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Small-ring cage hydrocarbons are popular bioisosteres (molecular replacements) for
commonly found para-substituted benzene rings in drug design'. The utility of these
cage structures derives from their superior pharmacokinetic properties compared
with their parent aromatics, including improved solubility and reduced susceptibility
to metabolism?>, A prime example is the bicyclo[1.1.1]pentane motif, which is mainly
synthesized by ring-opening of the interbridgehead bond of the strained
hydrocarbon [1.1.1]propellane with radicals or anions*. By contrast, scaffolds
mimicking meta-substituted arenes are lacking because of the challenge of
synthesizing saturated isosteres that accurately reproduce substituent vectors®. Here
we show that bicyclo[3.1.1]heptanes (BCHeps), which are hydrocarbons for which the
bridgehead substituents map precisely onto the geometry of meta-substituted
benzenes, canbe conveniently accessed from [3.1.1]propellane. We found that [3.1.1]
propellane can be synthesized on a multigram scale, and readily undergoes arange of
radical-based transformations to generate medicinally relevant carbon- and
heteroatom-substituted BCHeps, including pharmaceutical analogues. Comparison
of the absorption, distribution, metabolism and excretion (ADME) properties of these

analogues reveals enhanced metabolic stability relative to their parent
arene-containing drugs, validating the potential of this meta-arene analogue as an
sp*-rich motifin drug design. Collectively, our results show that BCHeps canbe
prepared on useful scales using a variety of methods, offering a new surrogate for
meta-substituted benzene rings forimplementation in drug discovery programmes.

Strategies for the structural modification of lead molecules that
improve physicochemical and pharmacokinetic properties such as
metabolicstability are increasingly sought in drug development®. One
exampleisthereplacement of aromatic rings with non-classical bioisos-
teres such as small-ring cage hydrocarbons**”. Such structures display
ahigher fraction of saturated carbon atoms compared with their parent
arenes (Fsp?, corresponding to greater three-dimensionality), which
is a property that is linked to greater clinical success rates®. Among
these motifs, the replacement of planar para-substituted arenes with
bicyclo[1.1.1]pentanes (BCPs, Fig. 1a), which have similar dimensions
andidentical substituent vectors to the parentaromatic, hasemerged
asapopularstrategy>®'°. For instance, substitution of the fluorinated
areneinthe Alzheimer’s treatment avagacestat with a BCP resulted in
ananalogue that maintained the bioactivity of the parent compound,
butdisplayed animproved pharmacokinetic profile’. More generally,
cage hydrocarbons expand the vector space around a molecular core,
offering new opportunities in drug design.

Meta-substituted arenes are also commonplace in pharmaceuti-
cals and agrochemicals™. However, in stark contrast to the numerous

sp*>rich bioisosteres for ortho- and para-substituted arenes**%?,

ageometrically accurate bioisostere for meta-arenesis yet to be discov-
ered.Recentreports on the use of (hetero)bicyclo[2.1.1]hexanes"® " and
bridge-substituted BCPs'®?° have contributed to this arena (Fig. 1b).
However, those motifs fail to recreate the bond vectors displayed in
the meta-substituted aromatic, and a precise and accessible mimic
remains absent from the arsenal of the medicinal chemist.

Here we report a solution to this challenge in the form of the satu-
rated carbocycle bicyclo[3.1.1]heptane (BCHep, Fig.1c), the bridgehead
substituent vectors of which precisely replicate those of the parent
meta-arene (approximately 119° and 120°, respectively). Although
BCHeps have been prepared by ring expansion of BCPs* and by cycli-
zation of cyclohexane dicarboxylates?, these approaches can be lim-
ited in substituent scope or involve lengthy synthetic sequences. We
show that BCHeps can instead be conveniently and directly accessed
from[3.1.1]propellane (1), ahomologue of [1.1.1]propellane (2) that is
widely used as the near-ubiquitous source of BCPs*. We found 1 to be
aversatile precursor that undergoes a variety of radical-based trans-
formations toaccess awide range of functionalized BCHeps, including
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Fig.1|Comparison of para-and meta-substituted arene bioisosteres, and
synthesis of [3.1.1]propellane. a, BCPs derived from[1.1.1]propellane (2) are
bioisosteres for para-substituted benzene rings. b, Previous mimics of

meta-substituted arenes, which do not accurately reproduce the geometry of

drug analogues. Profiling of the ADME properties of these analogues
reveals that, like BCPs, BCHeps substantially improve physicochemi-
cal properties compared to their arene parents. As such, we anticipate
that this new scaffold should offer a readily accessible bioisostere for
broad implementation in drug discovery programmes.

Higher [n.1.1]propellanes such as1 have until now been of predom-
inantly theoretical interest®*; these elusive molecules have prob-
ably been overlooked in synthetic and medicinal chemistry because
of the challenge of their synthesis and reported instability??. We
devised astrategy to synthesize 1onamultigramscale (Fig.1d), which
began with Kulinkovich cyclopropanation of commercially available
y-chloroester 3 (ref. 7). Mesylation of the resulting alcohol 4, followed
by TiCl,-mediated cyclopropyl-allyl chlorinative rearrangement and
dibromocyclopropanation, afforded cyclopropane 5in 58% yield over
four steps on a scale larger than 30 mmol with only one chromato-
graphic purification. Reaction of 5 with two equivalents of phenyl-
lithium generated 1in yields of 43-61% after distillation; the resulting
solution of 1(0.25-0.50 M in dibutyl ether) can be stored at -20 °C
under aninertatmosphere for several months with negligible decom-
position.

Aside from solvolysis®, previous reports on the chemistry of 1 detail
only one productive reaction—the addition of thiophenol to generate
BCHep phenyl thioether®. As a prelude to exploring the wider reactivity
of1, wefirst compared the calculated reaction barriers for the addition
ofaprototypical radical (CH5’) and nucleophile (NH,") with those for 2
(ref.?®) (Fig. 2a). These calculations predict that 1 should be similarly
susceptible to the addition of radicals to the interbridgehead C-Cbond
(difference between free energies of activation AAG*=-1.1kcal mol™
between1and?2), butthat thereaction of 1withanionsisless favourable
(AAG* = +5.4 kcal mol™). This in part may relate to the greater increase
of charge density inside the propellane cage in anionic additions, which
can be better accommodated by 2 owing to the presence of a third
three-membered ring that enables enhanced charge delocalization?®%.
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thearomatic. ¢, BCHeps derived from [3.1.1]propellane (1) exactly mimic the
geometry of meta-substituted arenes. d, A multigram scale synthesis of [3.1.1]
propellane.

Our calculations therefore suggest that 1should be amenable to the
same array of radical functionalization chemistry established in the
[1.1.1]propellane/BCP arena.

Thistheoretical analysis correlated well with experimental findings.
We first explored atom transfer radical addition (ATRA) reactions,
which are a powerful method to access disubstituted BCPs from 1.
Both Et;B-initiated*® and Ir(ppy);-catalysed® addition of a variety of
C-Ibondsto1proceeded efficiently to afford diverse BCHep scaffolds
(Fig.2b). The photoredox-catalysed variant (Ir(ppy),) proved more gen-
eraland higher yielding, producingiodo-BCHeps from a-iodocarbonyls
(6a-6d),benzyliodides (6e-6f), alkyliodides (6g-6k), a-amino acids
(61) and heteroaryliodides (6m). In contrast to ATRAs with [1.1.1]propel-
lane®, Et,Binitiation was suitable mainly for electrophilic radicals such
asa-iodocarbonyls (6a, 6b) and azetidines (6h). Notably, the addition
ofiodotrifluoromethane tolproceeded in the absence of an external
initiator to afford én, which could be a valuable building block for the
synthesis of bioisosteres of meta-CF;-substituted arenes. Addition to
alkyl bromides such as bromomalonate (60, 57%) and bromotrichlo-
romethane (6p, 68%) also proved feasible, the latter proceeding without
aninitiator. The chemistry could further be applied to the late-stage
bicycloheptylation of various drug analogues, producing BCHep
derivatives of corticosterone (6q), nicotinic acid (6r), brequinar (6s)
and indomethacin (6t), which were obtained fromthe corresponding
alkyliodides. Notably, in contrast to equivalent ATRA reactions with
[1.1.1]propellane, no ‘staffane’ by-products arising from[3.1.1]propel-
lane oligomerization were observed.

Bridgehead amine substituents are highly attractive as potential meta-
substituted aniline bioisosteres. We found that the three-component
metallaphotoredox catalysed coupling of iodonium dicarboxylates,
[1.1.1]propellane and N-heteroarenes described by the Macmillan
group® translated smoothly to [3.1.1]propellane (Fig. 2¢), producing
azole- and sulfonamide-substituted BCHeps 7a-7g in good yields,
including pharmaceutical derivatives (gemfibrozil, 7g). The synthesis
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Fig.2| Theoretical analysis of [1.1.1]and [3.1.1]propellane reactivity

and synthesis of BCHeps from[3.1.1]propellane. a, Reactivity profile of
1calculated at the SMD(THF)-DLPNO-CCSD(T)/ma-def2-QZVPP//SMD(THF)-
B2PLYP-D3B)/def2-TZVP (ma-def2-TZVP onN) level of theory.

THF, tetrahydrofuran. b, Carbon/halogen-substituted BCHeps prepared
fromorganohalides using Ir(ppy); (2.5 mol%), blue light-emitting diode (LED)
irradiation (), Et,;B (10 mol%) as initiator (°) or without an initiator ().

¢, Nitrogen-substituted BCHeps prepared using dual photoredox/Cu-catalysed

of N-substituted iodo-BCHeps was achieved using other methods, such
as pyrazole BCHep 7hby reaction of 1with pyrazole/l, (ref.*), and allyl
sulfonamide BCHep 7i from radical fragmentation of aniodomethyl

coupling of iodonium dicarboxylates and N-heteroarenes (), pyrazole/I, () or
a-iodoaziridine, Ir(ppy); (2.5 mol%), blue LEDs (). d, Chalcogen-substituted
BCHeps prepared by direct reaction with the chalcogen-X precursor ().

e, Cysteine-selective conjugation studies using the (L,L,D) 8-(a-aminoadipolyl)-
Cys-Val (ACV) tripeptide inaqueous phosphate buffer (50 mM, pH 8.0).
Reactionsrunona0.1-0.2 mmolscale unless shown otherwise. See

the Supplementary Information for details.

aziridine®. As well as C- and N-centred radicals, other heteroatoms
proved excellent substrates for reactions with 1 (Fig. 2d): thioether
8a and selenoether 8b were formed in quantitative yields at room
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temperature, sulfonothioate addition (8c, 8d) proceeded efficiently
under heating®>¢ and reaction with adisulfide could be achieved under
ultravioletirradiation (8e)”. The successful bicycloheptylation of pro-
tected cysteine (8f) in diethyl ether highlights the potential for appli-
cations in peptide modification®; unexpectedly, reaction of a similar
cysteine residue in a tripeptide ((L,L,D) 6-(a-aminoadipolyl)-Cys-Val)
inaqueous buffer afforded the rearranged adducts 9 and 10 (Fig. 2e),
which may arise fromacationic reaction pathway. Although the reason
for this reactivity difference is unknown, it is clear that selective
S-alkylation of cysteine is possible under physiologically relevant
conditions.

lodinated BCHeps offer opportunities for C-Ifunctionalization
towards medicinally relevant difunctionalized scaffolds. Investiga-
tion of iron-catalysed Kumada cross-coupling® revealed efficient
reaction of iodo-BCHeps with both aryl and heteroaryl Grignard
reagents to afford (hetero)aryl BCHeps in excellent yields (11a-11f,
Fig. 3a). BCHep functionalization was also possible by lithiation of
the iodide; reaction of the resulting bridgehead carbanion with CO,
or i-PrOBpin gave carboxylic acid 11g and hydroxy-BCHep 11h (after
in situ oxidation), respectively, the latter of which correspondstoa
meta-phenol bioisostere.

X-ray structural determination of several crystalline BCHeps enabled
us to study the geometry of the scaffold in more detail (Fig. 3b). Two
substituent vector angles were considered: the exit vector angle
(around 120° for m-arenes), and the out-of-plane vector angle ¢ (the
dihedral angle along the BCHep interbridgehead axis, around 0° for
m-arenes). Comparison of the BCHep solid state structures with com-
puted structures of the BCHep and the equivalent meta-arene showed
excellentagreement for both angles (Aa = 0-7°, A¢ = 3-11°), validating
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our hypothesis that the replacement of meta-substituted arenes with
aBCHep conserves the critical substituent geometry.

Kumada cross-coupling was deployed to synthesize two BCHep
druganalogues (Fig. 4a). The BCHep analogue of the anticancer agent
sonidegib was accessed from coupling product 11e by pivaloate ester
hydrolysis, oxidation of the resulting primary alcohol to the carboxylic
acid 13 and amide formation with aminopyridine 14 (53% yield over
three steps, 19% from 1). BCHep-URBS597, the parent meta-arene of
which was developed as a fatty acid amide hydrolase inhibitor, was
synthesized from 6j by a similar cross-coupling-hydrolysis-oxida-
tion sequence, followed by amide formation, debenzylation and
carbamoylation with cyclohexyl isocyanate (16% over five steps).
Computational conformer sampling once again revealed a similar
global topology between BCHep-sonidegib and the parent drug for the
vector angles aand ¢ (Fig. 4b). Here an additional parameter was con-
sidered: the rotational orientation of the planes between the two sub-
stituentgroups as defined by the dihedral angle ¢ (A =13°). The BCHep
displayed a shallow potential energy profile for rotation around the
BCHep-substituent C-C bond (free energy barrier AG =1.5 kcal mol™),
reflecting alow conformational preference of the substituents adjacent
tothe quaternary carbons of the BCHep, whereas for the parent arene
more defined minima exist (AG =12 kcal mol™, see the Supplementary
Information for details). This may suggest that BCHeps offer signifi-
cant flexibility in substituent conformation, which could be a valuable
property for drug design by facilitating amore adaptable association
with protein targets.

Synthesis of these drug analogues raises the question of how the
physicochemical and pharmacological properties of the BCHep
compare with the parent arene (Fig. 4c). The clogP, topological
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Fig. 4 |Synthesis of BCHep pharmaceutical analogues and comparison

of pharmacokinetic profile and metabolic stability. a, Synthesis of BCH
analogues of sonidegib and URB597. EDC, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide; HOBt, 1-hydroxybenzotriazole; NMM, N-methylmorpholine;
TMEDA, N,N,N',N'-tetramethylethylenediamine. b, Computational

polar surface area and solubility of each drug-analogue pair are
remarkably similar, demonstrating that BCHeps can be readily
deployed in drug design as true meta-arene bioisosteres. In keep-
ing with their well-established BCP cousins, BCHeps showed reduced
clearance ratesin mouse and human liver microsomes compared to
their arene equivalents, and membrane permeability (Caco-2) was
improved. The BCHep analogues were also tested for CYP inhibition
and also generally showed an improvement compared to their cor-
responding arenes (Fig. 4c). URB597 inhibits CYP1A2 and CYP2C9
with half-maximal inhibitory concentration (ICs,) values below
10 uM, but BCHep-URB597 is seven- and threefold weaker against
these two polymorphic enzymes. Collectively, these dataunderline
the potential power of the BCHep scaffold as a beneficial motif for
improving the pharmacokinetic and physicochemical properties
of drug candidates.
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Methods

Synthesis of [3.1.1]propellane
1-(3-Chloropropyl)cyclopropan-1-ol, S1. A solution of ethyl
4-chlorobutanoate (5.60 ml, 40.0 mmol, 1.0 equiv.), and Ti(Oi-Pr),
(1.20 ml, 4.0 mmol, 0.10 equiv.) in anhydrous diethyl ether (60 ml)
was cooled to 0 °C and a solution of EtMgBr (33.3 ml, 3.0 M in Et,0,
100 mmol, 2.5 equiv.) was added dropwise over 90 min. The mixture
was stirred for a further 30 min at 0 °C, and then the mixture was
slowly quenched by dropwise addition of 10% aqueous H,SO, (50 ml).
The organic layer was washed sequentially with H,0 (70 ml), NaHCO,
(sat., aq., 70 ml) and brine (70 ml), and then dried (Na,SO,), filtered
and concentrated in vacuo to produce S1(4.73 g, 35.1 mmol, 88%) asa
colourless oil, which was used without further purification.

1-(2-Chloroethyl)cyclopropyl methanesulfonate, 4. A solution of S1
(4.73 g,35.1mmol,1.00 equiv.) and triethylamine (7.05 ml, 50.7 mmol,
1.44 equiv.) inanhydrous CH,CI, (60 ml) was cooled to O °C and meth-
anesulfonyl chloride (3.08 ml, 40.0 mmol, 1.14 equiv.) was added
dropwise over 30 min. The mixture was stirred for a further 30 min at
0°C, and then quenched with water (30 ml). The layers were separated,
and the organic layer was washed sequentially with H,0 (60 ml), 10%
H,S0, (aq., 50 ml), NaHCO;, (sat., aq., 50 ml) and brine (50 ml), and
then dried (Na,SO,), filtered and concentrated in vacuo to produce 4
(7.20 g, 33.9 mmol, 96%) as a pale-yellow oil, which was used without
further purification.

5-Chloro-2-(chloromethyl)pent-1-ene, $S2.TiCl, (5.72 ml, 52.4 mmol,
1.55 equiv.) was slowly added over 20 min to a solution of 4 (7.20 g,
33.8 mmol, 1.0 equiv.) in anhydrous CH,Cl, (60 ml) at room tempera-
ture. The mixture was stirred at room temperature for 3 h, and then
slowly quenched with H,0 (60 ml) at 0 °C with vigorous stirring. The lay-
erswereseparated, and the organic layer was washed sequentially with
H,0 (2 x 70 ml), NaHCO; (sat., aq., 70 ml) and brine (70 ml), and then
dried (MgSO,), filtered and concentrated in vacuo (300 mbar, 30 °C)
to produce S2 (4.46 g, 29.1 mmol, 86%) as a clear pale-yellow liquid.
Note thatthe productis volatile under reduced pressure (isolated with
residual solvent) and was taken forward without further purification.
The state yield makes allowance for residual solvent.

1,1-Dibromo-2-(chloromethyl)-2-(3-chloropropyl)cyclopropane, 5.
A 50% NaOH solution (22 ml) was added dropwise over 20 min to a
vigorously stirred (1,000 r.p.m.) solution of $2 (4.46 g, 29.1 mmol,
1.00 equiv.), CHBr;(20.4 ml, 233 mmol, 8.00 equiv.), dibenzo-18-crown-6
(524 mg, 1.47 mmol, 0.05 equiv.) and pinacol (137 mg, 1.15 mmol,
0.04 equiv.) in CH,CI, (37 ml) at 50 °C. The resulting mixture was
stirred for 5h at 50 °C, and then cooled to room temperature and
diluted with n-pentane (100 ml) and distilled water (100 ml). The result-
ing suspension was filtered through a pad of celite and washed with
additional n-pentane (100 ml). Additional distilled water (100 ml) was
added to thefiltrate. The layers were separated and the organic layer
was washed with brine (150 ml), and then dried (Na,SO,), filtered and
concentrated in vacuo. The crude product was purified by column
chromatography (column diameter 4 cm, 40 g SiO,, gradient 100%
pentaneto 95:5pentane:EtOAc) to produce 5(7.50 g,23.1mmol, 79%) asa
colourless oil.

[3.1.1]Propellane, 1. Phenyllithium (31.8 ml, 60.4 mmol, 2.01 equiv.,
1.9 Min n-Bu,0) was slowly added to a cooled (-78 °C) solution of 5
(9.74 g,30.0 mmol, 1.0 equiv.) inanhydrous Et,0 (160 ml) . The resulting
mixture was stirred at =78 °C for 15 min then warmed to room tempera-
ture and stirred for 7 h. The mixture was then distilled using a rotary
evaporator (25 °C water bath temperature) equipped with adry-ice
cold finger condenser, with the receiving flaskimmersed inadry-ice-
acetone bath. The Et,0 fraction was removed by slowly decreasing

the applied pressure to 150 mbar. This fraction was then discarded.
The remaining solution was distilled by slowly reducing the applied
pressureto lessthan10 mbarto produce asolutionof [3.1.1]propellane 1
inn-Bu,0O, whichwas stored under aninert atmosphere at—20 °C. The
yield was determined by 'H nuclear magnetic resonance spectroscopy
using1,2-dichloroethane as aninternal standard (see below). The con-
centration of the [3.1.1]propellane solution ranged between 0.25 M
and 0.50 M, with yields of 43-61%. Note that the resulting propellane
stock solution contains bromobenzene, which does notinfluence the
reactions presented herein.

General procedures for reactions of [3.1.1]propellane
Photoredox-catalysed ATRA. fac-Ir(ppy), (2.5 mol%), alkyl or aryl
halide (1.0 equiv.), t-BuCN (0.1M) and [3.1.1]propellane (1.1t0 2.0 equiv.
ofasolutionin n-Bu,0) was added to aflame-dried, screw-capped vial
equipped with astirrer bar. The vial was placed under nitrogen, and the
solution was degassed via a modified freeze-pump-thaw cycle (the
vacuumwas only applied while the reaction mixture was frozen owing
tothevolatility of [3.1.1]propellane). The stirred mixture wasirradiated
with blue LEDs (Kessil PR160 456 nm) with fan cooling for the indicated
time. The reaction mixture was concentrated and the residue was puri-
fied by column chromatography. See ref. * and Fig. 2b (condition a).

ATRA with BEt;. Under air, a solution of alkyl iodide (1.0 equiv.) in
[3.1.1]propellane (1.1to 1.5 equiv. of a solution in n-Bu,0) was cooled
to 0 °CandEt;B (10 mol%,1.0 Min hexane) was added via syringe (with
the needle tip in the solution). The mixture was stirred until the reac-
tionreached completion as monitored by thin-layer chromatography.
The reaction mixture was then concentrated and the residue purified
by column chromatography. See ref. ** and Fig. 2b (condition b)

Ir/Cu-catalysed additions to [3.1.1]propellane. fac-Ir(ppy), (2.0 mol%),
amine starting material (1.0 equiv.),iodomesitylene biscarboxylic acid
(2.0 equiv.), Cu(acac), or Cu(TMHD), (0.60 equiv), 2-tert-butyl-1,1,3,3-
tetramethylguanidine (BTMG) (3.0 equiv.) and anhydrous 1,4-dioxane
(0.03 M) were added to aflame dried, screw-capped vial equipped with
astirrer bar. The solution was sparged with Ar for 10 min, and then
[3.1.1]propellane (1.5 equiv. of a solution in n-Bu,0) was added and
the vial capped and sealed with parafilm. The mixture was stirred and
irradiated with blue LEDs (Kessil PR160 456 nm) with fan cooling for
16 h. Thereaction mixture was diluted with EtOAc and washed with 30%
aqueousammoniasolution. The phases were separated, and the aque-
ous phase was extracted with EtOAc (3x). The combined organics were
dried (Na,SO,), filtered and concentrated in vacuo. The residue was
purified by column chromatography. See ref. *?and Fig. 2¢ (condition d).

Addition of thiols. [3.1.1]Propellane (1.0 equiv., of asolution in n-Bu,0)
was added dropwise to a solution of thiol (1.1 equiv.) in anhydrous
diethyl ether. The mixture was stirred for 1 h, and then diluted with
diethyl ether and washed with 1 M aqueous NaOH solution (3x). The
organiclayer was dried over Na,SO,, filtered and concentrated in vacuo.
The obtained crude product was either purified by column chroma-
tography or trituration. See Fig. 2d (condition g).

Disulfide addition. Disulfide (3.0 equiv.) and [3.1.1]propellane
(1.0 equiv. of a solution in n-Bu,0) was added to a flame dried,
screw-capped vial. The mixture was irritated with a LED lamp (Hepa-
toChem Evoluchem HCK1012-01-011365 nm) with fan cooling for 20 h.
The solvents were removed in vacuo and the resulting residue was puri-
fied by column chromatography. See ref. ¥ and Fig. 2d (condition g).

Addition of sulfonylthionates. [3.1.1]Propellane solution (1.5 equiv.)
was added to a solution of the specific thiosulfonate (1.0 equiv.) in
anhydrous MeCN. The flask was sealed and heated to 60 °C for 16 h,
and then cooled to room temperature and concentrated in vacuo. The
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crude product was purified by column chromatography. See ref.* and
Fig.2d (condition g).

Iron-catalysed Kumada coupling. BCHep iodide (1.0 equiv.) and
Fe(acac); (20 mol%) was added to a flame-dried vial. The vial was then
evacuated and refilled with N, (g) three times. To this was added anhy-
drous THF (0.2 ml) and N,N,N',N'-tetramethylethylenediamine (TMEDA)
(40 mol%), and the resulting mixture was stirred for 5 min. The Grignard
reagent (1.6 equiv.) was then added via a syringe pump over approxi-
mately 1 hatroomtemperature. The reaction was stirred for a further
1h,and then quenched by addition of aqueous NH,CI (2 ml, saturated).
The layers were separated, and the aqueous layer was extracted with
Et,0 (3 x 1 ml). The combined organic layers were washed with brine,
dried over MgSO,, filtered and concentrated in vacuo. The crude prod-
uctwas purified by column chromatography. See ref.*’ and Fig. 3a.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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