (LFADS)"). Omitting the generative model and replacing it
by a contrastive learning algorithm facilitates broader applicability
without modifications.

Robust and decodable latent embeddings

We first demonstrate that CEBRA significantly outperforms ¢-SNE,
UMAP, automatic LFADS (autoLFADS)* and pi-VAE (the latter was
shown to outperform PCA, LFADS, demixed PCA and PfLDS (Poisson
feed-forward neural network linear dynamical system) on some tasks)
inthereconstructionof ground truth synthetic data (one-way analysis
of variance (ANOVA), F(4,495) =251,P=1.12 x 10; Fig.1band Extended
DataFig.1a,b).

We then turned to a hippocampus dataset that was used to bench-
mark neuralembedding algorithms>* (Extended Data Fig. 1c and Sup-
plementary Note 1). Of note, we first significantly improved pi-VAE by
the addition of aconvolutional neural network (conv-pi-VAE), thereby
allowing this model to leverage multiple time steps, and used this for
further benchmarking (Extended Data Fig.1d,e). To test our methods,
we first considered the correlation of the resulting embedding space
across subjects (does it produce similar latent spaces?), and the
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correlation across repeated runs of the algorithm (how consistent
are the results?). We found that CEBRA significantly outperformed
other algorithms in the production of consistent embeddings, and it
produced visually informative embeddings (Fig. 1c-e and Extended
Data Figs. 2 and 3; for each embedding a single point represents the
neural population activity over a specified time bin).

When using CEBRA-Behaviour, the consistency of the resulting
embedding space across subjectsis significantly higher compared with
autoLFADS and conv-pi-VAE, with or without test-time labels (one-way
ANOVA F(25.4) P=1.92 x107; Supplementary Table 1and Fig. 1d,e).
Qualitatively, it can be appreciated that both CEBRA-Behaviour and
-Time have similar output embeddings whereas the latents from
conv-pi-VAE, either with label priors or without labels, are not consistent
(CEBRA does not need test-time labels), suggesting that the label prior
strongly shapes the output embedding structure of conv-pi-VAE. We
also considered correlations across repeated runs of the algorithm, and
found higher consistency and lower variability with CEBRA (Extended
DataFig. 4).

Hypothesis-driven and discovery-driven analyses

Among the advantages of CEBRA are its collective flexibility, limited
assumptions, and ability to test hypotheses. For the hippocampus, one
can hypothesize that these neurons represent space?* and therefore
the behavioural label could be either position or velocity (Fig. 2a).
In addition, considering structure in only the behavioural data (with
CEBRA) could help refine which behavioural labels to use jointly with
neural data (Fig. 2b). Conversely, for the sake of argument, we could
have an alternative hypothesis: that the hippocampus does not map
space, but simply maps the direction of travel or some other feature.
Using the same model but hypothesis free, and using time for selection
of contrastive pairs, is also possible, and/or a hybrid thereof (Fig. 2a,b).

We trained hypothesis-guided (supervised), time-only (self-
supervised) and hybrid models across arange of input dimensions and
embedded the neural latents into a3D space for visualization. Qualita-
tively, we find that the position-based model produces a highly smooth
embedding that shows the position of the animal—namely, there is a
continuous ‘loop’ of latent dynamics around the track (Fig. 2b). This
is consistent with what is known about the hippocampus? and shows
the topology of thelinear track with direction specificity whereas shuf-
fling the labels, which breaks the correlation between neural activity
and direction and position, produces an unstructured embedding
(Fig. 2b).

CEBRA-Time produces an embedding that more closely resembles
that of position (Fig. 2b). This also suggests that time contrastive learn-
ing captured the major latent space structure, independent of any label
input, reinforcing the idea that CEBRA can serve both discovery-and
hypothesis-driven questions (and that running both variants can be
informative). The hybrid design, whose goal is to disentangle the latent
to subspaces that are relevant to the given behavioural and residual
temporal variance and noise, showed a structured embedding space
similar to behaviour (Fig. 2b).

To quantify how CEBRA can disentangle which variable had the larg-
estinfluence onembedding, we tested for encoding position, direction
and combinations thereof (Fig. 2c). We find that position plus direction
is the most informative label® (Fig. 2c and Extended Data Fig. 5a-d).
Thisisevidentbothinthe embedding and the value of the loss function
on convergence, whichservesasa‘goodness of fit' metric toselect the
best labels—that is, whichlabel(s) produce the lowest loss at the same
pointintraining (Extended DataFig. 5e). Note that erroneous (shuffled)
labels converge to considerably higher loss values.

To measure performance, we consider how well we could decode
behaviour from the embeddings. As an additional baseline we per-
formed linear dimensionality reduction with PCA. We used a k-nearest-
neighbour (kNN) decoder for position and direction and measured
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Fig.2|Hypothesis-and discovery-driven analysis with CEBRA. a, CEBRA can
beusedinany of three modes: hypothesis-drivenmode, discovery-drivenmode,
or hybrid mode, which allows for weaker priors on the latent embedding. b, Left
toright, CEBRA onbehavioural datausing positionasalabel, CEBRA-Time,
CEBRA-Behaviour (on neural data) with position hypothesis, CEBRA-Hybrid
(afive-dimensional space was used, inwhich3Dis first guided by bothbehaviour +
timeand the final 2D is guided by time) and shuffled (erroneous). ¢, Embeddings
with position (P) only, direction (D) only and P + D only, and shuffled position
only, directiononly and P + D only, for hypothesis testing. The loss function can
beusedasametric forembedding quality. d, Left, we utilized either hypothesis-
drivenP + D or shuffle (erroneous) to decode the position of the rat, which
yielded alarge difference in decoding performance: P + DR?=73.35 versus
-49.90% for shuffled, and median absolute error 5.8 versus 44.7 cm. Purpleline

the reconstruction error. We find that CEBRA-Behaviour has signifi-
cantly better decoding performance (Fig. 2d and Supplementary
Video 1) compared with both pi-VAE and our conv-pi-VAE (one-way
ANOVA, F=131, P=3.6 x107?*), and also CEBRA-Time compared with
unsupervised methods (autoLFADS, -SNE, UMAP and PCA; one-way
ANOVA, F=1,983, P=6 x107°°; Supplementary Table 2). Zhou and
Wei® reported a median absolute decoding error of 12 cm error
whereas we achieved approximately 5 cm (Fig. 2d). CEBRA therefore
allows for high-performance decoding and also ensures consistent
embeddings.

Cohomology as ametric for robustness

Although CEBRA canbe trained across arange of dimensions, and mod-
elscanbeselected based ondecoding, goodness of fit and consistency,
we also sought to find a principled approach to verify the robustness

1
Lifespan

represents decoding from the 3D hypothesis-based latent space; dashed lineis
shuffled. Right, performance across additional methods (orange barsindicate
the median of individual runs (n =10), indicated by black circles. Each runis
averaged over three splits of the dataset). MC, Monte Carlo. e, Schematic
showing how persistent cohomology is computed. Each data point is thickened
to aball of gradually expanding radius (r) while tracking the birth and death of
‘cycles’in each dimension. Prominentlifespans, indicated by pink and purple
arrows, are considered to determine Betti numbers. f, Top, visualization of
neuralembeddings computed with differentinput dimensions. Bottom, related
persistent cohomology lifespan diagrams. g, Bettinumbers from shuffled
embeddings (sh.) and acrossincreasing dimensions (dim.) of CEBRA, and the
topology-preserving circular coordinates using the first cocycle from persistent
cohomology analysis (Methods).

of embeddings that might yield insight into neural computations®**
(Fig. 2e). We used algebraic topology to measure the persistent coho-
mology asacomparisoninregard to whetherlearned latent spacesare
equivalent. Although it is not required to project embeddings onto a
sphere, this has the advantage that there are default Betti numbers (for a
d-dimensional uniform embedding, H=1,H'=0, ..., H* '=1—that is,
1,0,1 for the two-sphere). We used the distance from the unity line
(and threshold based on a computed null shuffled distribution in
Births versus Deaths to compute Betti numbers; Extended Data Fig. 6).
Using CEBRA-Behaviour or -Time we find aring topology (1,1,0; Fig. 2f),
asonewould expectfromalineartrack for place cells. We then computed
the Eilenberg-MacLane coordinates for the identified cocycle (H?) for
each model*>*—this allowed us to map each time point to topology-
preserving coordinates—and indeed we find that thering topology for
the CEBRA models matches space (position) across dimensions (Fig. 2g
and Extended Data Fig. 6). Note that this topology differs from
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Fig.3|Forelimb movementbehaviourina primate. a, The monkey makes
eitheractive or passive movementsineight directions. Dataderived fromarea 2
of primary S1from Chowdhury et al.>*. Cartoon fromscidraw.io. b, Embeddings
ofactivetrials generated with4D CEBRA-Behaviour, 4D CEBRA-Time, 4D
autoLFADS, 4D conv-pi-VAE variants, 2D t-SNE and 2D UMAP. The embeddings of
trials (n=364) foreachdirectionare posthoc averaged. c, CEBRA-Behaviour
trained with (x,y) position of the hand. Left, colour coded to x position; right,
colour coded toyposition.d, CEBRA-Time with no external behaviour variables.
Colourcodedasinc.e, CEBRA-Behaviourembedding trained using a4D latent
space, withdiscrete target direction as behaviour labels, trained and plotted
separately for active and passive trials. f, CEBRA-Behaviour embedding trained
usinga4D latent space, with discrete target direction and active and passive
trials asauxiliary labels plotted separately, active versus passive trials. g, CEBRA-

(1,0,1)—thatis, Bettinumbers for auniformly covered sphere—whichin
our setting would indicate arandom embedding as found by shuffling
(Fig. 2g).

Multi-session, multi-animal CEBRA
CEBRA canalsobe used tojointly train across sessions and different ani-
mals, which canbe highly advantageous when thereis limited access to
simultaneously recorded neurons or when looking for animal-invariant
features in the neural data. We trained CEBRA across animals within
each multi-animal dataset and find that this joint embedding allows
for even more consistent embeddings across subjects (Extended Data
Fig.7a-c; one-sided, paired t-tests; Allen data: t =-5.80,P=5.99 x 10°5;
hippocampus: t=-2.22, P=0.024).

Although consistency increased, itisnotaprioriclear that decoding
from ‘pseudosubjects’ would be equally good because there could be
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Behaviourembeddingtrained witha4D latent space using active and passive
trials with continuous (x,y) position as auxiliary labels plotted separately, active
versus passive trials. The trajectory of each directionis averaged across trials
(n=18-30each, perdirection) over time. Each trajectory represents 600 ms
from-100 ms before the start of the movement. h, Left toright, decoding
performance of: position using CEBRA-Behaviour trained with (x,y) position
(active trials); target direction using CEBRA-Behaviour trained with target
direction (active trials); and active versus passive accuracy (Acc.) using CEBRA-
Behaviour trained withboth active and passive movements. Ineach case we
trained and evaluated five seeds, represented by black dots; orange line
represents the median. i, Decoded trajectory of hand position using CEBRA-
Behaviour trained onactive trial with (x,y) position of the hand. The grey line
representsatruetrajectoryand theredline representsadecoded trajectory.

session- or animal-specificinformation thatis lostin pseudodecoding
(because decodingis usually performed within the session). Alterna-
tively, if this joint latent space was as high performance as the single
subject, that would suggest that CEBRA is able to produce robust
latent spaces across subjects. Indeed, we find no loss in decoding
performance (Extended Data Fig. 7c).

Itisalso possible torapidly decode fromanew session thatis unseen
during training, whichis an attractive setting for brain machine inter-
face deployment. We show that, by pretraining on a subset of the sub-
jects, we can apply and rapidly adapt CEBRA-Behaviour on unseen
data (thatis, it runs at 50-100 steps s, and positional decoding error
already decreased by 10 cmafter adapting the pretrained network for
onestep). Lastly, we canachieve alower error more rapidly compared
with training fully on the unseen individual (Extended Data Fig. 7d). Col-
lectively, this shows that CEBRA canrapidly produce high-performance,
consistent and robust latent spaces.
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Latent dynamics during a motor task

We next consider an eight-direction ‘centre-out’ reaching task paired
with electrophysiology recordings in primate somatosensory cortex
(S1)** (Fig. 3a). The monkey performed many active movements, and in
asubset of trials experienced randomized bumps that caused passive
limb movement. CEBRA produced highly informative visualizations of
the datacompared with other methods (Fig. 3b), and CEBRA-Behaviour
canbeusedtotestthe encoding properties of S1. Using either position
or timeinformation showed embeddings with clear positional encod-
ing (Fig. 3c,d and Extended Data Fig. 8a-c).

Totest howdirectionalinformation and active versus passive move-
ments influence population dynamics in S1 (refs. 34-36), we trained
embedding spaces with directionalinformation and then either sepa-
rated the trials into active and passive for training (Fig. 3e) or trained
jointly and post hoc plotted separately (Fig. 3f). We find striking simi-
larities suggesting that active versus passive strongly influences the
neurallatent space: theembeddings for active trials show a clear start
and stop whereas for passive trials they show a continuous trajectory
through the embedding, independently of how they are trained. This
finding is confirmed in embeddings that used only the continuous
position of the end effector as the behavioural label (Fig. 3g). Notably,
directionis aless prominent feature (Fig.3g) although they are entan-
gled parameters in this task.

As the position and active or passive trial type appear robust
in the embeddings, we further explored the decodability of the
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h, Linear consistency between embeddings of calcium imaging and Neuropixels
trained jointly using a multi-session CEBRA model (n=10-1000 neurons,
across n =5shuffles of neural data; meanvalues + s.e.m.). i, Diagram of mouse
primary visual cortex (V1, VISp) and higher visual areas. j, CEBRA-Behaviour
32D modeljointly trained with 2P + NP incorporating 400 neurons, followed by
measurement of consistency within or across areas (2P versus NP) across two
unique sets of disjoint neurons for three seeds and averaged. k, Models trained
asinh, withintra-V1consistency measurementversusallinterarea versus V1
comparison. Purple dotsindicate mean of Vlintra-V1consistency (across
n=120runs) andinter-V1consistency (n =120 runs). Intra-V1consistencyis
significantly higher thaninterarea consistency (one-sided Welch’s t-test,
t(12.30) =4.55,P=0.00019).

embeddings. Both position and trial type were readily decodable
from 8D+ embeddings with a kNN decoder trained on position only,
but directional information was not as decodable (Fig. 3h). Here
too, the loss function value is informative for goodness of fit dur-
ing hypothesis testing (Extended Data Fig. 8d-f). Notably, we could
recover the hand trajectory with R?> = 88% (concatenated across
26 held-out test trials; Fig. 3i) using a 16D CEBRA-Behaviour model
trained on position (Fig. 3i). For comparison, an L1 regression using
all neurons achieved R? = 74% and 16D conv-pi-VAE achieved R? = 82%.
We also tested CEBRA on an additional monkey dataset (mc-maze)
presented in the Neural Latent Benchmark¥, in which it achieved
state-of-the-art behaviour (velocity) decoding performance (Extended
DataFig. 8).

Consistent embeddings across modalities

Although CEBRA is agnostic to the recording modality of neural data,
do different modalities produce similar latent embeddings? Under-
standing the relationship of calcium signalling and electrophysiology
is a debated topic, yet an underlying assumptionis that they inherently
represent related, yet not identical, information. Although there is a
wealth of excellent tools aimed at inferring spike trains from calcium
data, currently the pseudo-R? of algorithms on paired spiking and cal-
cium data tops out at around 0.6 (ref. 38). Nonetheless, it is clear that
recording with either modality has led to similar global conclusions—for
example, grid cells canbe uncovered in spiking or calcium signals®**,
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Fig.5|Decoding of natural video features from mouse visual cortical
areas. a, Schematic of the CEBRA encoder and kNN (or naive Bayes) decoder.

b, Examples of original frames (top row) and frames decoded from CEBRA
embedding of V1calciumrecording using kNN decoding (bottom row). The last
repeatamongtenwas used as the held-out test. ¢, Decoding accuracy measured
by consideringa predicted frame being within1softhetrue frameasacorrect
prediction using CEBRA (NP only), jointly trained (2P + NP) or abaseline
population vector plus kNN or naive Bayes decoder using either aone-frame
(33 ms) receptive field (left) or ten frames (330 ms) (right); results shown for
Neuropixels dataset (V1data); for each neuron number we have n=5shuffles,
mean+s.e.m.d, Decodingaccuracy measured by correctscene prediction
using either CEBRA (NP only), jointly trained (2P + NP) or baseline population

reward prediction errors can be found in dopamine neurons across
species and recording modalities*®*?, and visual cortex shows orienta-
tion tuning across species and modalities**.

We aimed to formally study whether CEBRA could capture the same
neural population dynamics either from spikes or calciumimaging. We
utilized a dataset fromthe Allen Brain Observatory where mice passively
watched three videos repeatedly. We focused on paired datafromten
repeats of ‘Natural Movie 1’ where neural datawere recorded with either
Neuropixels (NP) probes or calcium imaging with a two-photon (2P)
microscope (from separate mice)***’. Note that, although the datawe
have considered thus far have goal-drivenactions of the animals (such
asrunning downalinear track or reaching for targets), this visual cortex
dataset was collected during passive viewing (Fig. 4a).

We used the video features as ‘behaviour’ labels by extracting
high-level visual features from the video on a frame-by-frame basis
with DINO, a powerful vision transformer model*®. These were then
used to sample the neural data with feature-labels (Fig. 4b). Next, we
used either Neuropixels or 2P data (each with multi-session training)
to generate (from 8D to 128D) latent spaces from varying numbers of
neurons recorded from primary visual cortex (V1) (Fig. 4c,d). Visualiza-
tion of CEBRA-Behaviour showed trajectories that smoothly capture
the video of either modality with an increasing number of neurons.
Thisis reflected quantitatively in the consistency metric (Fig. 4e). Strik-
ingly, CEBRA-Time efficiently captured the ten repeats of the video
(Extended Data Fig. 9), which was not captured by other methods.
This result demonstrates that thereis a highly consistent latent space
independent of the recording method.

Next, we stacked neurons from different mice and modalities and then
sampled random subsets of V1 neurons to construct a pseudomouse.
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We did not find thatjoint training lowered consistency within modality
(Extended DataFig.10a,b) and, overall, we found considerableimprove-
ment in consistency with joint training (Fig. 4f-h).

Using CEBRA-Behaviour or -Time, we trained models on five higher
visual areas and measured consistency withand without joint training,
and within or across areas. Our results show that, with joint training,
intra-area consistency is higher compared with other areas (Fig. 4i-k),
suggesting that CEBRA is not removing biological differences across
areas, which have known differences in decodability and feature rep-
resentations**°, Moreover, we tested within modality and find a simi-
lar effect for CEBRA-Behaviour and -Time within recording modality
(Extended Data Fig.10c-f).

Decoding of natural videos from cortex

We performed V1 decoding analysis using CEBRA models thatare either
joint-modality trained, single-modality trained or with abaseline popu-
lation vector paired with a simple kNN or naive Bayes decoder. We
aimed to determine whether we could decode, on a frame-by-frame
basis, the natural video watched by the mice. We used the final video
repeat as a held-out test set and nine repeats as the training set. We
achieved greater than 95% decoding accuracy, whichis significantly
better than baseline decoding methods (naive Bayes or kNN) for
Neuropixels recordings, and joint-training CEBRA outperformed
Neuropixels-only CEBRA-based training (single frame: one-way ANOVA,
F(3,197) =5.88, P=0.0007; Supplementary Tables 3-5, Fig. 5a-d and
Extended DataFig.10g,h). Accuracy was defined by either the fraction
of correct frames within als window or identification of the correct
scene. Frame-by-frame results also showed reduced frame ID errors



(one-way ANOVA, F(3,16) =20.22, P=1.09 x 1075, n=1,000 neurons;
Supplementary Table 6), which canbe seenin Fig. 5e,f, Extended Data
Fig.10i and Supplementary Video 2. The DINO features themselves
did not drive performance, because shuffling of features showed poor
decoding (Extended Data Fig. 10j).

Lastly, we tested decoding from other higher visual areas using DINO
features. Overall, decoding from V1 had the highest performance and
VISrl the lowest (Fig. 5g and Extended Data Fig. 10k). Given the high
decoding performance of CEBRA, we tested whether there was aparticu-
lar V1layer that was mostinformative. We leveraged CEBRA-Behaviour
by training models on each category and found that layers 2/3 and 5/6
showed significantly higher decoding performance compared with
layer 4 (one-way ANOVA, F(2,12) =9.88, P=0.003; Fig. 5h). Given the
known cortical connectivity, this suggests that the nonthalamicinput
layers render frame information more explicit, perhaps via feedback
or predictive processing.

Discussion

CEBRA is anonlinear dimensionality reduction method newly devel-
opedto explicitly leverage auxiliary (behaviour) labels and/or time to
discover latent features in time series data—in this case, latent neural
embeddings. The unique property of CEBRAis the extension and gener-
alization of the standard InfoNCE objective by introduction of a variety
of different sampling strategies tuned for usage of the algorithmin the
experimental sciences and for analysis of time series datasets, and it
can also be used for supervised and self-supervised analysis, thereby
directly facilitating hypothesis- and discovery-driven science. It pro-
ducesboth consistent embeddings across subjects (thus showing com-
monstructure) and can find the dimensionality of neural spaces that are
topologically robust. Although there remains a gap in our understand-
ing of how these latent spaces map to neural-level computations, we
believe this tool provides an advance in our ability to map behaviour
to neural populations. Moreover, because pretrained CEBRA models
canbe used for decoding in new animals within tens of steps (millisec-
onds), we can thereby obtain equal or better performance compared
with training on the unseen animal alone.

Dimensionality reduction is often tightly linked to data visualiza-
tion, and here we make an empirical argument that ultimately this is
useful only when obtaining consistent results and discovering robust
features. Unsupervised t-SNE and UMAP are examples of algorithms
widely usedinlifesciences for discovery-based analysis. However, they
do not leverage time and, for neural recordings, this is always avail-
able and can be used. Even more critical is that concatenation of data
from different animals canlead to shifted clusters with t-SNE or UMAP
due toinherent small changes across animals or in how the data were
collected. CEBRA allows the user to remove this unwanted variance
and discover robust latents that are invariant to animal ID, sessions
or any-other-user-defined nuisance variable. Collectively we believe
that CEBRA will become a complement to (or replacement for) these
methods such that, at minimum, the structure of time in the neural
codeisleveraged and robustness is prioritized.
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Methods

Datasets

Artificial spiking dataset. The synthetic spiking data used for bench-
marking in Fig.1were adopted from Zhou and Wei®. The continuous
1D behaviour variablec € [0, 2m) was sampled uniformly in the inter-
val [0, 2r). The true 2D latent variable z € R was then sampled from
aGaussian distribution AV (u(c), X (c)) withmean u(c) = (c, 2sinc)'and
covariance 2 (c) =diag(0.6 — 0.3 |sinc|, 0.3 |sinc|). After sampling,
the 2D latent variable zwas mapped to the spiking rates of 100 neurons
by the application of four randomly initialized ReaINVP* blocks.
Poisson noise was then applied to map firing rates onto spike counts.
The final dataset consisted of 1.5 x 10* data points for 100 neurons
(Inumber of samples, number of neurons]) and was split into train
(80%) and validation (20%) sets. We quantified consistency across
the entire dataset for all methods. Additional synthetic data, pre-
sented in Extended Data Fig. 1, were generated by varying noise dis-
tribution in the above generative process. Beside Poisson noise, we
used additive truncated ([0,1000]) Gaussian noise with s.d. =1 and
additive uniform noise defined in [0,2], which was applied to the
spiking rate. We also adapted Poisson spiking by simulating neurons
with a refractory period. For this, we scaled the spiking rates to an
average of 110 Hz. We sampled interspike intervals from an exponen-
tial distribution with the given rate and added a refractory period
of 10 ms.

Rat hippocampus dataset. We used the dataset presented in Grosmark
and Buzsaki*. In brief, bilaterally implanted silicon probes recorded
multicellular electrophysiological data from CAl hippocampus
areas from each of four male Long-Evansrats. During a given session,
eachratindependently ran on a1.6-m-long linear track where they
were rewarded with water at each end of the track. The numbers of
recorded putative pyramidal neurons for each rat ranged between 48
and120. Here, we processed the data asin Zhou and Wei’. Specifically,
the spikes were binned into 25 ms time windows. The position and run-
ning direction (left or right) of the rat were encoded into a 3D vector,
which consisted of the continuous position value and two binary values
indicatingright or left direction. Recordings from each rat were parsed
intotrials (around trip from one end of the track as a trial) and then split
into train, validation and test sets with a k= 3 nested cross-validation
scheme for the decoding task.

Macaque dataset. We used the dataset presented in Chowdhury et al.**
In brief, electrophysiological recordings were performed in Area 2 of
somatosensory cortex (S1) in a rhesus macaque (monkey) during a
centre-out reaching task with amanipulandum. Specifically, the mon-
key performed an eight-direction reaching task in which on 50% of
trialsitactively made centre-out movements to a presented target. The
remaining trials were ‘passive’ trialsin whichanunexpected 2 Newton
force bump was given to the manipulandum towards one of the eight
target directions during a holding period. The trials were aligned asin
Pei etal.”, and we used the data for -100 and 500 ms from movement
onset. We used 1 ms time bins and convolved the data using a Gaussian
kernel withs.d. =40 ms.

Mouse visual cortex datasets. We utilized the Allen Institute
two-photon calcium imaging and Neuropixels data recorded from
five mouse visual and higher visual cortical areas (VISp, VISI, VISal,
VISam, VISpm and VISrl) during presentation of amonochrome vid-
eo with 30 Hz frame rate, as presented previously*®*”*2, For calcium
imaging (2P) we used the processed dataset from Vries et al.*®
with asampling rate of 30 Hz, aligned to the video frames. We con-
sidered the recordings from excitatory neurons (Emx1-IRES-Cre,
Slc17a7-IRES2-Cre, Cux2-CreERT2, Rorb-IRES2-Cre, Scnnla-Tg3-Cre,
Nr5al-Cre, Rbp4-Cre_KL100, Fezf2-CreER and TIx3-Cre_PL56) in the

‘Visual Coding-2P’ dataset. Ten repeats of the first video (Movie 1) were
showninall sessiontypes (A, Band C) for each mouse and we used those
neurons that were recorded in all three session types, found via cell
registration*¢. The Neuropixels recordings were obtained from the
‘Brain Observatory 1.1’ dataset*. We used the preprocessed spike tim-
ingsand binned them to asampling frequency of 120 Hz, aligned with
the video timestamps (exactly four bins aligned with each frame). The
dataset containsrecordings for tenrepeats, and we used the same video
(Movie 1) that was used for the 2P recordings. For analysis of consist-
ency across the visual cortical areas we used a disjoint set of neurons
for each seed, to avoid higher intraconsistency due to overlapping
neuron identities. We made three disjoint sets of neurons by consid-
ering only neurons from session A (for 2P data) and nonoverlapping
random sampling for each seed.

CEBRA model framework

Notation. We will use x,y as general placeholder variables and
denote the multidimensional, time-varying signal as s,, parameter-
ized by time ¢. The multidimensional, continuous context variable
¢, contains additional information about the experimental condi-
tion and additional recordings, similar to the discrete categorical
variable k..

The exact composition of s, c and k depends on the experimental
context. CEBRA is agnostic to exact signal types; with the default
parameterizations, s, and ¢, can have up to an order of hundreds or
thousands of dimensions. For even higher-dimensional datasets
(for example, raw video, audio and so on) other optimized deep learn-
ing tools can be used for feature extraction before the application of
CEBRA.

Applicable problem setup. We refer tox € X asthereference sample
andtoy € Yasacorresponding positive or negative sample. Together,
(x,y) form a positive or negative pair based on the distribution from
whichy is sampled. We denote the distribution and density function
of x as p(x), the conditional distribution and density of the positive
sampley given x as p(y|x) and the conditional distribution and den-
sity of the negative sampley given x as g (y|x).

After sampling—and irrespective of whether we are considering a
positive or negative pair—samples x € R®and y € R” are encoded by
feature extractors f: X~ Z and f’: Y~ Z. The feature extractors map
both samples from signal space X € R”, ¥ € R”'into acommon embed-
ding space Z < RE. The design and parameterization of the feature
extractor are chosen by the user of the algorithm. Note that spaces X
and Yand their corresponding feature extractors can be the same
(which s the case for single-session experiments in this work), but
that thisis not astrict requirement within the CEBRA framework (for
example, in multi-session training across animals or modalities, Xand
Y are selected as signals from different mice or modalities, respec-
tively).Itis also possible toinclude the context variable (for example,
behaviour) into X, or to set x to the context variable and y to the signal
variable.

Given two encoded samples, a similarity measure ¢: ZxZ— R
assignsascoretoapair of embeddings. The similarity measure needs
to assign a higher score to more similar pairs of points, and to have
anupper bound. For this work we consider the dot product between
normalized feature vectors, ¢(z,z’) =z'z’/7, in most analyses (latents
on a hypersphere) or the negative mean squared error,
@(z,2’) =—|1z- 2’|*/7 (latents in Euclidean space). Both metrics can
be scaled by atemperature parameter 7 that is either fixed or jointly
learned with the network. Other L,norms and other similarity metrics,
orevenatrainable neural network (aso-called projection head com-
monly used in contrastive learning algorithms'??), are possible
choices within the CEBRA software package. The exact choice of ¢
shapes the properties of theembedding space and encodes assump-
tions about distributions p and g.
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The technique requires paired data recordings—for example, as is
commoninaligned time series. The signal s, continuous context c,and
discrete context k,are synced in their time point ¢. How the reference,
positive and negative samples are constructed from these available sig-
nalsisaconfiguration choice made by the algorithm user, and depends
on the scientific question under investigation.

Optimization. Given the feature encoders fand f’ for the different
sample types, as well as the similarity measure ¢, we introduce the
shorthandy (x,y) = ¢ (f(x), f’(y)). The objective function canthenbe
compactly written as:
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We approximate this objective by drawing a single positive example
y., and multiple negative examples y;from the distributions outlined
above, and minimize the loss function

n
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with agradient-based optimization algorithm. The number of negative
samples is a hyperparameter of the algorithm, and larger batch sizes
are generally preferable.

For sufficiently small datasets, as used in this paper, both positive
and negative samples are drawn from all available samples in the data-
set. This is in contrast to the common practice in many contrastive
learning frameworks in which a minibatch of samples is drawn first,
which are then grouped into positive and negative pairs. Allowing
accesstothe whole dataset to form pairs gives a better approximation
of the respective distributions p(y|x) and g (y|x), and considerably
improves the quality of the obtained embeddings. If the dataset is suf-
ficiently small to fit into the memory, CEBRA can be optimized with
batch gradient descent—that is, using the whole dataset at each opti-
mizer step.

Goodness of fit. Comparing the loss value—at both absolute and
relative values across models at the same point in training time— can
be used to determine goodness of fit. In practical terms, this means
that one can find which hypothesis best fits one’s data, in the case of
using CEBRA-Behaviour. Specifically, let us denote the objective in
equation(l) as L, and its approximation in equation (2) withabatch
sizeof nasL,.Inthe limit of many samples, the objective converges up
toaconstant, Ly, =lim,,.[L, - logn] (Supplementaty Note 2 and
ref.53).

The objective also has two trivial solutions: the first is obtained for
aconstant g (x,y) = ¢, whichyields a value of L, = logn. This solution
canbeobtained whenthelabels are notrelated to the signal (e.g., with
shuffled labels). It is typically not obtained during regular training
because the networkis initialized randomly, causing the initial embed-
ding points to be randomly distributed in space.

Ifthe embedding points are distributed uniformly in space and ¢ is
selected suchthat E[¢ (x,y)] = 0, we willalso get a value thatis approx-
imately L, = logn. This value can be readily estimated by computing
¢ (u, v) for randomly distributed points.

The minimizer of equation (1) is also clearly defined as —Dy, (p||q)
and depends on the positive and negative distribution. For
discovery-driven (time contrastive) learning, this value is impossible
to estimate because it would require access to the underlying condi-
tional distribution of the latents. However, for training with predefined
positive and negative distributions, this quantity can be again numer-
ically estimated.

Interesting values of the loss function when fitting a CEBRA model
are therefore

-Dy (pll@) <L, -logn <0 3)

where L, - logn is the goodness of fit (lower is better) of the CEBRA
model. Note that the metric isindependent of the batch size used for
training.

Sampling. Selection of the sampling schemeis CEBRA’s key feature in
regard to adapting embedding spacesto different datasets and record-
ing setups. The conditional distributions p (y|x) for positive samples
and g (y|x) for negative samples, as well as the marginal distribution
p(x) for reference samples, are specified by the user. CEBRA offers a
set of predefined sampling techniques but customized variants can be
specified toimplement additional, domain-specific distributions. This
form of training allows the use of context variables to shape the prop-
erties of the embedding space, as outlined in the graphical model in
Supplementary Note 1.

Through the choice of sampling technique, various use cases can
bebuiltinto the algorithm. Forinstance, by forcing positive and nega-
tive distributions to sample uniformly across a factor, the model will
become invariant to this factor because its inclusion would yield a
suboptimal value of the objective function.

When considering different sampling mechanisms we distinguish
between single- and multi-session datasets: a single-session dataset
consists of samples s, associated to one or more context variables c,
and/or k.. These context variables allow imposition of the structure
on the marginal and conditional distribution used for obtaining the
embedding. Multi-session datasets consist of multiple, single-session
datasets. The dimension of context variables ¢,and/or k, must be shared
across all sessions whereas the dimension of the signal s, can vary. In
suchasetting, CEBRA allows learning of ashared embedding space for
signals from all sessions.

For single-session datasets, sampling is done in two steps. First, based
on aspecified ‘index’ (the user-defined context variable c¢,and/or k,),
locations t are sampled for reference, positive and negative samples.
The algorithm differentiates between categorical (k) and continuous
(c) variables for this purpose.

Inthe simplest case, negative sampling (g) returnsarandomsample
fromthe empirical distribution by returning arandomly chosenindex
from the dataset. Optionally, with a categorical context variable
k. € [K], negative sampling canbe performed to approximate a uniform
distribution of samples over this context variable. If this is performed
for both negative and positive samples, the resulting embedding will
becomeinvariant withrespectto the variable k.. Sampling is performed
inthis case by computing the cumulative histogram of k,and sampling
uniformly over k using the transformation theorem for probability
densities.

For positive pairs, different options exist based on the availability
of continuous and discrete context variables. For a discrete context
variable k, € [K]with K possible values, sampling from the conditional
distributionis done by filtering the whole dataset for the value k, of the
reference sample, and uniformly selecting a positive sample with the
same value. For a continuous context variable c,we can use aset of time
offsets A to specify the distribution. Given the time offsets, the empir-
ical distribution P (c,,.|c,) foraparticular choice of T € 4 can be com-
puted from the dataset: webuildupasetD={te [T],r€A:¢c,,,— ¢},
sample a d uniformly from D and obtain the sample that is closest to
the reference sample’s context variable modified by this distance
(c+d)fromthe dataset.Itis possible to combine a continuous variable
c.with a categorical variable k, for mixed sampling. On top of the con-
tinual sampling step above, it is ensured that both samples in the
positive pair share the same value of k.



Itis crucial that the context samples cand the norm used in the algo-
rithm match insome way; for simple context variables with predictable
conditional distributions (for example, a 1D or 2D position of a mov-
ing animal, which can most probably be well described by a Gaussian
conditional distribution based on the previous sample), the positive
sample distribution can also be specified directly, for example, as a
normal distribution centred around c,. An additional alternative is to
use CEBRA alsoto preprocess the original context samples cand use the
embedded context samples with the metric used for CEBRA training.
This scheme is especially useful for higher-dimensional behavioural
data, or even for complex inputs such as video.

We next consider the multi-session case in which signals s € R™
come from Ndifferent sessionsi € [N] with session-dependent dimen-
sionality n,. Importantly, the corresponding continuous context vari-
ables ¢ € R™ share the same dimensionality m, which makes it
possible to relate samples across sessions. The multi-session setup is
similar to mixed-session sampling (if we treat the session ID as a cat-
egorical variable k([’) :=iforalltime stepstinsessioni). The conditional
distribution for both negative and positive pairs is uniformly sampled
across sessions, irrespective of session length. Multi-session mixed or
discrete sampling can be implemented analogously.

CEBRA is sufficiently flexible to incorporate more specialized sam-
pling schemes beyond those outlined above. For instance, mixed
single-session sampling could be extended additionally toincorporatea
dimension to which the algorithm should become invariant; this would
add an additional step of uniform sampling with regard to this desired
discrete variable (for example, via ancestral sampling).

Choice of reference, positive and negative samples. Depending on
the exactapplication, the contrastive learning step can be performed
by explicitly including or excluding the context variable. The reference
sample x can containinformation from the signals,, but also fromthe
experimental conditions, behavioural recordings or other context
variables. The positive and negative samples y are set to the signal
variables,.

Theoretical guarantees for linear identifiability of CEBRA models.
Identifiability describes the property of an algorithm to give a consist-
entestimate for the model parameters given that the data distributions
match. We here apply the relaxed notion of linear identifiability that was
previously discussed and used™". After training two encoder models
fand f’, the models are linearly identifiable if f(x) = Lf(x), where Lis a
linear map.

When applying CEBRA, three cases are of potential interest. (1) When
applying discovery-driven CEBRA, will two models estimated on
comparable experimental dataagree intheirinferred representation?
(2) Under which assumptions about the data will we be able to discover
the true latent distribution? (3) In the hypothesis-driven or hybrid
application of CEBRA, is the algorithm guaranteed to give ameaningful
(nonstandard) latent space when we can find signal within the data?

For the first case, we note that the CEBRA objective with a cosine
similarity metric follows the canonical discriminative form for which
Roeder et al.”? showed linear identifiability: for sufficiently diverse
datasets, two CEBRA models trained to convergence on the same
dataset will be consistent up to linear transformations. Note that the
consistency of CEBRA is independent of the exact data distribution:
itismerely required that the embeddings of reference samples across
multiple positive pairs, and the embeddings of negative samples across
multiple negative pairs, vary in sufficiently numerous linearly inde-
pendent directions. Alternatively, we can derive linear identifiability
fromassumptions about datadistribution:if the ground truthlatents
aressufficiently diverse (thatis, varyinall latent directions under distri-
butions p and g), and the modelis sufficiently parameterized tofit the
data, we will also obtain consistency up to alinear transformation. See
Supplementary Note 2 for a full formal discussion and proof.

For the second case, additional assumptions are required regarding
the exact formof data-generating distributions. Within the scope of this
work we consider ground truth latents distributed onthe hypersphere
or Euclidean space. The metric then needs to match assumptions about
the variation of ground truth latents over time. In discovery-driven
CEBRA, using the dot product as the similarity measure then encodes
the assumption that latents vary according to a von Mises-Fisher
distribution whereas the (negative) mean squared error encodes an
assumption that latents vary according to anormal distribution. More
broadly, if we assume that the latents have auniform marginal distribu-
tion (which can be ensured by designing unbiased experiments), the
similarity measure should be chosen as the log-likelihood of conditional
distribution over time. In this case, CEBRA identifies the latents up to
an affine transformation (in the most general case).

This resultalso explains the empirically high performance of CEBRA
for decoding applications: if trained for decoding (using the variable
to decode for informing the conditional distribution), it is trivial to
select matching conditional distributions because both quantities
are directly selected by the user. CEBRA then ‘identifies’ the context
variable up to an affine transformation.

For the third case, we are interested in hypothesis-testing capabili-
ties. We can show that if a mapping exists between the context vari-
able and the signal space, CEBRA will recover this relationship and
yield a meaningful embedding, which is also decodable. However, if
such a mapping does not exist we can show that CEBRA will not learn
astructured embedding.

CEBRA models

We chose X = Yasthe neural signal, with varying levels of recorded neu-
rons and channels based on the dataset. We used three types of encoder
model based on the required receptive field: a receptive field of one
sample was used for the synthetic dataset experiments (Fig.1b) and a
receptive field of ten samples in all other experiments (rat, monkey,
mouse) except for the Neuropixels dataset, in which a receptive field
of 40 samples was used due to the fourfold higher sampling rate of
the dataset.

Allfeature encoders were parameterized by the number of neurons
(input dimension), a hidden dimension used to control model size
and capacity, as well as by their output (embedding) dimension. For
the model with the receptive field of one, a four-layer MLP was used.
The first and second layers map their respective inputs to the hidden
dimension whereas the third introduces a bottleneck and maps to
halfthe hidden dimension. The final layer maps to the requested out-
put dimension. For the model with a receptive field of ten, a convolu-
tional network with five time-convolutional layers was used. The first
layer had akernel size of two, and the next three had a kernel size of
three and used skip connections. The final layer had a kernel size of
three and mapped hidden dimensions to the output dimension. For
the model with receptive field 40, we first preprocessed the signal by
concatenating a2x downsampled version of the signal with alearnable
downsample operation implemented as a convolutional layer with
kernel size four and stride two, directly followed (without activation
functionbetween) by another convolutional layer with kernel size three
and stride two. After these first layers, the signal was subsampled by
afactor of four. Afterwards, similar to the receptive field ten model,
we applied three layers with kernel size three and skip connections
and afinal layer with kernel size three. In all models, Gaussian error
linear unit activation functions® were applied after each layer except
the last. The feature vector was normalized after the last layer unless
amean squared error-based similarity metric was used (as shown in
Extended Data Fig. 8).

Our implementation of the InfoNCE criterion received a minibatch
(or the full dataset) of size n x d for each of the reference, positive and
negative samples. n dot-product similarities were computed between
reference and positive samples and n x ndot-product similarities were
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computed between reference and negative samples. Similarities were
scaled with the inverse of the temperature parameter 7:

from torch import einsum, logsumexp, no_grad

def info_nce(ref, pos, neg, tau = 1.0):
pos_dist = einsum(“nd,nd->n", ref, pos)/tau
neg_dist = einsum(“nd,md->nm", ref, neg)/tau
with no_grad():
¢, _=neg_dist.max(dim=1)
pos_dist = pos_dist - c.detach()
neg_dist = neg_dist - c.detach()
pos_loss = -pos_dist.mean()
neg_loss = logsumexp(neg_dist, dim =1).mean()
return pos_loss + neg_loss

Alternatively, alearnable temperature can be used. For anumerically
stableimplementation we store the loginverse temperature a = -logr
as a parameter of loss function. At each step we scale the distances in
loss function with min(expa, 1/7,). The additional parameter 7, is
alower bound on the temperature. The inverse temperature used for
scaling the distances in the loss will hence lie in (0, 1/7,;,)-

CEBRA model parameters used. In the main figures we have used the
default parameters (https://cebra.ai/docs/api.html) for fitting CEBRA
unless otherwise stated in the text (such as dimension, which varied
andisnoted in figure legends), or below:

Synthetic data: model_architecture=‘offsetl-model-mse’, condi-
tional="delta’, delta=0.1, distance=‘euclidean’, batch_size=512, learn-
ing_rate=le-4.

Rat hippocampus neural data: model_architecture=‘offset10-model’,
time_offsets=10, batch_size=512.

Rat behavioural data: model_architecture= ‘offset10-model-mse’,
distance=‘euclidean’, time_offsets=10, batch_size=512.

Primate S1neural data: model_architecture=‘offset10-model’, time_
offsets=10, batch_size=512.

Allen datasets (2P): model_architecture=‘offset10-model’, time_off-
sets=10, batch_size=512.

Allen datasets (NP): model_architecture= ‘offset40-model-4x-
subsample’, time_offsets=10, batch_size=512.

CEBRA API and example usage. The Python implementation of
CEBRA iswrittenin PyTorch® and NumPy*¢ and provides an application
programminginterface (API) that is fully compatible with scikit-learn¥,
a package commonly used for machine learning. This allows the use
of scikit-learn tools for hyperparameter selection and downstream
processing of the embeddings—for example, decoding. CEBRA canbe
used asadropinreplacementin existing data pipelines for algorithms
suchast-SNE, UMAP, PCA or FastICA. Both CPU and GPU implementa-
tions are available.

Usingthe previously introduced notations, suppose we have a data-
set containing signals s,, continuous context variables c,and discrete
context variables k,for all time steps ¢,

import numpy as np

N =500

s = np.zeros((N, 55), dtype = float)
k = np.zeros((N,), dtype =int)

c =np.zeros((N, 10), dtype = float)

along with a second session of data,

s2 =np.zeros((N, 75), dtype = float)
c2 = np.zeros((N, 10), dtype = float)
assert c2.shape[1] == c.shape[1]:

note thatboththe number of samples and the dimensionins’does not
need to matchs. Session alignment leverages the fact that the second

dimensions of cand ¢’ match. With this datasetin place, different vari-
ants of CEBRA can be applied as follows:

import cebra

model = cebra.CEBRA
(output_dimension=8,
num_hidden_units=32,
batch_size=1024,
learning_rate=3e-4,
max_iterations=1000)

The training mode to use is determined automatically based on what
combination of datais passed to the algorithm:

# time contrastive learning

model.fit(s)

# discrete behaviour contrastive learning
model.fit(s, k)

# continuous behaviour contrastive learning
model.fit(s, c)

# mixed behaviour contrastive learning
model.fit(s, c, k)

# multi-session training

model.fit([s, s2], [c, c2])

# adapt to new session

model.fit(s, c)

model.fit(s2, c2, adapt = True)

Because CEBRA is a parametric method training a neural network
internally, it is possible to embed new data points after fitting the
model:

s_test = np.zeros((N, 55), dtype=float)
# obtain and plot embedding

z = model.transform(s_test)
plt.scatter(z[:, 0], z[:, 1])

plt.show()

Besides this simple-to-use API for end users, our implementation
of CEBRA is a modular software library that includes a plugin system,
allowing more advanced users to readily add additional model imple-
mentations, similarity functions, datasets and dataloaders and distri-
butions for sampling positive and negative pairs.

Consistency of embeddings across runs, subjects, sessions,
recording modalities and areas

Tomeasure the consistency of the embeddings we used the R? score of
linear regression (including an intercept) between embeddings from
different subjects (or sessions). Secondly, pi-VAE, which we bench-
marked and improved (Extended Data Fig. 1), demonstrated a theo-
retical guarantee thatit canreconstruct the true latent space up toan
affine transformation. Across runs, we measured the R?score of linear
regression between embeddings across ten runs of the algorithms,
yielding 90 comparisons. These runs were done with the same hyper-
parameters, model and training setup.

For the rat hippocampus data, the numbers of neurons recorded
were different across subjects. The behaviour setting was the same:
the rats moved along a 1.6-meter-long track and, for analysis, behav-
iour data were binned into 100 bins of equal size for each direction
(leftwards, rightwards). We computed averaged feature vectors for
each bin by averaging all normalized CEBRA embeddings for a given
binand renormalized the average to lie on the hypersphere.Ifabin did
not containanysample, it was filled by samples from the two adjacent
bins. CEBRA was trained with latent dimension three (the minimum)
such that it was constrained to lie only on a two-sphere (making this
3D’ space equivalent toa2D Euclidean space). All other methods were
trained with two latent dimensions in Euclidean space. Note thatn +1
dimensions of CEBRA are equivalent to n dimensions of other methods
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that we compared, because the feature space of CEBRA is normalized
(that s, the feature vectors are normalized to have unit length).

For Allen visual datain whichthe number of behavioural datapointsis
the same across different sessions (that is, fixed length of video stimuli),
wedirectly computed the R?score of linear regression between embed-
dings from different sessions and modalities. We surveyed three, four,
eight, 32, 64 and 128 latent dimensions with CEBRA.

To compare the consistency of embeddings between or within the
areas considered, we computed intra- and interarea consistency within
the same recording modality (2P or NP). Within the same modality we
sampled 400 neurons from each area. We trained one CEBRA model
perareaand computed linear consistency between all pairs of embed-
dings. Forintra-area comparison we sampled an additional 400 disjoint
neurons. For eachareawe trained two CEBRA models on these two sets
of neurons and computed their linear consistency. We repeated this
process three times.

For comparisons across modalities (2P and NP) we sampled 400 neu-
rons from each modality (which are disjoint, as above, because one set
was sampled from 2P recordings and the other from NP recordings).
We trained a multi-session CEBRA model with one encoder for 2P and
one for NP in the same embedding space. For intra-area comparison
we computed linear consistency between NP and 2P decoders from
the same area. For interarea comparison we computed linear consist-
ency between the NP encoder from one area and the 2P encoder from
another and again considered all combinations of areas. We repeated
this process three times.

For comparison of single- and multi-session training (Extended Data
Fig. 7) we computed embeddings using encoder models with eight,
16, ...,128 hidden units to vary the model size, and benchmarked eight,
16, ...,128 latent dimensions. Hyperparameters, except for number of
optimization steps, were selected according to either validation set
decoding R?(rat) or accuracy (Allen). Consistency was reported as the
pointin training at which position decoding error was less than 7 cm
for the first ratin the hippocampus dataset, and a decoding accuracy
of 60% in the Allen dataset. For single-session training, four embed-
dings were trained independently on each individual animal whereas
for multi-session training the embeddings were trained jointly on all
sessions. For multi-session training, the same number of samples was
drawn fromeachsession tolearn anembeddinginvariant to the session
ID. The consistency versus decoding error trade-off (Extended Data
Fig.7c) wasreported as the average consistency across all 12 compari-
sons (Extended Data Fig. 7b) versus average decoding performance
across all rats and data splits.

Model comparisons

pi-VAE parameter selection and modifications to pi-VAE. Because
the originalimplementation of pi-VAE used a single time bin spiking
rate as an input, we therefore modified their code to allow for larger
time bin inputs and found that time window input with a receptive
field of ten time bins (250 ms) gave higher consistency across sub-
jects and better preserved the qualitative structure of the embed-
ding (thereby outperforming the results presented by Zhou and Wei;
Extended Data Fig. 1). To do this we used the same encoder neural
network architecture as that for CEBRA and modified the decoder
to a 2D output (we call our modified version conv-pi-VAE). Note, we
used this modified pi-VAE for all experiments except for the synthetic
setting, for which there is no time dimension and thus the original
implementation is sufficient.

The originalimplementation reported a median absolute error of
12 cmforrat1(theindividual considered mostinthat work), and our
implementation of time-windowed input with ten bins resulted in a
median absolute error of 11 cm (Fig. 2). For hyperparameters we tested
differentepochs between 600 (the published value used) and 1,000,
and learning rate between 1.0 x 10 and 5.0 x 10™* via a grid search.
We fixed hyperparameters as those that gave the highest consistency

across subjects, which were training epochs of 1,000 and learning rate
2.5x107*. All other hyperparameters were retained as in the original
implementation®. Note that the original paper demonstrated that
pi-VAE is fairly robust across different hyperparameters. For decod-
ing (Fig. 2) we considered both a simple kNN decoder (that we use
for CEBRA) and the computationally more expensive Monte Carlo
sampling method originally proposed for pi-VAE®. Our implementa-
tion of conv-pi-VAE can be found at https://github.com/AdaptiveMo-
torControlLab/CEBRA.

autoLFADS parameter selection. AutoLFADS® includes a hyperpa-
rameter selection and tuning protocol, which we used, and we also
used the original implementation (https://github.com/snel-repo/
autolfads-tf2/, https://github.com/neurallatents/nlb_tools/tree/
main/examples/baselines/autolfads). For the rat hippocampus
dataset we chopped the continuous spiking rate (25 ms bin size) into
250-ms-long segments with 225 ms overlap between segments to
match the training setup for CEBRA, UMAP, t-SNE and pi-VAE. We used
population-based training (PBT) for hyperparameter searches and
constrained the search range to default values given in the original
script (initial learning rate between 1.0 x 10° and 5.0 x 1073, dropout
rate 0-0.6, coordinated dropout rate 0.01-0.70, L2 generator weight
between1.0 x10*and 1.0, L2 controller weight between 1.0 x 10™
and 1.0, KL controller weight between 1.0 x 10°and 1.0 x 10™*and KL
initial condition weight between 1.0 x 10°and 1.0 x 10°%). The negative
log-likelihood metric was used to select the best hyperparameters.
Each generation of PBT consisted of 25 training epochs and we trained
for amaximum of 5,000 epochs of batch size 100 while executing
early stopping after awaiting 50 epochs. The PBT search was done
using 20 parallel workers on eachrat.

UMAP parameter selection. For UMAPY, following the parameter
guide (umap-learn.readthedocs.io/), we focused on tuning the num-
ber of neighbours (n_neighbors) and minimum distance (min_dist).
The n_components parameter was fixed to 2 and we used a cosine
metric to make a fair comparison with CEBRA, which also used the
cosine distance metric for learning. We performed a grid search with
100 total hyperparameter valuesin the range [2,200] for n_neighbors
and in the range [0.0001, 0.99] for min_dist. The highest consist-
ency across runs in the rat hippocampus dataset was achieved with
min_dist of 0.0001 and n_neighbors of 24. For the other datasets in
Extended Data Fig. 3 we used the default value of n_neighbors as 15
and min_distas 0.1.

t-SNE parameter selection. For t-SNE? we used the implementation
in openTSNE®®. We performed a sweep on perplexityintherange[5,50]
and early_exaggeration in the range [12, 32] following the parameter
guide, while fixing n_components as 2 and used a cosine metric for
fair comparison with UMAP and CEBRA. We used PCA initialization
to improve the run consistency of t-SNE*. The highest consistency
across runsintherat hippocampus dataset was achieved with perplex-
ity of ten and early_exaggeration of 16.44. For the other datasets in
Extended DataFig. 3 we used the default value for perplexity of 30 and
for early_exaggeration of 12.

Decoding analysis
We primarily used asimple kNN algorithm, anonparametric supervised
learning method, as adecoding method for CEBRA. We used theimple-
mentation in scikit-learn””. We used a kNN regressor for continuous
value regression and a kNN classifier for discrete label classification.
Forembeddings obtained with cosine metrics we used cosine distance
metrics for kNN, and Euclidean distance metrics for those obtainedin
Euclidean space.

For the rat hippocampus data a kNN regressor, as implemented
in scikit-learn*’, was used to decode position and a kNN classifier
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to decode direction. The number of neighbours was searched over
therange[l, 4,9, 16, 25] and we used the cosine distance metric. We
used the R? score of predicted position and direction vector on the
validation set as ametric to choose the best n_neighbours parameter.
We report the median absolute error for positional decoding on the
test set. For pi-VAE, we additionally evaluated decoding quality using
the originally proposed decoding method based on Monte Carlo
sampling, with the settings from the original article’. For autoLFADS,
use of their default Ridge regression decoder® performed worse than
our kNN decoder, which is why we reported all results for the KNN
decoder. Note that UMAP, t-SNE and CEBRA-Time were trained using
the full dataset without label information when learning the embed-
ding, and we used the above split only for training and cross-validation
of the decoder.

For direction decoding within the monkey dataset we used a Ridge
classifier’ as a baseline. The regularization hyperparameter was
searched over [107%,10%]. For CEBRA we used a kNN classifier for decod-
ing direction with ksearched over the range[1,2500]. For conv-pi-VAE
we searched for the best learning rate over [1.0 x1075,1.0 x 107]. For
position decoding we used Lasso” as a baseline. The regularization
hyperparameter was searched over [107%,10?]. For conv-pi-VAE we used
600 epochs and searched for the best learning rates over [5 x 107,
2.5x107,0.125 %107, 5x10%] via a grid of (x,y) space in 1 cm bins for
each axis as the sampling process for decoding. For CEBRA we used
kNN regression, and the number of neighbours k was again searched
over [1,2500].

For the Allen Institute datasets we performed decoding (frame
number or scene classification) for each frame from Video 1. Here
we used a kNN classifier” with a population vector kNN as a baseline,
similar to the decoding of orientation grating performed inref. 46. For
CEBRA we used the same kNN classifier method as on CEBRA features.
Inboth cases the number of neighbours, k, was searched over arange
[1,100] in an exponential fashion. We used neural data recorded dur-
ing the first eight repeats as the train set, the ninth repeat for valida-
tion in choosing the hyperparameter and the last repeat as the test
set toreport decoding accuracy. We also used a Gaussian naive Bayes
decoder® to test linear decoding from the CEBRA model and neural
population vector. Here we assumed uniform priors over frame number
and searched over the range [107°,10%] in an exponential manner for
the var smoothing hyperparameter.

For layer-specific decoding we used data from excitatory neuronsin
area VISp:layers 2/3 [Emx1-IRES-Cre, Slc17a7-IRES2-Cre]; layer 4 [Cux2-
CreERT2, Rorb-IRES2-Cre, Scnnla-Tg3-Cre]; and layers 5/6 [Nr5al-Cre,
Rbp4-Cre_KL100, Fezf2-CreER, TIx3-Cre_PL56, Ntrsrl-cre].

Neural Latents Benchmark. We tested CEBRA on the mc-maze20 ms
task from the Neural Latents Benchmark? (https://eval.ai/web/chal-
lenges/challenge-page/1256/leaderboard/3183). We trained the off-
setl0-modelwith 48 output dimensions and [128,256, 512] hidden units,
aspresented throughout the paper. We trained, in total, 48 models by
additionally varying the temperaturein [0.0001, 0.004] and time off-
sets from {1, 2}. We performed smoothing of input neural datausing a
Gaussiankernel with 50 mss.d. Lastly, we took 45 embeddings from the
trained models picked by the validation score, aligned the embeddings
(using the Procrustes method®°) and averaged them.

Topological analysis

For the persistent cohomology analysis we utilized ripser.py®. For
the hippocampus dataset we used 1,000 randomly sampled points
from CEBRA-Behaviour trained with temperature 1, time offset 10 and
minibatch size 512 for 10,000 training steps on the full dataset and
then analysed up to 2D cohomology. Maximum distance considered
for filtration was set to infinity. To determine the number of cocycles
in each cohomology dimension with a significant lifespan we trained
500 CEBRA embeddings with shuffled labels, similar to the approach

takeninref.33. We took the maximum lifespan of each dimensionacross
these 500 runs asathreshold to determine robust Betti numbers, then
surveyed the Bettinumbers of CEBRA embeddings acrossthree, eight,
16,32 and 64 latent dimensions.

Next we used DREiMac®* to obtain topology-preserving circular coor-
dinates (radial angle) of the first cocycle (H') from the persistent coho-
mology analysis. Similar to above, we used 1,000 randomly sampled
points from the CEBRA-Behaviour models of embedding dimensions
3,8,16,32and 64.

Behaviour embeddings for video datasets
High-dimensional inputs, such as videos, need further preprocessing
for effective use with CEBRA. First we used the recently presented DINO
model*® to embed video frames into a 768D feature space. Specifi-
cally we used the pretrained ViT/8 vision transformer model, which
was trained by a self-supervised learning objective on the ImageNet
database. This modelis particularly well suited for video analysis and
among the state-of-the-art models available for embedding natural
images into aspace appropriate forakNN search*®, a desired property
when making the dataset compatible with CEBRA. We obtained anor-
malized feature vector for each video frame, which was then used as
the continuous behaviour variable for all further CEBRA experiments.
For scene labels, three individuals labelled each video frame using
eight candidate descriptive labels allowing multilabel classes. We took
the majority vote of these three individuals to determine the label of
each frame. Inthe case of multilabels we considered this asanew class
label. The above procedure resulted in ten classes of frame annotation.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Hippocampus dataset: https://crcns.org/data-sets/hc/hc-11/
about-hc-11,and we used the preprocessing script from https://github.
com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py. Primate
dataset: https://gui.dandiarchive.org/#/dandiset/000127. Allen Insti-
tute dataset: Neuropixels data are available at https://allensdk.readthe-
docs.io/en/latest/visual_coding_neuropixels.html. The preprocessed
2P recordings are available at https://github.com/zivlab/visual_drift/
tree/main/data.

Code availability

Code: https://github.com/AdaptiveMotorControlLab/CEBRA. Code
used to reproduce the figures: https://github.com/AdaptiveMotor-
ControlLab/CEBRA-figures.
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Extended DataFig.1|Overview of datasets, synthetic data, & original
pi-VAEimplementation vs. modified conv-pi-VAE. a, We generated synthetic
datasets similar to Fig. 1b with additional variations in the noise distributionsin
the generative process. We benchmarked the reconstructionscore of the
truelatent using CEBRA and pi-VAE (n =100 seeds) on the generated synthetic
datasets. CEBRA showed higherand less variable reconstructionscores

than pi-VAE in all noise types (one-sided Welch’s t-test, corrected using the
Holm-Bonferronimethod, t and p-valuesindicated on the plot). b, Example
visualization of the reconstructed latents from CEBRA and pi-VAE on different
synthetic dataset types.c, We benchmarked and demonstrate the abilities of

without labels

wi/test time labels without labels witest time labels without labels

e

o

iy
¥ o

P SRR

[p— g

S8 2 8 E(%)

CEBRA onfour datasets. Rat-based electrophysiology data*, where the animal
transverseal.6 meter linear track “leftwards” or “rightwards”. Two mouse-based
datasets: one 2-photon calciumimaging passively viewing dataset*®, and one
with the same stimulus but recorded with Neuropixels*’. Amonkey-based
electrophysiology dataset of centre out reaching from Chowdhury etal.>, and
processedtotrial dataasinref.52.d, Conv-pi-VAE showed improved performance,
bothwithlabels (Wilcoxon signed-rank test, P=0.0341) and without labels
Wilcoxon signed-rank test, P= 0.0005). Example runs/embeddings the
consistency across rats, with e, consistency across rats, from target to source,
ascomputedinFig.1. Cartoon animals are adapted from scidraw.io.
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a Performance on additional animals
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Extended DataFig.3 | CEBRA produced consistent, highly decodable
embeddings. a, Additional rat data shown for all algorithms we benchmarked
(see Methods). For CEBRA-Behaviour, we used temperature 1, time offset 10,
batchsize 512 and 10k training steps. For CEBRA-Time, we used temperature 2.25,
time offset 10, batch size 512 and 4k training steps. For UMAP, we used the cosine

metricand min_dist of 0.99 and n_neighbors of 31. For t-SNE we used cosine
metricand perplexity of 29. For conv-pi-VAE, we trained 1000 epochs with
learning rate 2.5x107*. For autoLFADS we used the in-built ray-tune framework
for finding optimal hyperparameters. CEBRA was trained with output latent 3D
(the minimum) and all other methods were trained with a 2D latent.
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ordirection, paired with positioninformationis needed for maximumstructure
inthe embedding (highlighted, coloured), yielding lowest InfoNCE error.

d, Using an eight-dimensional CEBRA embedding did not qualitatively alter the
results. We againreport the first two principal components as well as InfoNCE
training error upon convergence, and find non-trivial embeddings with lowest
training error for combinations of direction/velocity and position. e, The
InfoNCE metric can serve as the goodness of fit metric, both for hypothesis
testing and identifying decodable embeddings. We trained CEBRA in discovery-
driven mode with 32 latent dimensions. We compared the InfoNCE loss

(left, middle) between various hypotheses. Low InfoNCE was correlated with
low decodingerror (right).
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b, Thetopology preserving circular coordinates using the first co-cycle from
persistent cohomology analysis on the CEBRA embedding of each dimensionis
shown (see Methods). The coloursindicate position and direction of the rat at
the corresponding CEBRA embedding points. ¢, Theradial angle of each
embedding point obtained from b and the corresponding positionand
directionof therat.
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Extended DataFig.7 | Multi-session training and rapid decoding.

a, Top: hippocampus dataset, single animal vs. multi-animal training shows
anincreasein consistency across animals. Bottom: same for Allen dataset,

4 mice.b, Consistency matrix single vs. multi-session training for hippocampus
(32D embedding) and Allen data (128D embedding) respectively. Consistency
isreported at the pointin training where the average position decodingerroris
lessthan14 cm (correspondsto 7 cmerror forrat1),and adecodingaccuracy
of 60% onthe Allen dataset. c, Comparison of decoding metrics for single or
multi-session training at various consistency levels (averaged across all 12
comparisons). Models were trained for 5,000 (single) or 10,000 (multi-session)
stepswitha0.003 learningrate; batch size was 7,200 samples per session.
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Multi-session training requires longer training or higher learning rates to
obtainthesameaccuracy due to the 4-fold larger batchsize, but converges to
same decodingaccuracy. We plot points atintervals of 500 steps (n =10 seeds);
training progresses from lower right to upper left corner within both plots.
d, We demonstrate that we could also adapt to an unseen dataset; here, 3rats
were used for pretraining, and rat 4 was used as aheld-out test. The grey lines
indicate models trained from scratch (randominitialization). We also tested
fine-tuning only the inputembedding (first layer) or the fullmodel, asthe
diagram, left, describes. We measured the average time (mean +s.d.) to adapt
100 steps (0.65+0.13 s) and 500 steps (3.07 £ 0.61s) on40 repeated
experiments.
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Extended DataFig. 8| Somatosensory cortex decoding from primate
recordings. a, We compare CEBRA-Behaviour with the cosine similarity and
embeddings on the sphere reproduced from Fig. 3b (left) against CEBRA-
Behaviour trained with the MSE loss and unnormalized embeddings. The
embeddings of trials (n =364) of each direction were post-hoc averaged.

b, CEBRA-Behaviour trained with x,y position of the hand. Left panelis colour-
coded tochangesinxpositionand right panelis color-coded tochangesiny
position.c, CEBRA-Time without any external auxiliary variables. Asinb, left
andrightare colour-coded toxand yposition, respectively.d, Decoding
performance oftarget direction using CEBRA-Behaviour, conv-pi-VAEand a

R? [%]

linear classifier. CEBRA-Behaviour shows significantly higher decoding
performance than the linear classifier (one-way ANOVA, F(2,75) =3.37,P< 0.05
with Post Hoc Tukey significant difference P< 0.05). e, Loss (InfoNCE) vs.
trainingiteration for CEBRA-Behaviour with position, direction, active or
passive, and position+direction labels (and shuffled labels) for all trials (left) or
only active trials (right), or active trials with aMSE loss. f, Additional decoding
performance results on position and direction-trained CEBRA models with all
trial types. Foreach case, we trained and evaluated 5seeds represented by black
dotsand the orangeline represents the median. g, Results on the mc-maze

20 msbenchmark.
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Extended DataFig.9 | CEBRA produces consistent, highly decodable
embeddings. a, Additional 4 sessions with the most neurons in the Allen visual
dataset calciumrecording shown for all algorithms we benchmarked (see
Methods). For CEBRA-Behaviour and CEBRA-Time, we used 3D, temperaturel,
time offset 10, batch size 512 and 10k training steps. For UMAP, we used a cosine
metric and n_neighbors15and min_dist 0.1. For t-SNE, we used a cosine metric
and perplexity 30.For conv-pi-VAE, we trained with 600 epochs, abatch size of

Mouse 3 Mouse 4

seconds

200andalearningrate 5x10™*. autoLFADS was trained with ray-tune parameter
selectionand theresulting factors were transformed with PCA to generate the
visualization. Allmethods used 10-time-bins input. CEBRA was trained with
3Dlatentand all other methods were obtained with an equivalent 2D latent
dimension. Toalign for visualization, we aligned to mouse 1, except for conv-pi-
VAE without labels and for autoLFADS, which visually looked best when aligned
tomouse4.
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10|Spikes and calciumsignalling reveal similar

embeddings. a, Consistency between the single and jointly trained embeddings.

b, Consistency ofembeddings from two recording modalities, whenasingle
modality was trained independently and/or jointly trained. CEBRA can find
‘common latents’ even without joint training. Datais also presentedin Fig.4e, h,
buthereplotted together to showimprovementwithjointtraining; foraandb,
for each neuron number we have n = 5shuffles, mean +s.e.m. c-f, Consistency
across modalities and areas for CEBRA-Behaviour and -Time (as computedin
Fig.4i-k). The purple dotsindicate mean of intra-V1scores andinter-Vlscores
(inter-V1vsintra-Vlone-sided Welch’s t-test; 2P (Behaviour): £(10.6) =1.52,
P=0.081,2P (Time): t(44.3) =4.26,P=0.0005, NP (Behaviour): t(11.6) =2.83,
P=0.0085,NP (Time): £(8.9) =15.51,P<0.00001) g, CEBRA+ kNN decoding
performance (see Methods) of CEBRA embeddings of different output
embedding dimensions, from calcium (2P) data or Neuropixels (NP), as denoted;
foreach neuron number we have n=5shuffles, mean +s.e.m.h,Decoding
accuracy measured by considering predicted frame being within1s difference to

true frame using CEBRA (2P only), jointly trained (2P+NP), or abaseline
population vector kNN decoder (using time window 33 ms (single frame), or 330
ms (10 frame receptive field)); for each neuron number we have n = 5shuffles,
mean ts.e.m. (i): Single frame performance and quantification using CEBRA1
framereceptive field (NP data), or baseline models, n =900 video frames.

Jj, CEBRA-Behaviour used the DINO features as auxiliary labels and DINO-shuffled
used the shuffled DINO features. We shuffled the frame order of DINO features
withinarepeat. Same shuffled order was use for all repeats. Colour code is frame
number from the movie. The predictionis considered astrueifthe predicted
frameiswithinlsfromthetrue frame,andtheaccuracy (%) is noted nexttothe
embedding. For mouse ID1-4:337,353,397,475 neurons were recorded,
respectively. k, Decoding performance from 2P data from different visual
cortical areas from differentlayers using al0-frame-window, 128D CEBRA-
Behaviour model using DINO features; foreach neuronnumberwe haven=35
shuffles, meants.e.m.
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