
Nature  |  Vol 614  |  23 February 2023  |  635
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CAR immune cells: design principles, 
resistance and the next generation

Louai Labanieh1,2,3 & Crystal L. Mackall2,3,4,5 ✉

The remarkable clinical activity of chimeric antigen receptor (CAR) therapies in B cell 
and plasma cell malignancies has validated the use of this therapeutic class for liquid 
cancers, but resistance and limited access remain as barriers to broader application. 
Here we review the immunobiology and design principles of current prototype CARs 
and present emerging platforms that are anticipated to drive future clinical advances. 
The field is witnessing a rapid expansion of next-generation CAR immune cell 
technologies designed to enhance efficacy, safety and access. Substantial progress 
has been made in augmenting immune cell fitness, activating endogenous immunity, 
arming cells to resist suppression via the tumour microenvironment and developing 
approaches to modulate antigen density thresholds. Increasingly sophisticated 
multispecific, logic-gated and regulatable CARs display the potential to overcome 
resistance and increase safety. Early signs of progress with stealth, virus-free and 
in vivo gene delivery platforms provide potential paths for reduced costs and 
increased access of cell therapies in the future. The continuing clinical success of  
CAR T cells in liquid cancers is driving the development of increasingly sophisticated 
immune cell therapies that are poised to translate to treatments for solid cancers and 
non-malignant diseases in the coming years.

CARs are synthetic modular proteins that redirect immune cell reactiv-
ity toward a target of interest. This versatile platform has demonstrated 
substantial clinical effects in the treatment of B cell and plasma cell 
malignancies, and the potential to expand its application is driving 
rapid technological developments and large investments from aca-
demia and the biopharmaceutical industry. Six CAR T cell products 
have been approved by the US Food and Drug Administration (FDA) 
for 12 indications, including large B cell lymphoma1–4 (LBCL), B cell 
acute lymphoblastic leukaemia5–7 (B-ALL), mantle cell lymphoma8 and 
follicular lymphoma9. In pivotal trials, CD19-CAR therapy outperformed 
standard of care (SOC) as second line therapy for LBCL10,11, and was 
highly effective as a first line therapy12, paving the way for its applica-
tion in earlier-stage disease. The generalizability of the CAR platform 
beyond CD19 targeting is now established, with two BCMA-CAR T cell 
therapies (BCMA is also known as TNF receptor superfamily mem-
ber 17) having been approved by the FDA for treatment of multiple 
myeloma13,14, and high response rates with CD22-CARs in B-ALL15,16 
and LBCL17, CD30-CARs in Hodgkin lymphoma18, CD7-CARs in T cell 
acute lymphoblastic leukaemia19–22 (T-ALL), CD20-CARs in LBCL23, and 
GPRC5D-CARs in multiple myeloma24 (Table 1). Standardized toxicity 
grading and management has resulted in low treatment-related mor-
tality with current commercial CAR T cells1–11.

Despite this progress, many challenges remain. Fewer than 50% of 
patients treated with commercial CAR T cells for B cell malignancies 
experience durable disease control1–7. CAR T cells have shown signs 
of activity in solid tumours25–29, but high rates of consistent durable 

responses have not been demonstrated (Table 1). Autologous cell manu-
facturing is labour-intensive and expensive and commercial scaling is 
not yet adequate to meet clinical needs. This Perspective synthesizes 
current understanding of the immunobiology of CAR T cells, emphasiz-
ing resistance mechanisms in cancer, design principles and emerging 
approaches to enhance efficacy. We focus primarily on developing CAR 
T cells for cancer treatment, but many of the principles are relevant to 
other immune cell therapies for cancer and to nascent efforts to develop 
cell therapies for non-malignant diseases. Owing to space constraints, 
we focus primarily on the most recent literature and on the emerging 
efforts to enhance efficacy, and refer the reader to recent authorita-
tive reports for additional information on CAR-related toxicities30 and 
clinical outcomes31.

CAR T immunobiology and mechanisms of resistance
Sustained broad-based advances by many groups focused on develop-
ing immune cell therapies for cancer have been essential for the success 
of CAR T therapy (Fig. 1). CARs were invented by Eshhar and colleagues 
with the goal of harnessing the expansion, killing and persistence of 
natural T cells while overcoming major histocompatibility complex 
(MHC) restriction of the T cell receptor (TCR), to enable broader thera-
peutic applicability32,33. After iterative optimization by many groups34,35, 
a receptor incorporating a scFv as the antigen-binding domain, a hinge/
transmembrane domain, TCRζ and a CD28 or 4-1BB costimulatory 
endodomain emerged as the CAR prototype (Fig. 2). This architecture 
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Table 1 | Targets of CAR T cell therapies with clinical evidence of efficacy

Target Disease Response ratea Survival Comments Date of FDA 
approval

Refs.

Haematological malignancies

CD19 B-ALL CR or CRi: 81%, EFS: 50%
OS: 76% at 12 months

Tis-cel approved for R/R B-ALL  
(≤25 yr of age)

Aug 2017 5

CD19 LBCL CR: 58%, PFS: 44% at 12 months  
OS: 52% at 18 months

Axi-cel approved as 3rd line treatment 
for LBCL (>18 yr of age)

Oct 2017 3

CD19 LBCL CR: 40% RFS: 65%  
OS: 49% at 12 months

Tis-cel approved as 3rd line treatment 
for LBCL (>18 yr of age)

May 2018 4

CD19 MCL CR: 67% PFS: 61%  
OS: 83% at 12 months

Brex-cel approved for R/R MCL  
(>18 yr of age)

July 2020 8

CD19 FL CR: 74% PFS: 65%  
OS: 87% at 18 months

Axi-cel approved as 3rd line treatment 
for R/R FL (>18 yr of age)

Mar 2021 222

CD19 LBCL CR: 53% PFS: 44%  
OS: 58% at 12 months

Liso-cel approved for 3rd line LBCL 
(>18 yr of age)

Feb 2021 1

BCMA MM CR: 33% Median PFS: 8.8 months  
OS: 78% at 12 months

Ide-cel approved for 5th line treatment 
for MM (>18 yr of age)

Mar 2021 13

CD19 B-ALL CR: 56% RFS: 58% at 6 months  
OS: 71% at 12 months

Brex-cel approved for R/R B-ALL  
(>18 yr of age)

Oct 2021 223

BCMA MM sCR: 67% PFS: 77%  
OS: 89% at 12months

Cilta-cel approved for 5th line MM 
(>18 yr of age)

Feb 2022 14

CD19 FL CR: 69% PFS: 67% at 12 months Tis-cel approved for 3rd line treatment 
of FL (>18 yr of age)

May 2022 9

CD19 LBCL (Axi-cel vs SOC) 
CR: 65% vs 32%

(Axi-cel vs SOC)  
EFS: 41% vs 16%  
OS: 61% vs 52% at 24 months

Axi-cel approved as 2nd line treatment 
for LBCL (>18 yr of age)

April 2022 10

CD19 LBCL (Liso-cel vs SOC)  
CR: 66% vs 39%

(Liso-cel vs SOC)  
EFS: 45% vs 24%  
OS: 79% vs 64% at 12 months

Liso-cel approved as 2nd line treatment 
for LBCL (>18 yr of age)

June 2022 11

CD19 LBCL CR: 78% PFS: 75%  
OS: 91% at 12 months

Front line therapy for high-risk LBCL 12

CD22 B-ALL CR: 70% Median RFS: 6 months 
Median OS: 13.4 months

CD19-CAR T cell therapy had failed in 
88% of these patients

15,16

CD22 LBCL ORR: 86% 
CR: 67%

Median PFS: not reached CD19-CAR T cell therapy had failed in 
95% of these patients

17,224

CD30 HL CR: 59% PFS: 36%  
OS: 94% at 12 months

Greater CD30 CAR T persistence and 
higher PFS with fludarabine-based LD

18

CD7 T-ALL CR: 90% Not available Allogeneic donor-derived CD7-CAR 
T cells; GVHD grade 1–2 in 60% of 
patients

20

CD7 T-ALL or TLBL CR: 7/8 Not available Autologous CD7-CAR T cells rendered 
fratricide-resistant using a CD7 PEBL

19

CD38 AML CR or CRi: 4/6 50% relapse rate at 6 months Allo-HSCT refractory patient 
population; no off-target effects on 
monocytes or lymphocytes

225

κ light chain NHL, CLL, or 
MM

CR: 2/9 Not available No or limited pre-treatment LD. One CR 
sustained for at least 3 yr

226

CD20 LBCL CR: 54.5% PFS 41.7% at 24 months All patients had prior rituximab; longest 
CR at least 57 months

23

Solid tumours

GD2 NB CR: 27% of patients with 
active disease

Median OS: 31 months 1st generation CAR expressed by 
EBV-reactive T cells; one patient had 
sustained CR for at least 60 months

227

GD2 DMG 9/10 patients with 
radiographic or clinical 
benefit

Not available Initial IV infusion followed by multiple 
ICV infusions; one patient had >95% 
reduction in tumour volume

28,228

HER2 Sarcomas CR: 27% Not available No on-target, off-tumour toxicity 
of HER2-CARs; patient with RMS 
metastatic to bone marrow had a CR for 
>12 months

229

IL-13Rα2 GBM CR: 1/1 Not available CR sustained for 7.5 months with  
16 locoregional administrations over 
220 days

27

Continued
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is utilized by five out of the six FDA-approved agents, with the sixth 
incorporating the same architecture with two nanobody heavy chains 
(Vhh) as the antigen-binding domains14. Antigen engagement of the pro-
totype 1.5–2.2 kilobase (kb) receptor largely replicates antigen specific 
activation and killing mediated by the TCR–CD3 complex in natural 
T cells; however, significant distinctions exist between the biology 
of CAR T cells and natural T cells that provide opportunities and chal-
lenges for application of these therapeutic agents, as discussed below.

Resistance due to antigen modulation
A major distinction between CAR and TCR signalling is that CARs 
require higher antigen density for full T cell activation36–38. Despite 

the higher affinity of single-chain variable fragments (scFvs) com-
pared with TCRs and the generally higher density of CAR expression 
compared with TCR–CD3 complexes36, TCRs induce full activation 
in response to less than 100 peptides per antigen presenting cell39,40, 
whereas CARs require more than 1,000 target molecules per target 
cell15,41–45. The basis for the difference includes diminished proximal 
kinase recruitment by CARs38,44,46,47, a less developed immune syn-
apse46, reduced engagement of co-receptors and greater induction 
of negative downstream regulators36—in part related to tonic signal-
ling, in which CAR aggregation, often driven by the scFv, induces 
antigen-independent activation48. Modifications to the design of CAR 
prototypes can tune the antigen density threshold to some extent, with 

Target Disease Response ratea Survival Comments Date of FDA 
approval

Refs.

EGFR BTC CR: 6% Median PFS: 4 months One out of 17 patients achieved a CR 
for at least 22 months. Manageable 
mucosal toxicities.

230

Mesothelin MPD 11% complete metabolic 
response by PET

OS: 83% at 1 yr  
Median OS: 23.9 months

Regionally delivered intrapleural CAR 
T cell administration plus PD-1 blockade

98

Claudin-18.2 GC or PC ORR: 48.6%  
Disease control rate: 73.0%

Median PFS: 3.7 months  
OS: 81% at 6 months

83% of patients showed tumour 
regression; 11% showed reversible grade 
3/4 gastrointestinal toxicities

29

PSMA MCRPC 5/13 patients had >30% 
reduction in PSA

Median PFS: 4.4 months 
Median OS: 15.9 months

PSMA CAR T cells expressing a 
dominant-negative TGFβRII. 5 out of 13 
patients with high-grade CRS, one fatal

172

Non-malignant disease

CD19 SLE 1/1 clinical remission Not available Rapid decrease of autoantibodies from 
>5,000 U ml−1 to 4 U ml−1

213

aIf fewer than ten patients were treated, absolute response numbers are provided as a fraction; otherwise, they are provided as the percentage response rate. 
Allo-HSCT, allogeneic haematopoietic stem cell transplant; AML, acute myeloid leukaemia; BTC, biliary tract cancer; CLL, chronic lymphocyte leukaemia; CR, complete response; CRi,  
complete response with incomplete haematologic recovery; CRS, cytokine release syndrome; DMG, diffuse midline glioma; EBV, Epstein–Barr virus; EFS, event-free survival; FL, follicular  
lymphoma; GBM, glioblastoma; GC, gastric cancer; GVHD, graft-versus-host disease; HL, Hodgkin lymphoma; ICV, intracerebroventricular; IV, intravenous; LD, lymphodepletion; MCL, mantle 
cell lymphoma; MCRPC, metastatic castration-resistant prostate cancer; MM, multiple myeloma; MPD, malignant pleural disease; NB, neuroblastoma; NHL, non-Hodgkin lymphoma; ORR, 
overall response rate; OS, overall survival; PC, pancreatic cancer; PEBL, protein expression blocker; PET, positron emission tomography; PFS, progression-free survival; PSA, prostate-specific 
antigen; PSMA, prostate-specific membrane antigen; RFS, relapse-free survival; RMS, rhabdomyosarcoma; R/R, relapsed or refractory; sCR, stringent complete response; SLE, systemic lupus 
erythematosus; TLBL, T cell lymphoblastic lymphoma. Axi-cel, axicabtagene ciloleucel; brex-cel, brexucabtagene autoleucel; cilta-cel, ciltacabtagene autoleucel; ide-cel, idecabtagene 
vicleucel; liso-cel, lisocabtagene maraleucel; tis-cel, tisagenlecleucel.

FDA approval of:
• cilta-cel for 5th line 
multiple myeloma
• axi-cel and liso-cel for 
2nd line LBCL 
• tis-cel for R/R 
follicular lymphoma

scFv linked to 
TCRα or TCRβ 
activates T cell 
hybridoma32

Concept phase Prototype iteration Commercialization

1st generation 
CAR prototype 
described33

CD3/CD28 
beads induce 
potent ex vivo 
expansion of 
human T cells232

2nd generation 
CAR prototype 
with CD28 co- 
stimulation 
shows enhanced 
potency34,233

Safety and 
antitumour activity 
of 1st generation 
GD2-CAR T cells 
shown in 
neuroblastoma236

10-yr follow up of 
patients with HIV 
following CD4-TCRζ 
CAR (1st generation 
prototype) reveals 
safety and cell 
persistence77

Biopharma 
invests in CAR 
T cell therapies

Tis-cel approved by FDA for 
children and young adults 
with R/R B-ALL—the 1st cell 
therapy approved for cancer 
treatment and 1st gene 
therapy approved in the USA

Axi-cel 
approved by 
FDA for 3rd line
LBCL

FDA approval of:
• axi-cel for R/R 
follicular lymphoma 
• liso-cel for 3rd line 
LBCL 
• ide-cel for 5th line 
multiple myeloma 
• brex-cel for R/R 
B-ALL in adults

CD8–TCRζ chimeric 
receptor activates 
Jurkat cells231

Lymphopenia elevates
homeostatic cytokines 
and enhances efficacy 
of adoptive T cell 
transfer234,235

CD19.BB.z-CAR 
shows potent activity 
in preclinical 
leukaemia models35

Lymphodepletion 
plus CD19.28z-CAR 
or CD19.BB.z-CAR 
induce potent 
sustained benefit in 
patients with 
refractory B cell 
lymphomas, B-ALL 
and CLL58,238–241

Tis-cel 
approved 
by FDA for 
3rd line 
LBCL

Brex-cel 
approved by 
FDA for R/R 
mantle cell 
lymphoma

GD2-CAR mediates 
benefit in patients with 
diffuse midline glioma28

Significant activity of 
claudin-18-CAR
in gastrointestinal 
carcinomas29

1989

1991

1993 1998 2001–2002

2004 2008

2017

2018

2010–2015

2012 2020

2021

2022

Clinical proof of concept

2009

CD19.BB.z-CAR shows 
enhanced anti-leukemic 
efficacy and prolonged 
survival in mouse 
xenograft models of 
primary human B-ALL237.

Fig. 1 | Timeline of key milestones in CAR T cell development.A timeline of developments in CAR T cell therapies231–241.
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features that modulate signal strength, scFv affinity, CAR expression 
density, hinge/transmembrane architecture and synapse spacing, 
having significant effects44,49–52 (Fig. 2). Because greater signal strength 
lowers the antigen density threshold, features that enhance T cell fit-
ness independently of CAR design also reduce the CAR antigen density 
threshold44,53. These insights are foundational for developing safe and 
effective CAR T cell therapies, since toxicity and efficacy are intimately 
related to the expression characteristics of the targeted antigen. CARs 
targeting molecules that are absent from vital tissues, such as B cell 
lineage antigens, should be engineered for activation at low antigen 
density to diminish the risk of low antigen recurrence, whereas CARs 
targeting molecules that are highly expressed in cancer but with low 
expression in vital tissues should be engineered with higher antigen 
density thresholds to exploit a therapeutic window on the basis of 
differential antigen density49.

Antigen modulation is a major cause of CAR T cell resistance in B cell 
malignancies, and is likely to pose an even greater challenge in solid 
tumours, where most targetable antigens show significant heteroge-
neity54–56. In B-ALL in children and young adults, approximately 50% of 
relapses are associated with CD19 loss5,57,58, and in LBCL, approximately 
30% of relapses are CD19-negative and an additional 30% express CD19 
at levels below the antigen density threshold for commercial CARs45,59. 
The role of antigen modulation in resistance to BCMA-CAR T therapy 
in multiple myeloma is less well defined. Baseline BCMA expression 
levels are heterogeneous among patients and have not been associ-
ated with clinical responses60–62. BCMA loss—associated with genetic 
mutation and deletion—is a rare cause of resistance13,63,64 (less than 5% of 
cases), however, antigen modulation is observed following BCMA-CAR 
treatment61,62. Antigen density can be modulated through a variety 
of mechanisms, including genetic mutation63,65,66, alternative RNA 
splicing65, cell lineage switching67, epigenetic and/or posttranscrip-
tional mechanisms15, trogocytosis50, hyperglycosylation68 and antigen 

shedding69. Downregulation of some targets is amenable to therapeutic 
intervention with small molecules, such as CD22 upregulation by bry-
ostatin70, CD70 upregulation by azacitidine71 and BCMA upregulation 
by γ-secretase inhibitors, which inhibit antigen shedding69,70.

Resistance due to inadequate T cell function
A second major cause of CAR T cell resistance is related to inadequate 
T cell potency, persistence, functional persistence and/or dysfunction, 
and is typically associated with disease recurrence in the absence of 
antigen modulation. Dysfunction often results from T cell exhaustion, 
characterized by global transcriptional and epigenetic reprogramming 
that converges on terminal differentiation53,72. T cells in the apher-
esis and/or manufactured CAR T cell product sometimes manifest 
exhaustion73,74, and high tumour burdens induce exhaustion following  
adoptive transfer. CAR-intrinsic factors also contribute to exhaustion, 
with the costimulatory domain having a major role. CD28-costimulated 
CARs manifest more rapid and greater expansion, secrete more inflam-
matory cytokines, and show limited persistence owing to T cell exhaus-
tion when compared with 4-1BB and first-generation CARs, which in 
some cases, may persist for years5,58,75–77. The pro-exhaustion effect of 
the CD28 costimulatory domain is magnified in CARs with tonic sig-
nalling48,53. The effect of tonic signalling depends on the magnitude of 
the signal and is context-dependent, with some CARs demonstrating 
enhanced function and persistence in the presence of tonic signalling78. 
Tuning down the signalling strength of CD28-based CARs through 
mutations in CD3ζ or CD28 domains can attenuate their propensity for 
exhaustion and improve persistence79,80, as can mutations that interfere 
with downregulation and ubiquitination of 4-1BB-costimulated CARs81. 
Of interest, a recent long-term follow-up study demonstrated that 
long-lived CARs were CD4-positive, raising the prospect that this sub-
set may be less susceptible to exhaustion and thereby exhibit greater 
persistence76,82.

• Af�nity or antigen density 
threshold242

• VH–VL pairing, tonic signalling 
and potency (linker)78

• Epitope proximity52

• Tonic signalling (framework)48,243 

• Immunogenicity140,244

• Homo- or 
hetero-dimerization245

• Association with endogenous
proteins246

• CAR expression level247

• Antigen density threshold and
potency44,49

• Optimal distance for 
synapse formation242

• Dimerization or 
oligomerization103

• Antigen density threshold 
and potency44,49

• Persistence237,248

• Memory formation75

• Metabolic requirements249

• Antigen density threshold 
and potency44,49,75

scFv

Hinge or spacer

Costimulation

Transmembrane

• Turning down signal to avoid
dysfunction79

• Turning up signal for increased
potency44

• Resting T cells by CD3ζ          
inhibition121

CD3ζ

Linker

VLVH

Cell
membrane

FW

CDR

Fig. 2 | CAR structure–function relationships. Prototype CARs comprise a 
target-binding domain such as a scFv, a hinge or spacer domain that projects 
the binder away from the cell surface and provides conformational flexibility,  
a transmembrane domain that anchors the receptor in the cell surface, and 
costimulatory and CD3ζ signalling domains that provide activation signals. 

Small modifications in CAR structure can have profound effects on CAR T cell 
function, including modulation of the antigen density threshold for activation, 
persistence, potency, tonic signalling, CAR expression level and the propensity 
for dimerization237,242–249. CDR, complementarity-determining region; FW, 
framework region.
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The clinical effect of shorter persistence of CD28- versus 
4-1BB-costimulated CARs varies by disease. In LBCL, tumour eradi-
cation occurs rapidly, and CD28 and 4-1BB costimulated CAR T cells 
demonstrate similar efficacies1,3,4,83. By contrast, in B-ALL, persis-
tence of CAR T cells beyond 6 months is associated with increased 
rates of relapse—thus, CD28 costimulated CAR T cells are less effec-
tive unless patients receive a post-CAR bone marrow transplant to 
consolidate remission57,84. In multiple myeloma, functional persis-
tence of anti-BCMA-CAR T cells is associated with a longer duration of 
response13. It remains unclear whether CD28 or 4-1BB costimulation is 
preferred for solid tumours, where both strong signalling strength and 
persistence are desirable. Prototype CARs incorporating both CD28 
and 4-1BB costimulatory domains have not demonstrated superiority, 
leading investigators to integrate novel85,86 or synthetic costimula-
tory domains87 with the goal of endowing maximal signalling power 
alongside durable persistence. Pooled CAR screening has been used 
to identify optimal CAR signalling domains and designs and elucidate 
CAR design principles87–89. Genome-wide CRISPR screens have identi-
fied the CD2–CD58 axis as a mediator of T cell potency90 and IFNγR 

signalling has been demonstrated to be required for productive CAR 
T cell adhesion and cytotoxicity in solid but not liquid tumours91. CAR 
T cell potency is also limited by immunosuppressive molecules (TGFβ, 
IL-10, IL-6 and checkpoint molecules) in the tumour microenviron-
ment (TME), and work is underway to combine CAR T cell therapies 
with immunomodulators designed to activate immunity within the 
TME and/or to arm immune cells to resist specific immunosuppressive 
mediators (Box 1).

Impaired trafficking and locoregional delivery
Impaired trafficking to the tumour site may also limit CAR T cell effi-
cacy, especially in solid tumours. In preclinical models of central nerv-
ous system tumours, intratumoral or intracerebroventricular (ICV) 
administration has improved therapeutic benefit, with an approxi-
mate tenfold lower regional dose being required to achieve the same 
efficacy as intravenous administration92–94. Several clinical trials have 
demonstrated the safety of locoregional delivery of CAR T cells into 
the central nervous system27,28,95 and in a patient with glioblastoma 
multiforme, ICV delivery of IL-13Rα2 CAR T cells induced a complete 

Box 1

Next-generation CAR enhancements
Enhancements in development that are in clinical testing are listed in bold; those at proof-of-concept stage are underlined.

Multispecificity and/or logic gating
OR gates: bivalent45,100,104,105, bicistronic103, two vectors101,102, co-infusion250, higher order251

NOT gates: PD-1179,180, CTLA-4179, TIGIT180, LIR-1181

IF–THEN gates: synNotch173,174

AND gates: split CAR252, LINK CAR176

TME-localized: masked CAR253, hypoxia sensing254, conditional granzyme255, EGFR BiTE114

Fitness enhancements
Gene overexpression: c-Jun53, BATF117, PGC1A (also known as PPARGC1A)256

Gene knockout: PD1 (also known as PDCD1)123, TGFBR2142, HPK1 (also known as MAP4K1)132, NR4A2126, RASA2127,131, TET2115, DNMT3A116, 
TOX257, CBLB127, CD5127, SOCS1127, TCEB2 (also known as ELOB)127, REGNASE-1 (also known as ZC3H12A)128, DHX37129, PTPN2130, IKZF2124, TLE4124, 
ID372, SOX472, ACAT1258, adenosine A2A receptor133, diacylglycerol kinase259, LAG3260, GM-CSF (also known as CSF2)261, mediator kinase 
module125

Small molecule: dasatinib28,121, AKT inhibitor119, ibrutinib120

Suicide gene: EGFRt153, CD20 epitope262, HER2t263, HSV-tk152, iCasp9138,151

Regulatable platforms
AP1903-inducible costimulation264, antibody-coupled265, fluorescein-CAR266, switchable CAR T cells267, antigen receptor complex 

(ARC) T cells268, SNIP162, SUPRA177, co-LOCKR178, drug-regulated degrons121,157,161, drug-induced dimerization156,157, drug-activated binders159, 
CAR disruption158, protease-cleavable CARs162,163, Tet-inducible155, PROTACs160, ultrasound269, light270

Armouring
Dominant negative: TGFβR171,172, PD-1143, FAS145

Checkpoint: PD-1-Fc, anti-PD-1 scFv146

Cytokines: IL-12109,110,271, IL-18111,272,273, NFAT-induced IL-12274, IL-15 and IL-21275

Switch receptors: PD-1–CD28276, IL-4R–IL-2Rβ277, IL-4R–IL-7R147, FAS–41BB148, GM–IL-1885

Other: FAP-CAR278, heparanase overexpression279, catalase overexpression280, solHVEM281, PKA disruptor282

Engaging the endogenous immune system
Chemokine overexpression: CXCR5283, CCR4284, CCL1999, CCR2285, CX3CR1286

Other: CD40L overexpression112, RN7SL1 extracellular vesicles108, FLT3L overexpression113

Expansion and persistence
IL-15: secretion138,196, sushi domain287, tethered288

IL-7: secretion99, mutant constitutive136, tethered289

Other: JAK–STAT CAR137, ortho IL-2290, IL-2–IL-9 chimera291, chimeric costimulatory receptor107,292

Alternative signalling
TRuC185, Ab–TCR184, STAR183, HIT182

Stealth or fratricide resistant
Knockout: TRAC150,190,262, B2M293, CIITA191, CD52190, CD7134, CD5135

Overexpression: HLA-E192, CD47193

Endoplasmic reticulum retention: CD7 PEBL19, CD3 PEBL294
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response, whereas intratumoral administration was not effective27. 
In a study of patients with diffuse midline gliomas, ICV delivery of 
GD2-CAR T cells induced antitumour effects and clinical responses, 
and repeated dosing was associated with sustained benefit, raising 
the prospect that delivery to the central nervous system may abrogate 
immune sensitization, which has probably limited the effectiveness 
of multidose intravenous CAR T cell regimens28,96,97. In patients with 
lung cancer involving the pleura, regional delivery of mesothelin-CAR 
T cells in combination with PD-1 blockade mediated stable disease 
and metabolic responses98. Cell-intrinsic strategies to improve T cell 
homing to and persistence in the TME, such as secretion of IL-7 and 
CCL1999, are also being explored.

The next generation of CAR T cells
The various next-generation platforms being used to overcome tumour 
resistance mechanisms, augment immune cell fitness, improve specific-
ity, tune CAR signalling, enhance safety, and increase antigen sensitivity  
are discussed in this section.

Platforms to diminish antigen escape
Bispecific CAR targeting may be achieved by administration of a 
mixed cell product, bicistronic expression of two receptors, two scFvs 
incorporated into a single receptor100, or co-transduction of multiple 
CARs, with each approach presenting opportunities and challenges. 
Co-infusion is financially, labour- and cell-intensive and co-infusion and 
co-transduction generate heterogeneous products, risking the emer-
gence of a subpopulation that dominates the pool of cells after infu-
sion101,102. Bicistronic vectors may result in reduced protein expression, 
and in one clinical trial, a bicistronic construct demonstrated limited 
persistence103. Several trials with bispecific receptors targeting CD19 
plus CD20 or CD22 have been reported45,104,105, and in one, the receptor 

mediated diminished potency toward CD22 and tumour cell variants 
exhibiting low or no surface expression of CD19 emerged45. Cilta-cel, 
a BCMA-CAR recently approved by the FDA, incorporates two tandem 
Vhh binders in one receptor, which binds two different epitopes on 
BCMA. Clinical results with cilta-cel demonstrate a sCR of 83% and 55% 
PFS at 27 months, the highest reported so far using CARs for multiple 
myeloma14,106 (Table 1). In summary, clinical data with multispecific 
CARs is nascent but demonstrates safety and promise for improved 
efficacy by diminishing antigen escape.

Novel receptors designed to lower the antigen density threshold 
are also being developed. Katsarou and colleagues have expressed a 
chimeric costimulatory receptor (CCR), which lacks a CD3ζ domain, 
in trans with a prototype CAR, and reported that CCR engagement 
activated the prototype CAR at very low antigen density, preventing 
antigen low escape in preclinical models107. Induction of antitumour 
responses toward non-CAR T cell antigens—as reported following CAR 
T cell therapy in a patient with rhabdomyosarcoma—could diminish 
resistance due to antigen modulation54. Several approaches are under 
development to augment innate and adaptive immunity (Box 1), includ-
ing CAR-mediated delivery of the immunostimulatory RNA RN7SL1108, 
coexpression of ligands or cytokines that reshape the TME such as 
IL-12109,110, IL-18111, CD40L112 or Flt3L113, engineering CAR T cells to secrete 
bispecific T cell engagers (BiTEs), taking advantage of CAR T cell accu-
mulation within the tumour site and avoiding systemic toxicity of the 
BiTE114, or using non-traditional immune cells that may mediate more 
potent endogenous antitumour activity.

Enhancing T cell potency
Extensive work is underway to enhance immune cell fitness (Fig. 3 and 
Box 1). Significant effort is focused on epigenetic modulation, in part on 
the basis of an exceptional responder in a clinical trial of CD19-CAR for 
CLL—in which lentiviral integration disrupted the TET2 gene, a mediator 

Allogeneic PersistenceImproved
�tness

IF–THEN gate AND gate Drug-regulated
CARs

B2M

TRAC

Gene knockouts Gene knockouts

TET2

NR4A

Cleavage
site

Protease
inhibitor

NS3 
protease

TF
SLP-76

T cell
activation

LAT

TF response
 element

ON

mRNA

CAR
expression

Growth and
 survival

Linker Cytokine

Cytokine
receptor
signalling

c-Jun
overexpression

HLA-E

CD47
scFv

scFv 

Antigen
A

Priming
antigenAntigen

B

Cytotoxic
antigen

Prototype
 CAR

Conventional

TM

Hinge

Costim

CD3ζ

Tethered
cytokine

SNIP CARSynNotch LINK CAR Stealth CAR Transcriptional 
reprogramming

TRuC HIT 

Alternative
signalling

Alternative
signalling

δ
ζ ζ ζ ζ

γε ε δ γε ε

VL VH

Cα

Cα Cβ

Bivalent
 CAR

Antigen
A

Antigen
B

OR gate

Cβ
Vβ

Vα

B2M T2

Fig. 3 | Next-generation platforms. Investigators have leveraged numerous 
bioengineering strategies to develop advanced CAR platforms to improve the 
safety and efficacy of immune cell therapies. Multispecific (bivalent) CARs, 
which operate as an OR gate, may be able to overcome obstacles related to 
tumour heterogeneity and antigen loss, whereas combinatorial antigen 
sensing systems such as SynNotch or LINK CAR increase the specificity of  
CAR T cells by requiring two antigens for activity. Safety switches such as 
drug-regulated and adapter CARs could mitigate CAR-induced toxicities and 
enhance efficacy by tuning signalling. Knockout of TRAC, B2M and CIITA genes 
ablates TCR, MHC class I and MHC class II expression, respectively, and human 

leukocyte antigen (HLA)-E and CD47 overexpression shield stealth CAR T cells 
from natural killer cell- and macrophage-mediated rejection. Deletion of NR4A 
and TET2 genes or ectopic overexpression of c-Jun results in transcriptional 
rewiring that renders T cells exhaustion resistant. By fusing a scFv domain  
to TCR subunit, TRuC and HIT receptors redirect the specificity of the 
endogenous receptor and exhibit increased antigen sensitivity compared  
with CARs, while secreting lower levels of cytokine. Integration of a cytokine  
gene in the CAR vector provides a growth and survival signal to improve the 
persistence of T cells. Costim, costimulatory domain; TF, transcription factor; 
TM, transmembrane domain.
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of DNA methylation, resulting in substantial clonal T cell proliferation 
and a sustained antitumour response115. Similarly, knockout of the 
DNMT3A gene enhances the antitumour activity of CAR T cells in pre-
clinical models116. Overexpression of transcription factors to prevent 
exhaustion has also shown promise, including overexpression of the 
AP-1 factor JUN, which enhances T cell expansion and persistence, 
diminishes terminal differentiation and lowers the antigen density 
threshold, presumably owing to increased signal strength53. Similarly, 
overexpression of BATF transcription factors has been reported to 
enhance T cell potency117. Manufacturing strategies are being devel-
oped to optimize CAR T cell phenotype towards stem-like and central 
memory subsets, including shorter culture duration118, inhibition of 
PI3K–mTOR–AKT119, BTK120 or tyrosine kinase121 signalling, and culture 
in memory-promoting cytokines122.

CRISPR-mediated gene editing was first applied clinically in the set-
ting of adoptive T cell therapy, in which PD-1 was deleted from cells 
engineered to express NY-ESO-1, a cancer-specific TCR transgene123. 
The engineered cells did not demonstrate enhanced persistence or 
potency, but the study demonstrated the feasibility and safety of the 
approach, and accelerated efforts to apply gene editing technologies 
to enhance immune cell therapies. Several genes have been identified 
as candidates for editing to enhance T cell fitness72,124–133 (Box 1), and 
CRISPR-mediated disruption of T cell markers such as CD7 and CD5 has 
enabled CAR T cell therapies for T cell malignancies, while avoiding CAR 
T cell lysis134,135 (termed ‘fratricide’). We anticipate increasing clinical 
trial activity incorporating gene-edited immune cells into adoptive 
immune cell therapy platforms to enhance their potency, expand the 
landscape of targetable antigens and avoid immune sensitization.

To enhance persistence, some investigators have sought to inte-
grate cytokine signals into the CAR receptor or express cytokines in 
trans136,137, including a clinical trial in which CAR-expressing natural 
killer cells transgenically expressing IL-15 demonstrated prolonged 
persistence138. Immune rejection may also limit CAR T cell persistence 
as anti-CAR immune responses—often targeting mouse, humanized or 
fully human scFvs—can be measured in many patients29,97,139,140. Consist-
ently, clinical experience demonstrates the limited utility of second 
and subsequent intravenous CAR T cell doses, which can be improved 
using enhanced lymphodepleting regimens96. These findings raise the 
prospect that stealth platforms—which are currently being developed 
to enable off-the-shelf allogeneic products (discussed in ‘Platforms to 
enhance access and efficacy’)—could enhance CAR T cell efficacy by 
enhancing persistence or enabling multiple CAR T dosing regimens.

Diverse efforts are underway to address the suppressive TME (Box 1), 
including genetic ablation or expression of dominant-negative TBGβ141,142, 
PD-1143,144 or Fas receptors145, and engineering CAR T cells to secrete 
checkpoint-blocking scFvs146. Some investigators have engineered switch 
receptors, fusion proteins that convert a suppressive signal within the 
TME to an activating signal in the CAR T cells147,148. Whether tonic acti-
vating signals induced by such receptors result in long-term CAR T cell 
enhancement or predispose them to exhaustion and terminal differen-
tiation remains to be determined. Biomaterials-based approaches for 
enhancing the expansion and persistence are also being explored149.

CAR tuning and regulatable platforms
Substantial efforts are underway to enhance safety and potency by tun-
ing or dampening CAR signalling to diminish toxicity and exhaustion. 
This concept was first proposed by Eyquem and colleagues, who used 
CRISPR to knock-in CAR receptors into the TRAC locus and observed 
improved potency and diminished exhaustion due to antigen-induced 
CAR downregulation mediated by endogenous TRAC regulatory  
elements150. Weber and colleagues extended this principle using syn-
thetic biology or small molecules to transiently cease CAR signalling, 
which enhanced CAR T cell potency when used during manufacturing 
and improved antitumour effects when applied in vivo after adoptive 
transfer121.

Kill switches such as iCasp9151, HSV tyrosine kinase152 (HSV-tk) and 
epitope tags153 enable the depletion of engineered cells in the event of 
severe toxicity, and a transgene-free safety switch that renders T cells 
auxotrophic for uridine has been developed154. Regulatable platforms 
can serve as reversible safety switches and also tune CAR signalling, 
thereby enhancing T cell potency by providing rest periods that prevent 
T cell exhaustion121. Numerous regulatable platforms have been devel-
oped using drug-sensitive promoters155, induced dimerization156,157, 
disruption of split CARs158, drug-dependent activation of binders159, 
proteolysis-targeting chimeras160 (PROTACs), chemically-dependent 
degron domains121,157,161 and drug-regulated CAR proteolysis162,163. 
These systems represent significant advances in synthetic biology, 
but remain challenged by leaky activity in the OFF state that risks tox-
icity, diminished CAR expression or activity in the ON state and the 
use immunosuppressive drugs as regulators121,155–161. Labanieh et al. 
recently developed a protease-regulated grazoprevir-induced ‘drug ON’  
platform, signal neutralization by an inhibitable protease (SNIP), which 
shows no leaky activity and full functional capacity162 (Fig. 3). Similar 
to synNotch164, SNIP demonstrates superior antitumour efficacy com-
pared with conventional CAR T cells owing to reduced exhaustion, and 
in an on-target off-tumour ROR1 toxicity model, decreased grazoprevir 
dosing tuned SNIP CARs to open a therapeutic window in which healthy 
tissue was spared but ROR1-expressing tumour cells were killed162. 
Similarly, Hernandez-Lopez et al. iterated the synNotch platform to 
target very highly expressed tumour antigens while avoiding lower 
levels of the antigens on normal tissues165. Thus, regulatable CARs show 
promise for enhancing efficacy and diminishing toxicity.

Enhancing specificity through Boolean logic
B cell and plasma cell malignancies are especially suited to CAR T cell 
therapy owing to the high, homogenous expression of lineage antigens 
that are co-expressed predominantly on B cells and plasma cells, the 
depletion of which is tolerable. However, a recent case report showed 
the development of parkinsonism in a patient after BCMA-CAR T cell 
therapy, with postmortem analysis revealing expression of BCMA on 
subsets of neurons and astrocytes in the patient’s basal ganglia166. In 
another study, single-cell RNA-sequencing analysis showed the expres-
sion of CD19 on brain mural cells, raising the prospect that on-target 
killing may be responsible for neurotoxicity after CD19-CAR T cell 
therapy. These results highlight the challenge of identifying targets 
that are not expressed on vital tissue.

So far, the paucity of tumour-specific surface targets on solid tumours 
has limited the application of the CAR prototype to solid tumours, with 
unacceptable off-tumour, on-target toxicity having been observed in 
trials of CARs targeting CAIX167 and CEACAM5168. However, several clini-
cal trials of CAR T cells and other potent antibody-directed therapies 
have demonstrated good safety profiles in solid tumours (Table 1). The 
high CAR antigen density threshold is likely to explain the safe target-
ing of some antigens with known expression on vital tissues—such as 
GD2, which is expressed at low levels on neural tissues169,170. A recent 
trial demonstrated promising clinical activity of claudin-18.2-CARs was 
associated with significant but non-dose-limiting toxicity, potentially 
explained by antigen expression restricted to differentiated epithe-
lial cells buried in gastric mucosa that may be less accessible to CAR 
T cells29. Identifying additional molecules with sufficient differential 
expression levels for safe targeting, such as oncofetal cell-surface tar-
gets is essential for expanding the reach of CAR T cells beyond B cell and 
plasma cell malignancies. However, the safety of specific targets will 
need to be continually reassessed as potency and persistence enhance-
ments are deployed, as in recent studies with a PSMA-targeted CAR 
integrating a dominant-negative TGFβ receptor that was associated 
with lethal toxicity171,172.

Next-generation receptors incorporating logic gates could allow 
better discrimination between tumour and healthy tissue through 
combinatorial antigen sensing, and expand the repertoire of potential 
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antigens (Fig. 3). Roybal et al. developed synNotch, an IF–THEN circuit 
incorporating a synthetic notch receptor against antigen A, which 
upon engagement, triggers the transcription of a conventional CAR 
against antigen B173,174. The synNotch system has not been tested clini-
cally, but in preclinical models it prevented on-target, off-tumour 
toxicity when tumours and susceptible vital tissues are not colocal-
ized175. Tousley et al. developed an AND gate platform called LINK, 
which utilizes the proximal TCR signalling molecules LAT and SLP76, 
each fused to a membrane-bound scFv specific for a unique antigen176. 
Engagement of both antigens colocalizes LAT and SLP76, leading to 
T cell activation. In an on-target, off-tumour ROR1 toxicity model, 
LINK CAR T cells cured mice of tumours expressing both antigens 
without ROR1-mediated toxicity, whereas mice treated with synNotch 
T cells succumbed to toxicity175. Other approaches for combinatorial 
antigen targeting that are under development include SUPRA177 and 
co-LOCKR178, which redirect CAR T cell specificity through protein 
switches. Although combinatorial antigen sensing could expand 
the landscape of targetable tumour antigens, the increased risk of 
tumour escape owing to loss of either antigen is a potential concern. 
An alternative approach to enhance specificity is to use an AND NOT 
gate, in which a prototype activating CAR is expressed in trans with 
an inhibitory CAR (iCAR) targeting an antigen that is expressed on 
healthy tissue but not on tumour tissue179–181. Limited engineering 
with NOT gates has been undertaken so far and these applications 
have not been tested clinically.

TCR-like CARs
With the goal of targeting antigens that are expressed at low levels, 
HLA-independent TCRs (HIT) are designed with the variable domain 
of the endogenous TCR being altered to target scFvs by gene editing 
the endogenous TRAC locus182. When CD80 and 4-1BBL are provided 
in trans, CD19-directed HITs display superior antigen sensitivity com-
pared with prototype CD19-CARs (Fig. 3). Synthetic TCR and antigen 
receptors (STARs) have a similar design but are not knocked in to the 
TRAC locus; thus, the endogenous TCR specificity is retained183. Other 
approaches for redirecting TCR specificity include the antibody–TCR 
(AbTCR) platform184, which replaces the variable domains of TCRγδ 
with a Fab fragment and TCR fusion constructs185 (TRuC), which fuse 
an scFv to a CD3 subunit. A recent comparison of TCR-like chimeric 
receptors showed that STAR and HIT receptors reproduce TCR antigen 
sensitivity, whereas TruCs do not186. One potential drawback of CAR 
T cells compared with native T cells is the inability to target intracellular 
antigens, since most aberrant proteins that drive cancer are intracel-
lular. Yarmarkovich et al. overcame this by developing a prototype 
CAR with specificity for peptides presented by MHC187 (pMHC). Using 
scFv binders specific for a PHOX2B peptide–MHC overexpressed in  
neuroblastoma, they targeted pMHCs across several HLA allotypes. This 
strategy could greatly expand the landscape of CAR targets, including 
key oncogenic drivers.

Platforms to enhance access and efficacy
Diverse approaches are under exploration to increase access of cell 
therapies, diminish the high manufacturing costs, create stealth 
immune cells resistant to rejection, and leverage the unique proper-
ties of alternative immune cells.

Distributed manufacturing and allogeneic products
Engineering advances have yielded automated closed-system manufac-
turing, which is providing opportunities for point-of-care manufactur-
ing to diminish the costs, delays and logistical challenges associated 
with the centralized manufacturing models that are the industry stand-
ard. A recent multicentre trial demonstrated the safety and efficacy 
of cells manufactured at the point of care188. Defining the regulatory 
requirements for point-of-care manufacturing is an area of significant 

current interest, especially for therapies targeting rare indications, 
such as paediatric cancers189.

Allogeneic CAR T cells manufactured from healthy ‘super donors’ 
could improve potency by avoiding preexisting T cell dysfunction and 
decrease the cost and logistical challenges of manufacturing, thereby 
enhancing access. However, allogeneic T cell therapies must overcome 
the risk of GVHD mediated by the TCR and rejection of the transferred 
cells by the host immune system. Gene editing of the endogenous TCR 
eliminates the risk of GVHD190, but endowing stealth properties to avoid 
immune rejection remains a significant challenge, since CD8+, CD4+, 
natural killer and macrophage cells can reject allogeneic cells and each 
are regulated by distinct axes, necessitating multiple enhancements 
(Box 1). Knockout of β2-microglobulin can eliminate HLA class I surface 
expression, but paradoxically increases the risk of rejection by natural 
killer cells. Additional strategies for inducing allogeneic tolerance 
include knockout of the CIITA gene to ablate MHC class II expression191, 
and overexpression of HLA-E192 and CD47193 to ameliorate natural killer 
cell- and macrophage-mediated cell rejection.

Many allogeneic approaches use CRISPR–Cas9, and the risks of 
CRISPR-based mutagenic events could be magnified when producing 
hundreds or thousands of allogeneic products with a singular manu-
facturing process. Alternative platforms, such as base editing or prime 
editing may emerge as preferred alternatives to nuclease-based genome 
editing since they probably involve lower risk owing to an absence of 
double strand DNA breaks194. CRISPR–Cas systems targeting RNA could 
also provide opportunities for multiplexed gene knockdowns with 
greater specificity and efficiency compared with RNA-mediated inter-
ference. Although allogeneic donor-derived cells containing multiple 
gene edits could provide significant advantages, these technologies 
are nascent and their toxicity profiles remain unknown. Some groups 
have attempted to prevent immune rejection by augmenting immune 
suppression of the host using conventional chemotherapy or immu-
nosuppressive antibodies for which the targets are edited from the 
CAR T cells190. Early response rates with this approach are promising, 
but long-term safety and efficacy have not been demonstrated and 
concerns remain regarding infectious risks associated with intensive 
immune-depleting regimens190.

Alternative immune cells
Several non-T immune cells, including natural killer cells, invariant 
natural killer T (iNKT) cells, γδ T cells and macrophages exhibit innate 
antitumour activity and do not induce GVHD, raising the prospect that 
they could provide an off-the-shelf source of cells with reduced toxic-
ity, enhanced tumour trafficking and/or target antigen-negative vari-
ants through innate tumour recognition. However, allogeneic innate 
immune cells remain susceptible to rejection, raising concerns regard-
ing the durability of their effects if they are not engineered for stealth. 
Cord blood-derived allogeneic natural killer cells incorporating ectopi-
cally expressed IL-15 have shown promise in a phase I trial for NHL and 
CLL138. iNKT-CAR cells mediated activity in mouse models, in part by 
cross-priming host CD8 cells towards tumour antigens195, and their 
safety and feasibility in a phase I trial for neuroblastoma have been 
demonstrated196. γδ T cells engineered to express a CD20-CAR have 
also shown impressive activity in early studies197. Expressing CARs 
in macrophages requires substantial adaptations of vectors and sig-
nalling domains, but antitumour effects associated with augmented 
phagocytosis, modification of the TME and recruitment of T cells198,199 
have been demonstrated in preclinical models198, with CD3ζ-based 
CARs demonstrating equivalent phagocytic activity as Fcγ-based CARs 
Efforts are also underway to create induced pluripotent stem (iPS) 
cell-derived CAR T cells200, natural killer cells201 and macrophages202. 
The differentiation of iPS cells to natural killer cells has been particularly 
successful, and clinical testing of these off-the-shelf therapies is cur-
rently in progress203, whereas iPS cell differentiation to fully functional 
T cells has been more challenging204. Given their nearly inexhaustible 
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expansion potential, iPS cell-derived products could enable mass pro-
duction of a homogenous cell product integrating numerous enhance-
ments to endow stealth properties, safety switches and potency, and 
the long-term safety and efficacy results of these emerging platforms 
are thus eagerly anticipated.

Next-generation gene delivery
Viral vector-based gene delivery has been the gold standard in the field, 
but vector production and qualification is costly and time consuming. 
Viral-free platforms for gene delivery are under development, with 
CRISPR-based gene delivery in human T cells demonstrating proof 
of principle, although DNA templates are toxic to T cells and the effi-
ciency of this approach remains lower than with viral vectors205. Clinical 
feasibility has been demonstrated with a CD19-CAR site-specifically 
delivered to the PD-1 locus inducing a high CR rate in NHL, although the 
manufacturing process did not meet dose requirements for a relatively 
high proportion of patients206. Modifications to DNA templates and 
small-molecule inhibitor cocktails are improving knock-in efficiencies 
and cell yields207. Transposon-based gene delivery has also been used, 
although malignant transformation of CAR-engineered T cells was 
reported in two patients associated with high-copy-number integra-
tion using a Piggybac transposon platform208. In vivo gene delivery 
is another emerging approach that could improve accessibility and 
diminish cost. In this approach, DNA or RNA is delivered systemically 
using viral vectors209 or nanoparticles210 that preferentially target 
and transduce immune populations in vivo. Immunogenicity could 
prohibit repeat administration of viral vectors owing to the induc-
tion of neutralizing antibodies. Stable expression of a CD19-CAR has 
been demonstrated using lipid nanoparticles targeting CD3 in mice210 
and T cell-targeted lipid nanoparticles incorporating optimized RNA 
diminished cardiac fibrosis in a mouse model211.

CAR therapy for non-malignant diseases
The CAR T platform has been optimized for cancer treatment, but 
the design principles and expansive synthetic biology toolbox used 
for CAR T cells are providing opportunities to extend this therapeu-
tic approach to non-malignant diseases, including autoimmunity, 
senescence, fibrosis and infectious diseases. In preclinical studies, 
CD19-CAR T cells have demonstrated beneficial effects in systemic 
lupus erythematosus212, and a case study reported sustained activity 
of CD19-CAR therapy in a patient with refractory lupus nephritis213 . 
Chimeric autoantibody receptors (CAARs) are prototype CARs that 
incorporate a scFv targeting the idiotype of an autoreactive B cell clone 
or use autoantigens as the recognition domain. In preclinical studies, 
CAARs mediated therapeutic effects against pemphigus vulgaris, and 
clinical testing is underway. Adoptive transfer of T regulatory (Treg) 
cells, which mediate suppression rather than cytotoxicity, is an alter-
native approach for treating autoimmunity. Non-engineered Treg cells 
have demonstrated activity in mouse models of GVHD, allograft trans-
plantation, type 1 diabetes, systemic lupus erythematosus and multiple 
sclerosis, and early clinical data demonstrate feasibility of manufactur-
ing and a good safety profile214. Compared with non-engineered cells, 
Treg cells expressing a CAR targeting antigens expressed on the diseased 
tissues show enhanced specificity and potency215,216. Recent data have 
demonstrated that inadvertent expansion of CAR Treg cells limits the 
efficacy of commercial CAR T cells, providing proof-of-concept for  
the utility of CAR-engineered Treg cells217,218. Approaches are underway 
to engineer FOXP3 expression to enforce lineage stability and incor-
porate safety switches to diminish risk214. Recent promising preclinical 
data were generated in haemophilic mice, in which Treg cells expressing 
a factor VIII-targeted CAR and FOXP3 prevented the development 
of neutralizing anti-factor VIII antibodies219. Senolytic CAR T cells 
targeting urokinase-type plasminogen activator receptor have been 
demonstrated to target senescent cells in vitro and restore tissue 

homeostasis in models of liver fibrosis220. CARs targeting fibroblast 
activation protein (FAP) have improved cardiac function in a mouse 
model of cardiac fibrosis221 and in vivo generation of FAP-CARs using 
CD5-directed lipid nanoparticles loaded with mRNA also demon-
strated benefit211. In this model, the non-integrating nature of mRNA 
ensured that CAR expression was transient, thereby mitigating the 
risk of toxicity associated with widespread elimination of activated 
fibroblasts.

Outlook
Adoptive immune cell therapy is established as a transformative thera-
peutic modality. The past decade has witnessed significant progress in 
understanding the biology of prototype CAR T cells, identifying antigen 
modulation and T cell dysfunction as major resistance mechanisms 
and highlighting the logistical challenges of delivering cell therapies 
to all patients who could benefit. Modifications to prototype CARs can 
augment their potency, but increasingly investigators are designing 
next-generation platforms to create advanced cellular therapies that 
incorporate a diverse array of enhancements. The fields of immunol-
ogy, synthetic biology, genetic engineering and cell manufacturing 
are synergizing to create smarter, safer and more accessible cellular 
therapies that are poised for increased efficacy and access, diminished 
risk and cost, and broader utility, for the treatment of cancer as well as 
non-malignant diseases.
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