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Faculty hiring and retention determine the composition of the US academic
workforce and directly shape educational outcomes!, careers?, the development and
spread of ideas® and research priorities**. However, hiring and retention are dynamic,
reflecting societal and academic priorities, generational turnover and efforts to
diversify the professoriate along gender® 8, racial® and socioeconomic® lines.

A comprehensive study of the structure and dynamics of the US professoriate would
elucidate the effects of these efforts and the processes that shape scholarship more
broadly. Here we analyse the academic employment and doctoral education of
tenure-track faculty at all PhD-granting US universities over the decade 2011-2020,
quantifying stark inequalities in faculty production, prestige, retention and gender.
Our analyses show universal inequalities in which a small minority of universities
supply alarge majority of faculty across fields, exacerbated by patterns of attrition
and reflecting steep hierarchies of prestige. We identify markedly higher attrition

rates among faculty trained outside the United States or employed by their doctoral
university. Our results indicate that gains in women’s representation over this decade
result from demographic turnover and earlier changes made to hiring, and are
unlikely to lead to long-term gender parity in most fields. These analyses quantify the
dynamics of US faculty hiring and retention, and will support efforts toimprove the

organization, composition and scholarship of the US academic workforce.

Prestige plays a centralroleinstructuring the US professoriate. Analy-
ses of faculty hiring networks, whichmap who hires whose graduates as
faculty, show unambiguously in multiple fields that prestigious depart-
ments supply anoutsized proportion of faculty, regardless of whether
prestige is measured by an extrinsic ranking or reputation scheme!
or derived from the structure of the faculty hiring network itself*%.
Prestigious departments also exhibit ‘social closure™ by excluding
those who lack prestige, facilitated by relatively stable hierarchies over
time, bothempirically” and in mathematical models of self-reinforcing
network dynamics®*?,

These observations are important because of the broad impacts of
prestige itself. Prestigious affiliations improve paper acceptance rates
insingle- versus double-anonymous review®?; faculty at prestigious uni-
versities have more resources and write more papers®>*, receive more
citations and attention®** and win more awards®**°; and graduates of
more prestigious universities experience greater growthinwagesinthe
yearsimmediately after graduating*°. Furthermore, the vast majority
of faculty areemployed by departments less prestigious than those at
which they were trained”, making prestigious departments central in
the spread of ideas® and academic norms and culture more broadly.

Less well studied are the processes of attrition that, together with
hiring, shape the data underpinning the analyses reviewed above. Evi-
dence suggests that womeninscience and engineering (but not math-
ematics) and foreign-born faculty leave the academy in mid-career at
higher rates than do men* and US-born**faculty, respectively, making

clear the fact that the US professoriateis structured by more thanjust
prestige. These processes are particularly important in light of clear
evidence that the topics studied by faculty depend not only on their
field of study, but also on their (intersecting) identities*.

However, the difficulty of assembling comprehensive data on US
faculty across fields, across universities and over time has limited analy-
ses and comparisons, leaving it unclear how much of the observed
patterns and differences are universal, vary by field or are driven by
currentor past hiringor attrition. Less visible but just asimportant are
the inherent limitations of focusing only on the placement of faculty
within the US system, to the exclusion of US faculty trained abroad.
Abroad cross-disciplinary understanding of academic hierarchies and
their relationship to persistent social and epistemicinequalities would
inform empirically anchored policies aimed at accelerating scientific
discovery or diversifying the professoriate.

Dataand approach

Our analysis examines tenured or tenure-track faculty employed in
the years 2011-2020 at 368 PhD-granting universities in the United
States, each of whom is annotated by their doctoral university, year
of doctorate, faculty rank and gender. To be included in our analysis,
a professor must be amember of the tenured or tenure-track faculty
at a department that appears in the majority of sampled years, which
yields n=295,089 faculty in 10,612 departments.
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This dataset resulted from cleaning and preprocessing alarger US fac-
ulty census obtainedunderadatause agreement withthe Academic Ana-
lyticsResearch Center (AARC). Tofacilitate comparisonsof faculty across
areas of study, we organized departments into 107 fields (for example,
Physics, Ecology) and eight domains (for example, Natural Sciences)
(Extended Data Table 1). Field labels, provided in the AARC data, and
subsequently hand-checked, are not mutually exclusive, such that
23% of faculty were assigned to multiple fields (for example, mem-
bers of a Department of Physics and Astronomy were assigned to
both Physics and Astronomy). For faculty associated with multiple
departments, we restricted our analyses to their primary appoint-
ments only. All doctoral universities were manually annotated by
country. Self-reported faculty genders were used when available, and
otherwise algorithmically annotated (man or woman) on the basis
of historical name-gender associations, recognizing that there are
expansive identities beyond this limiting binary. These procedures
resulted in gender annotations for 85% of records; faculty without
name-gender annotations were not included in analyses of gender
but were included in all other analyses. Comparing data collected in
adjacentyears, we also annotated allinstances of new hiring, retention
and attrition. Data preparation and annotation details can be found
in Methods.

Toanalyse patterns of faculty hiring and exchange among US univer-
sities, we created afaculty hiring network for each of the 107 fields, eight
domains and for academia as awhole (Methods). Insuchanetwork, each
node u represents a university, and a directed edge u > v represents
anindividual with a doctorate from u who becomes a professor at v.
Faculty employed at their doctoral universities, so-called self-hires,
arerepresented as self-loops u > u. When aggregating field-level hiring
into networks for the eight domains or for academiain toto, we take the
union of the constituent fields’ edges, which avoids double-counting
offaculty rostered in multiple fields. Anonymized data supporting our
analyses are freely available (Data availability).

Pre-eminence of US doctorates

In general, although our data show that US academia largely requires
doctoral training, the ecosystem of broad domains and specialized
fields exhibits diversity in its credential requirements. Fully 92.7% of
allfaculty hold doctoral degrees yet only 1% lack a doctorate in Social
Sciences compared with 19% in the Humanities (Fig. 1a). Even within
the Humanities there is wide variation, with only 7% of remaining fac-
ulty lacking a doctorateif one separates out the fields of Theatre (67%
non-doctorates), Art History (44%), Music (30%) and English (11%)
(Extended Data Fig. 1).

Thisvariationin credentialsis paralleled by US faculty trained inter-
nationally. Overall, our analysis finds that 11% of US faculty have non-US
doctorates yet only 2% of Education faculty received their doctorates
internationally compared with19% of Natural Sciences faculty (Fig. 1a).
However, internationally trained faculty primarily receive their training
from alimited range of geographical areas, with 35.5% trained in the
United Kingdom or Canada compared with just 5.4% from all countries
in Africaand the Americas, excluding Canada (Fig. 1b).

Our data suggest that differences in country of doctoral training
are not without consequence for the dynamics of the professoriate.
Using the 10 years of observationsin our data, we identified instances
of attrition and estimated the annual per-capita risk of attrition for
faculty trained in three groups of countries: Canada and the United
Kingdom, the United States, and all others. Those with doctorates
from Canada and the United Kingdom (n =11,156) left their faculty
positions at statistically indistinguishable rates compared with
US-trained faculty (n = 238,676) in all 107 fields and eight domains,
and at slightly lower rates overall (significance level a = 0.05, Benja-
mini-Hochberg-corrected x” test; Fig. 1c). In stark contrast, those with
doctorates from all other countries (n=20,689) left the US tenure

track at markedly higher rates overall, in all eight domains and in
39 individual fields (36%), and in no field did such faculty leave at
significantly lower rates (a = 0.05, Benjamini-Hochberg-corrected
x> test; Fig. 1d). We note that our data allow us to consider hypoth-
eses related only to country of doctoral training, not to country of
citizenship or birth, leaving open questions about foreign-born yet
US-trained faculty*.

Universal productioninequality

For faculty with US doctorates, we find that academiais characterized
by universally extreme inequality in faculty production. Overall, 80%
ofall domestically trained faculty in our datawere trained at just 20.4%
of universities. Moreover, the five most common doctoral training
universities—UC Berkeley, Harvard, University of Michigan, University
of Wisconsin-Madison and Stanford—account for just over one in eight
domestically trained faculty (13.8%; Fig. 2a and Extended Data Table 3).
Even when disaggregated into domains of study, 80% of faculty were
trained at only 19-28% of universities (Fig. 2b).

Our analysis shows that universities that employ more faculty gener-
ally also place more of their graduates as faculty elsewhere (Pearson
p=0.76, two-sided z-test P < 1075). Nevertheless, at the level of domains
and fields, faculty size alone cannot explain faculty production and
placement: in academia as a whole, in all eight domains and in 91 of
107 fields (85%), faculty size and production are from significantly
different distributions (Kolmogorov-Smirnov (K-S) test, Benjamini-
Hochberg-corrected P <107 for academia and domains, P < 0.01 for
fields), reproducing the findings of a previous analysis of faculty hiring
networks in Business, Computer Science and History?. For the remain-
ing 16 fields (15%), the hiring of one’s own graduates plays a key role:
when self-hires are excluded, the distributions of hiring and production
of only 12 fields (11%) remain statistically indistinguishable. In other
words, inequalities in university or department size do not explain
inequalities in faculty production.

The Gini coefficient is a standard way to quantify inequality in a
distribution, with G = 0 representing perfect equality and G =1 maxi-
mal inequality. We find that inequality in faculty production across
academia as a whole is both marked (G = 0.75) and greater than the
inequalitiesin seven of eight domains. Of those domains, inequality is
lowest in Education (G = 0.67) and Medicine and Health (G = 0.67) and
highest in the Humanities (G = 0.77). Similarly, inequality in faculty
production atthe domain levelis nearly always greater than production
inequality among a domain’s constituent fields. For instance, whereas
G=0.73for Engineering as awhole, Gini coefficients for the ten fields
within Engineering range from 0.58 to 0.68 and, overall, Gygmain > Ggiela fOT
104 of 107 fields (97%; Fig. 3a). Generally, field-level faculty production
distributions are heavy tailed and the universities comprising those
tails are similar across fields within a given domainand, more broadly,
across domains. Thatis, measurements of inequality in domestic faculty
production increase as aggregation or scale expands, because of
university-level correlationin faculty productionacross related fields
and domains.

Faculty production inequalities are rooted in hiring but are exac-
erbated by attrition. Computing the domestic production Gini
coefficients separately for newly hired faculty and their sitting col-
leagues across our longitudinal data frame, we find uniformly larger
inequalities for existing faculty in every field, every domain and in
academiaoverall (Fig. 3a). However, cross-sectional Gini coefficients,
computed separately for each year of observation, are stable over
time, a pattern that rules out asimple cohort effect that would over
time draw the Gini coefficients downward towards those of the newly
hired faculty (Fig. 3b). Combined, these observations suggest that
distributions of faculty production change after hiring in a man-
ner that increases observed inequalities. We tested this hypothesis
directly by modelling annual attrition risk as a function of faculty
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Fig.1|Composition and dynamics of the US professoriate by doctoral
training. a, Degrees of n=295,089 US faculty by domain, and for academia
overall, separated by non-doctoral degrees (solid bars), US doctorates (open
bars) and non-US doctorates (hatched bars). b, Continent of doctorate for
n=31,845faculty with non-US doctorates by domain. Within the Europe and
North Americabars, darkened regions correspond to faculty from the United
Kingdom and Canada, respectively. ¢,d, Ratios of average annual attrition risks

production rank. For academia as a whole, all eight domains and
49 of 107 fields (46%), we find substantially higher rates of attrition
among faculty trained at those universities that already produce
fewer faculty inthe first place (logistic regressions, two-sided ¢-test,
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among faculty with doctorates from Canada and the United Kingdom

(c) (n=11,156), and from all countries other than Canada, the United Kingdom
and the United States (d) (n=20,689), versus all US-trained faculty, for each
field (colours), domain (grey) and academia (blue), on logarithmic axes.
Circles, significantly different from 1.0, x* test, Benjamini-Hochberg-corrected
P<0.05; crosses, notsignificant.

Benjamini-Hochberg-corrected P < 0.05). Put differently, most
US-trained faculty come from a small number of universities and
those who do not are nearly twice as likely to leave the professoriate
on an annual basis (Fig. 3c).
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universities falling within each. By production, the first quintile contains only
eight universities and the bottom contains 308. b, Lorenz curves for faculty
productionatthefieldlevel (coloured lines) and at the domain level (grey lines).
Apointisplaced atthesite along the domain-level Lorenz curve where 80% of
faculty have been produced.
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Women on the tenure track

In addition to inequalities in production, our analysis expands on
well-documented gender inequalities®. Whereas the majority of
tenure-track US faculty in our data are men (64 %), we find substantial
heterogeneity by area of study with moderate change over time. For
instance, between 2011 and 2020, women'’s representation rose from
12.5t017.1% among faculty in Engineering and from 55.4 t0 58.5% among
faculty in Education (Fig. 4a). In fact, women'’s representation signifi-
cantly increased in academia overall, in all eight domains and in 80
(75%) of 107 fields (one-sided z-test, Benjamini-Hochberg-corrected
P <0.05; Fig.4a). Nursing, amajority-women field, is the single instance
in which the representation of women significantly decreased. The
representation of women among faculty is thus generally increasing,
even as women remain broadly under-represented.

Changesinthe overall representation of women over time could be
driven by many factors, including demographic changes in new hires
between2011and 2020 or simply demographic turnover—differences
betweenthose entering and those retiring or leaving the professoriate
beforeretirement. Investigating these potential explanations we first
found that, between 2011 and 2020, the proportion of women among
newly hired faculty did not change significantly in 100 of 107 fields
(93%) and significantly decreased in the remaining seven fields (7%).

function of university production rank by domain and for academia overall,
vialogistic regression, showing that university production rank s a significant
predictor of annual attrition risk (two-sided ¢-test, Benjamini-Hochberg-
corrected P<0.05) such that faculty trained at high-producing universities
leave academia at substantially lower rates than those trained atless
productive universities. The empirical average annual attrition rates vary
around thefitted curves.

However, by comparing the inflows of new hires with the outflows of
departing faculty over our decade of observation we found that, in
academia, all eight domains, and 103 of 107 fields (96%), newly hired
faculty were substantially more likely to be women than their departing
counterparts (Fig. 4b). This pattern in all-cause attrition is driven by
dramatic demographic turnover, with retirement-age faculty skewing
heavily towards men (Fig. 4c), implying that the overall increases in
women’s representation over this period of time (Fig. 4a) are primar-
ily due to changes in faculty hiring that predate our decade of obser-
vation. Importantly, the fact that women’s representation among
new hires has remained flat over the past decade, combined with the
observation that newly hired faculty are still more likely to be men
(inacademia, sixof eight domains (75%) and 75 0f 107 fields (70%); Fig.4b),
suggests strongly that future gender parity in academia—and espe-
cially in Science, Technology, Engineering and Mathematics (STEM)
fields—is unlikely without further changesin women'’s representation
among new faculty.

Self-hiring

Professors who are employed by their doctoral university, called self-
hires, account for roughly one in11(9.1%) of all US professorsin our data
(11% of US-trained professors). Whereas these rates remain generally

a b c
1007 1004 100
2 M Academia
@ ‘é B Applied sciences
757 757 ‘; 2 / 757 M Education
< <) o £ % & L= . :
x x z Z x B Engineering
= -0-0-0-0-0-0-0 < % <
S _ﬂ ______ S TN LN A\ S | . N\ _ B Humanities
g 50 g 50 — G 50
S ~ - -8 S l \3 .\o % M Mathematics and
= - 88000 —-0-O = = [N computing
25 6:8-4(3:8:8——6jazﬁ=fﬁ=6 254 \) \ 25 4 Y Medicine and health
8:8:9:9:9:9;9:9:9:@ ‘\_‘ M Natural sciences
B Social sciences
2012 2016 2020 1 10 20 30 40
Year

Fig.4|Changesingender demographics of US faculty. a, Representation of
women over time, coloured by domain and academia (n=162,408 men,
n=389,429 women). b, Line segments contrast percentages of womenamong
newly hired faculty (filled circles; n=59,007) and women among all-cause
attritions (open circles; n=90,978) for each of the 107 fields (colours), eight

Career age (years since doctorate)

domains (grey) and academia as awhole (blue). Line segments are grouped and
coloured by domain. ¢, Representation of women by career age, quantified by
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indicate empirical proportions, bands indicate 95% confidence intervals.
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low compared with other countries (for example, 36% in Russia**,
67%inSouth Africa®” and 73% in Portugal®), they are nevertheless con-
sistently greater than would be expected under a network-based null
model that randomizes hiring patterns while keeping faculty produc-
tion (outflow) and faculty hiring (inflow) fixed*¢. Self-hiring rates were
similarly higher than expected across individual fields, ranging from
1.1-fold higher in Theatre to 29.3-fold in Nursing. Self-hiring rates also
vary considerably by domain, being lowest in the Humanities (4.5%)
and Social Sciences (6.0%) and highestin Medicine and Health (16.7%;
Fig. 5a).

Previous work found that women were self-hired at higher rates than
men in Computer Science®’. We find overall that 11.2% of women are
self-hires compared with 8.2% of men (two-sided z-test for propor-
tions, Benjamini-Hochberg-corrected P <107; Fig. 5a). However, this
effect is driven by a minority of fields: only 26 (24%) showed differ-
ences in self-hiring rates by gender (two-sided z-test for proportions,
Benjamini-Hochberg-corrected P < 0.01), 25 of which featured more
frequent self-hiring among women than men. These differences are
particularly common in Medicine and Health, where in 12 of 18 fields
women are self-hired at significantly higher rates than men.

We also find that self-hires are at greater risk of attrition than
non-self-hires. In academia, self-hires in our data leave at 1.2-fold the
rate of other faculty and rates are similarly elevated in all eight domains,
as well asin 36 of 107 fields (34%; two-sided z-test for proportions,
Benjamini-Hochberg-corrected P <10~ foracademia, P < 0.05 for fields
and domains; Fig. 5b). Relative rates of self-hire attrition are highest
in CriminalJustice and Criminology and Industrial Engineering, at1.9-
and1.8-fold therate of other faculty, respectively. Only in Nursing was
therelative rate of self-hire attrition significantly below 1.0 (0.9-fold).
Itis unclear what drives these differences but, given the ubiquity of
self-hired faculty and differential rates of attrition, determining and
addressing the causes of this phenomenon would have awideimpact.

Ubiquitous hierarchies of prestige

If a faculty hiring market were to follow a strict social hierarchy, no
university would hire agraduate from a university less prestigious than
itsown—100% of faculty would hold positions of equal or lower prestige
than their doctoral training. The extent to which empirical faculty
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hiring networks follow perfect hierarchies has direct implications for
academic careers, the mobility of the professoriate and the flow of
scientific ideas>¥. Treating the flows of faculty between US universi-
ties as a network leads to a natural, recursive definition of prestige:
adepartmentis prestigiousifitsgraduates are hired by other prestigious
departments. We apply the SpringRank algorithm*® to each faculty
hiring network to find, in approximation, an ordering of the nodes
(universities) inthat network that best aligns with a perfect hierarchy;
this ordering represents the inferred hierarchy of prestige.

Faculty hiring networks in the United States exhibit a steep hierar-
chy inacademia and across all domains and fields, with only 5-23% of
faculty employed at universities more prestigious than their doctoral
university (Fig. 6a,b and Extended Data Table 4). Measured by the extent
towhichthey restrict such upward mobility, these prestige hierarchies
are most steep in the Humanities (12% upward mobility) and Math-
ematics and Computing (13%) and least steep in Medicine and Health
(21%; Fig. 6b). We tested whether these steep hierarchies could be a
natural consequence ofinequalities in faculty production and depart-
mentsize across universities, using a null model inwhichwe randomly
rewired the observed hiring networks while preserving out-degree
(placements) and in-degree (hires) and ignoring self-loops (self-hires)*.
For each rewired network we re-ranked nodes using SpringRank and
measured induced upward mobility as a test statistic (fraction of up-
hierarchy edges; Methods). For academia as a whole, all domains and
94 of107 fields (88%), empirical networks showed significantly steeper
prestige hierarchies than their randomized counterparts (one-sided
Benjamini-Hochberg-corrected P < 0.05; Fig. 6¢c and Extended Data
Table 5). No field was significantly less steep, although networks in
the fields of Pharmacy (P=0.88), Immunology (P= 0.77) and Pathol-
ogy (P=0.73) were less steep than null model randomizations most
frequently. In short, the prestige hierarchies that broadly define fac-
ulty hiring are universally steep, and often substantially steeper than
canbe explained by the ubiquitous and large productioninequalities.

Inferred prestige ranks of universities are also highly correlated
across fields, suggesting that many factors that drive field-level pres-
tige operate at the university level. Among pairwise correlations of
university prestige rankings across fields, the overwhelming majority
are positive (allbut 116 of 12,024) and nearly half (48%) have a correla-
tion >0.7 (Pearson’s p). Fields in Engineering, Mathematics and Com-
puting, and Humanities are particularly mutually correlated whereas
the field of Pathology is, on average, the least correlated with others
(mean correlation 0.2).

Patterns across field-level 'top-10' most prestigious departments
illustrate other aspects of the stark inequalities that define US faculty
hiring networks. Among the 1,070 departments thatare ranked top-10
inany field, 248 (23.2%) top-10 slots are occupied by departments at
just five universities—UC Berkeley, Harvard, Stanford, University of
Wisconsin-Madison and Columbia; fully 252 universities (64%) have
zero top-10 departments. These findings show that, both within indi-
vidual fields and across entire domains, faculty placement power is
highly concentrated among asmall set of universities, complementing
the already enormous concentration of faculty productionamong the
same set of universities (Fig. 2). Together, these patterns create network
structures characterized by a closely connected core of high-prestige
universities that exchange faculty with each other and export faculty
to—butrarelyimportthem from—universitiesin the network periphery
(Extended DataFig. 2).

As aresult of both systematic inequality in production and steep
social hierarchies, the typical professor isemployed at auniversity that
is18% further down the prestige hierarchy thantheir doctoral training
(Fig. 6a, Extended Data Table 6). Combined with sharply unequal fac-
ulty production (Fig. 2), this movement downward in prestige implies
that the typical US-trained professor can expect to supervise 2.4-fold
fewer future faculty than did their doctoral advisor. At the field level,
the typical professor who moves downward descends by between 28%
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Fig. 6 |Hierarchies of prestige. a, Prestige change from doctorate to faculty
jobinthe US faculty hiring network (n =238,281; Methods), with ranks
normalized to the unitintervaland 1.0 being the most prestigious. The
proportions of faculty at universities less prestigious than their doctorate are
annotated as 'move down' (openbars), at universities more prestigious than
their doctorates as 'move up' (hatched) and at the same university as self-hires
(solid). b, Rank change among faculty in the US faculty hiring network, by
domain, using the same shading scheme asin Fig.1a.c, Comparisonbetween

(Electrical Engineering) and 46% (Classics) of the prestige hierarchy
whereas the typical professor who moves upward, of whom there are
very few, ascends by between 6% (Economics) and 26% (Agronomy) of
the hierarchy. There was no significant difference in mobility between
menand womenin 82 of 107 fields, but of the 25 fields in which mobil-
ity did differ by gender (two-sided z-test for proportions, Benjamini—
Hochberg-corrected P < 0.05), women were less likely to move down
the prestige hierarchy and more likely to be self-hires (Extended Data
Table 6); 11 of those 25 fields were within the domain of Medicine and
Health. However, we found no significant differences in the magnitudes
of upward or downward movements between men and women for all
fields (K-S test, Benjamini-Hochberg-corrected a = 0.05).

Prestige helps explain more than just the flows of faculty between
US universities. For instance, across all domains, our analysis shows
that sitting faculty are markedly more likely to be self-hires as pres-
tige increases, yet this relationship is progressively weaker among
younger faculty cohorts (Extended Data Fig. 3) and is either attenu-
ated or not significant for new hires (two-sided t-test, Benjamini-
Hochberg-corrected a = 0.05; Extended Data Fig. 4a). By contrast,
new hires in all domains are substantially more likely to be trained
outside the United States as prestige increases, yet this relationshipis
either attenuated, not significant or even reversed for sitting faculty
(two-sided t-test, Benjamini-Hochberg-corrected a = 0.05; Extended
Data Fig. 4b). Although we observe no common relationship across
domains between prestige and gender, both new and existing fac-
ulty are more likely to be men as prestige increases for academia as
awhole (two-sided ¢-test, Benjamini-Hochberg-corrected P < 0.05;
Extended Data Fig. 4c). Together, these observations suggest com-
plicated interactions between prestige and the processes of hiring or
retaining women, one’s own graduates and graduates from abroad,
patterns that complement previously observed effects of prestige on
peer review outcomes***® and productivity**.

Discussion

As awhole, by domain and by field, US tenure-track faculty hiring is
dominated by asmall minority of US universities that train alarge major-
ity of all faculty and sit atop steep hierarchies of prestige. Just five US
universities train more US faculty than all non-US universities com-
bined. As we expand our view from fields to entire domains, inequali-
tiesin faculty production furtherincrease, reflecting elite universities’
positions at or near the top of multiple correlated prestige hierarchies

empirical hierarchies and those from1,000 draws froma null model of
randomly rewired hiring networks (Methods), quantified through upward
mobility. Fields above the diagonal reference line exhibit steeper hierarchies
than canbe explained by departmentsize and faculty production inequalities
alone. Circles, Benjamini-Hochberg-corrected P < 0.05, network nullmodel
(Methods); crosses, not significant; no field was significantly less steep than
expected. d, Heatmap of pairwise Pearson correlations between prestige
hierarchies of fields.

across fields. In principle, universities are on equal footing as both
producers and consumers in the faculty hiring market. However, the
observed patterns of faculty hiring indicate that the system is better
described as having a universal core-periphery structure, with modest
faculty exchange among core universities, substantial faculty export
from core to periphery and littleimportation in the reverse direction
or from outside the United States.

Althoughssignificant efforts have been made over many years to make
faculty hiring practices moreinclusive, our analysis suggests that many
inequalities at the faculty hiring stage are later magnified by differen-
tial rates of attrition. For instance, our analysis showed higher rates
of attrition among US faculty who were (1) trained outside the United
States, Canada or the United Kingdom, (2) trained at universities that
have produced relatively fewer faculty overall and (3) employed at their
doctoralalmamater. Combined with our observations of unchanging
proportions of these groups over time, these differential attrition rates
suggest adynamic equilibrium of countervailing patterns of hiring and
attrition. Identifying the causes of these elevated attrition ratesis likely
to provideinsights and opportunities toimprove retention strategies
for faculty of all kinds.

Our analyses of the hiring and retention of women faculty point to
stalled progress towards equal representation. Whereas women’s over-
allrepresentation hasincreased steadily across all eight broad domains
of study, women nevertheless remain under-represented among new
hiresin many fields, particularly in STEM, and women'’s representation
among newly hired faculty over the past decade has generally been
flat. As aresult, the continued increase in women’s overall represen-
tation can instead be attributed to the disproportionate number of
men among retiring faculty, across all domains. Continued increases
inwomen’s representation among faculty are therefore unlikely if the
past decade’s pattern remains stable.

Around one in 11 US professors are employed by their doctoral uni-
versity. Such high rates of self-hiring across fields and universities
are surprising, because academic norms treat self-hiring negatively—
for example, it is sometimes called 'academic inbreeding'™. Elevated
self-hiring rates may indicate an unhealthy academic system* because
self-hiring restricts the spread of ideas and expertise®, and many dec-
ades of study suggest that it can correlate with lower quantity and
quality of scholarship®***. In this light, the sharply elevated rates of
self-hiring at elite universities present a puzzle®, with uncertain epis-
temological consequences, yet these trends seem to be driven less by
recent new hires and more by attrition or hiring patterns preceding
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our decade of observation. Overall, high rates of self-hiring persist in
spite of (not because of) differential rates of attrition, with self-hires
leaving US academia at higher rates in most fields, all domains and
academiaoverall.

Our analyses describe system-wide patterns and trends, and hence
saylittleaboutindividual faculty experiences or the causal factors that
predict the outcomes of individual faculty placements in the US aca-
demic system®. At best, our results provide statistical estimates for the
directionand distance of faculty placements up or down afield’s prestige
hierarchy, and they should not be used to inform or shape expectations
of real hiring decisions. In other words, even though there are clear
and strong patterns at the system level, the considerable variance in
outcomes at the individual level shows that pedigree is not destiny.

One limitation of the present work is that, although doctoral uni-
versities were known, doctoral departments were not. Hence, our
estimates of self-hiring rates reflect faculty employed by any depart-
ment at their doctoral university, but not necessarily by their doctoral
department. Our analyses therefore estimate only upper bounds on
department-level self-hiring. Similarly, our estimates of productionand
prestigeinequalities inindividual fields reflect the volume and power
of universities placing faculty into those fields, but not necessarily the
volume of graduates produced by those fields or the related fields into
which they may be hired®.

Our data also lack self-identified demographic characteristics and
national origin, which limits the conclusions we may draw about the
interaction between faculty hiring and representation by race, gen-
der, socioeconomic background and nationality, and any intersec-
tional analyses thereof. For instance, whereas we observe that faculty
trained outside the United States constitute 2-19% of US faculty across
domains, the fraction of US faculty born outside the United States is
considerably higher*. Given our identification of markedly higher
attrition rates for faculty trained outside the United States, Canada
and the United Kingdom, an investigation of attrition by national ori-
gin could help identify its causes and address its differential impacts.
Our approach also relies on cultural associations between name and
binary man-woman genders, leaving the study of self-identified and
more expansive identities, as well as intersectional representation
more broadly, as open lines of enquiry.

Although our analysis shows that the clear cross-sectional patterns
in faculty demographics and hiring networks are shaped by complex
and evolving patterns of hiring and attrition alike, our analysis does
not causally identify the mechanisms responsible. Our observations
of clustered patterns among fields within the same domain suggest a
role for domain-level macrocultures®. Strong correlations between a
university’s ranks across different fields may indicate status signalling,
theimpacts of elite universities’ resources onindividuals’ productivity
and prominence®, or other factors entirely. And, clear cohort effects—
particularly in the representation of women—show non-stationarity
in the patterns we observe and in the latent factors that drive them.
Critically, future progress inunderstanding the causal factors shaping
the US professoriate must investigate the factors that drive differential
attrition, including those related to social identity, doctoral training
(bothabroad and domestically) and university of employment. Under-
standing the underlying causes of these differential attrition rates
would surely inform efforts and policies aimed at mitigating social
inequalities by improving equity and representation, which is likely
to shape what discoveries are made and who makes them.
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Methods

Data preparation overview

Thedatausedinouranalyses are based onacensus of the USacademic
market obtained under adata use agreement with AARC. That unpro-
cessed dataset consisted of the employment records of all tenured or
tenure-track faculty at all 392 doctoral-degree-granting universities
in the United States for each year between 2011 and 2020, as well as
records of those faculty members’ most advanced degree. We cleaned,
annotated and preprocessed that unprocessed dataset to ensure con-
sistency and robustness of our measurements, resulting in the data
used in our analyses.

Cleaning the original dataset involved nine steps, which were per-
formed sequentially. After cleaning, we augmented the processed
dataset with two pieces of extrainformation to enable further analyses
of faculty and universities, by annotating the country of each university
and the gender of each professor. The nine preparation steps and two
annotation steps are described below.

Data preparation steps

The first step in preparing the dataset was to de-duplicate degree-
granting universities. These universities are in our dataeither because
they were 'employing' universities covered by the AARC sample frame
(alltenure-track faculty of US PhD-granting universities) or because they
were 'producing’ universities at which one or more faculty members
inthe AARC sample frame obtained their terminal degree (university,
degree, year). Producing universities include those based outside
the United States and those that do not grant PhDs. Thus, due to the
AARC sample frame, all employing universities are US-based and PhD
granting, and this set of 392 universities did not require preprocessing.
On the other hand, producing universities—those where one or more
employed faculty earned a degree—may or may not be PhD granting
and may or may not be located in the United States.

Producing universities were cleaned by hand: instances in which
single universities were represented in multiple ways (‘University of
Oxford'and 'Keble College’, forexample) were de-duplicated and, inthe
rareinstancesinwhich a degree referenced an unidentifiable university
('Medical University, England’, for example), the degrees associated
with that 'university' were removed but the individuals holding those
degrees were not removed.

The second step in preparing the dataset was to clean faculty mem-
bers' degrees. Terminal degrees are recorded for 98.2% of faculty in
the unprocessed data: 5.7% of these degrees are not doctorates (5.3%
are Master’s degrees and 0.4% are Bachelor’s degrees). We treated all
doctoral degrees as equivalent—for example, we drew no distinction
between a PhD and a D.Phil. We note that faculty without doctorates
are distributed unevenly throughout academia, with members in the
Humanities and Applied Sciences being least likely to have a doctoral
degree (Extended Data Fig.1).

Faculty without doctorates were included in analyses of gender.
They were also included inthe denominators of self-hiring rate calcu-
lations but, possessing no doctorates, they were never considered as
potentially self-hires, themselves. Faculty without a doctorate were not
includedin analyses of production and prestige, which were restricted
to faculty with doctorates.

The third step in preparing the dataset was to identify and de-
duplicate departments. We ensured that no department was repre-
sented multiple different ways, by collapsing records due to (1) multiple
representations of the same name (for example, 'Computer Science
Department' versus 'Department of Computer Science') and (2) depart-
mental renaming (for example, 'USC School of Engineering' versus
'USC Viterbi School of Engineering'). Although rare instances of the
dissolution or creation of departments were observed, we restricted
analyses that did not consider time to those departments for which
datawere available for amajority of years between2011and 2020, and

restricted longitudinal analyses to only those departments for which
datawere available for all years.

Thefourthstepin preparing the dataset wasto annotate each depart-
mentaccording to atwo-level taxonomy based on thefield (fine scale)
and domain (coarse scale) of its focus. This taxonomy allowed us to ana-
lyse faculty hiring atboth levels, and to compare patterns between lev-
els.Extended Data Table 1contains acomplete list of fields and domains.

Most departmentsreceived just one annotation, but somereceived
multiple annotations due to their interdisciplinarity. This choice was
intentional, because the composition of faculty in a 'Department of
Physics and Astronomy' is relevant to questions focused on the com-
position of both ('Physics, Natural Sciences') and ('Astronomy, Natu-
ral Sciences'). On the basis of this premise, we include both (or all)
appropriate annotations for departments. For instance, the above
hypothetical department and its faculty would be included in both
Physics and Astronomy analyses. The basic unit of datain our analysesis
therefore the individual-discipline pair. A focus on the individual would
be preferable, but would require taxonomy annotations of individuals
rather than departments—information we do not have. Furthermore,
many individuals are likely to consider themselves to be members of
multiple disciplines.

Whenever a university had multiple departments within the same
field, those departments were considered as one unit. Toillustrate how
this was done, consider the seven departments of Carnegie Mellon’s
School of Computer Science. All seven departments were annotated
as Computer Science and treated together in analyses of Computer
Science.

Some fields have the potential to conceptually belong to multiple
domains. For example, Computer Engineering could be reasonably
included in the domain of either Formal Sciences (whichincludes Com-
puter Science) or Engineering (which includes Electrical Engineering).
Similarly, Educational Psychology could be reasonably includedin the
domain of Education or of Social Sciences. In these instances, we asso-
ciated each such field with the domain that maximized the fraction of
faculty whose doctoral university had a department in that domain. In
other words, we matched fields with domains using the heuristic that
fields are best associated with the domains in which their faculty are
most likely to have been trained.

The fifth step in preparing the dataset was to remove inconsistent
employmentrecords. Rarely, faculty in the dataset seem to be employed
at multiple universities in the same year. These cases represent situa-
tionsinwhich a professor made a mid-career move and the university
from which they moved failed to remove that professor from their
public-facing records. We removed such spurious and residual records
foronly the conflicting years, and left the records of employment pre-
ceding such mid-career moves unaltered. This removed only 0.23% of
employment records.

Thesixthstepin preparing the dataset was to impute missing employ-
ment records. Rarely, faculty disappear from the dataset only to later
reappear in the department they left. We considered these to be spu-
rious 'departures’, and imputed employment records for the missing
years using the rank held by the faculty before becoming absent from
the data. Employment records were not imputed if they were associ-
ated with a department that did not have any employment records in
the givenyear. Imputations affected 1.3% of employment records and
4.7% of faculty.

Theseventh stepin preparing the dataset was to exclude non-primary
appointments such as professors’ associations or courtesy/emeri-
tus appointments with multiple departments. We identified primary
appointments by making the following two assumptions. First, if a
professor was observed to have just one appointment in a particular
year, then that was their primary appointment for that year—as well
as for any other year in which they held that appointment (including
years with multiple observed appointments). This corresponds to a
heuristic that faculty should appear on the roster of their primary unit



before appearing on non-primary rosters. Second, if a professor was
observed to have appointments in multiple units, and a promotion
(for example, from Assistant Professor to Associate Professor) was
observed in one unit’s roster but notin another’s, it was assumed that
the non-updating unitis not aprimary appointment. This corresponds
to a heuristic that, if units vary in when they report promotions, it is
more likely that the primary unit is updated first and thus units that
update more slowly are non-primary.

Primary appointments could not be identified for 1.2% of faculty,
and 5.5% of appointments were classified as non-primary. Field- and
domain-level analyses were restricted to primary appointments, but
analyses of academiaincluded faculty regardless of whether their pri-
mary appointment(s) could be identified, under the assumption that
employment in a tenure-track position implies having some primary
appointment, identifiable or not.

The eighth step in preparing the dataset was to carefully handle
employment records with mid-career moves so that each faculty
member was associated with only a single employing university.
Mid-career moves do not alter a professor’s doctoral university or
gender, and so cannot affect measurements such as a discipline’s
faculty production Gini coefficient, its gender composition or the
fraction of faculty within the discipline that holds a degree from out-
side the United States. However, mid-career moves have the potential
to alter a discipline’s self-hire rate and the steepness of its prestige
hierarchy. This raises important questions for how one should treat
mid-career moves when performing calculations that average over
our decade of observations—should one analyse the appointment
before or the appointment after the move(s)?

First we chose to use, whenever possible, the most recent employ-
ing university of each professor. In other words, if a professor was
employed at multiple universities between 2011 and 2020, only that
university where they were most recently employed was considered.
Second, we checked that this choice did not meaningfully affect our
analyses of self-hiring or prestige, because 6.9% of faculty made a
mid-career move within our sample frame. To evaluate the impact of
this choice onself-hiring analyses, we first calculated self-hiring rates
on the basis of faculty members’ first employing university (that is,
their pre-mid-career-move university if they had amid-career move).
We then calculated self-hiring rates on the basis of faculty members’
last employing university (that s, their post-mid-career-move univer-
sity if they had a mid-career move). Comparing these two estimates
we found that, across all 107 fields, eight domains and academia,
mid-career moves had no significant effect on our measurements of
self-hiring rates (two-sided z-test for proportions, a = 0.05, n = 295,089
facultyinbothsamples). To evaluate the impact of this choice on pres-
tige hierarchies, we first calculated the upward mobility in rank-sorted
faculty hiring networks on the basis of faculty members’ first employ-
ing university (that s, their pre-mid-career move university if they
had amid-career move). We then followed the same procedure but on
the basis of faculty members’ last employing university (that is, their
post-mid-career move university if they had amid-career move). Com-
paring these two approaches, we found that mid-career moves did not
significantly alter upward mobility in any field or domain (two-sample,
two-sided z-test for proportions, Benjamini-Hochberg-corrected
a=0.05; see Extended Data Table 1 for n). At the academia level,
taking the most recent university rather than the first university
among mid-career moves resulted in 0.7% more upwardly mobile
doctorate-to-faculty transitions (two-sample, two-sided z-test for
proportions, Benjamini-Hochberg-corrected P < 0.05, n = 238,281
inboth samples).

The ninth and final step in preparing the dataset was to exclude
departments that were inconsistently sampled. Not all departments
inthe unprocessed dataset were recorded by the AARC in all years, for
reasons outside the control of the research team. To ensure robust-
ness of results, werestricted our analyses that did not consider time to

those departments that appeared in a majority of years between 2011
and 2020. Thisresulted in the removal 0of1.8% of employment records,
3.4% of faculty and 9.1% of departments. Additionally, 24 employing
universities (6.1%) were excluded by this criterion, most of which were
seminaries.

Annotations

The country of each producing university was determined by hand.
First, Amazon Mechanical Turk was used to gather initial annota-
tions. Each university was annotated by two different annotators.
Inter-annotator agreement was >99% and disagreements were readily
resolved by hand. To ensure no errors, a second pass was completed
by the researchers and resulted in no alterations.

Self-identified gender annotations were provided for 6% of faculty
in the unprocessed dataset. To annotate the remaining faculty with
gender estimates, we used a two-step process based on first and last
names. First, complete names were passed to two offline dictionaries: a
hand-annotated list of faculty employed at Business, Computer Science
and History departments (corresponding to the data used in ref. ) and
the open-source python package gender-guesser®. Both dictionaries
responded with one of the following classifications: female, male or
unable to classify. Second, for cases in which the dictionaries either
disagreed or agreed but were unable to assign a gender to the name,
we queried Ethnea*® and used the gender to which they assigned the
name (if any). Using this approach we were able to annotate 85% of
faculty with man or woman labels. Faculty whose names could not be
associated with a gender were excluded from analyses of gender but
included in other analyses. This methodology associates names with
binary (man/woman) labels because of technical limitations inherentin
name-based gendering methodologies, but we recognize that gender
isnon-binary. The use of these binary gender labels is not intended to
reinforce a gender binary.

Per-analysis inclusion criteria

The prepared and annotated dataset contained 295,089 individuals
employed at 368 universities, and was used as the basis of all of our
analyses. Insome analyses, furtherinclusion criteria were applied but
with the guiding principle that analyses should be as inclusive as pos-
sible and reasonable. For example, analyses of the professoriate by
gender considered only faculty with a gender annotation but did not
require members to hold a doctorate. Analyses of prestige, onthe other
hand, considered only those faculty with doctorates from US univer-
sities but did not require that faculty have a gender annotation. The
aim of these inclusion criteria was to ensure the robustness of results
while simultaneously being maximally inclusive. When an analysis
fell into more than one of the above categories, inclusion criteria for
all categories were applied. For example, when analysing changes in
US faculty production over time, inclusion criteriafor analyses of both
US faculty production and over time were applied.

Some fields and domains were excluded from field- or domain-level
analyses, either because they were too small or because they were
insufficiently self-contained. Faculty in excluded fields were never-
theless included in domain- and academia-level analyses, and those
in excluded domains were nevertheless included in academia-level
analyses (Extended Data Table 2).

Two domains were excluded from domain-level analysis: (1) Public
Administration and Policy and (2) Journalism, Media and Communi-
cations. These domains were excluded because they employed far
fewer faculty than other domains, and because their inclusion made
domain-level comparisons difficult.

Fields were included in field-level analyses only if (1) at least 25% of
universities had adepartmentin that field or (2) the number of faculty
with a primary appointment in that field, and who also earned their
doctorate from a university that had a department in that field, was
>500. These requirements were intended to ensure the coherence of
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fields for analyses of production and prestige. For information on the
number of faculty excluded from field-and domain-level analyses, see
Extended Data Table 2.

Analyses of production and prestige included only faculty who hold
aUSdoctorate. Faculty withouta doctorate are asmall minority of the
populationin most fields, and were excluded because their degrees are
not directly comparable to doctorates. Faculty with non-US doctor-
ates were excluded because the universities that produced them are
outside the sample frame.

For alllongitudinal analyses, we required departments to be sampled
inallyearsbetween 2011and 2020 to ensure consistency in the sample
frame. This resulted inthe removal of 5.9% of employment records, 7.2%
of faculty and 12.6% of departments for those analyses. Additionally,
15 employing universities (4.1%) were excluded by this criterion.

Identification of new hires

Some analyses required us to divide faculty into two complementary
sets: new hires and existing faculty. For analyses that aggregated fac-
ulty over our decade of observation, we labelled faculty as new hires if
they earned their degree within 4 years of their first recorded employ-
ment as faculty. Thus defined there are 59,007 new faculty, making up
20.0% ofthe faculty in the dataset. Our longitudinal analyses were more
strict, such that faculty were labelled asnew only in their first observed
year of employment, but were considered as existing faculty for each
observed year thereafter.

Identification of attrition and calculation of attrition risk

A professor who leaves academia for any reason constitutes an attri-
tion, including retirement, termination of employment for any reason,
acceptance of a position outside our sample frame (for example, in
industry, government or a university outside the United States) or
death. Our unprocessed data do not allow us to identify reasons for
attrition. A professor’s last year of employment is considered the
year of their attrition when counting attritions over time. Faculty
who change disciplines are not considered to be attritions from dis-
ciplines they leave. Because attritions in a given year are identified
through comparison with employment records in the next, attrition
analyses do not include the final year of the sample frame (2020).
Faculty were counted as an attrition at most once; a professor who
appeared to leave multiple times was considered an attrition only on
exiting for the last time.

Attrition risk is defined, for a given set of faculty in a given year, as
the probability that each professor in that set failed to appear in the
setinthe nextyear—thatis, the proportion of observed leaving events
among possible leaving events on an annual basis. Thus, all attrition
risks as stated in this study are annual per-capitarisks of attrition. Aver-
age annual attrition risks were formed by counting all attrition events
and dividing by the total person-years at risk.

Faculty hiring networks
Faculty hiring networks represent the directed flows of faculty from
their doctoral universities to their employing universities. As such,
eachnodeinsuchanetworkrepresentsauniversity and each weighted,
directed edge represents the number of professors trained at one uni-
versity and who are employed at the other. For the purposes of the
faculty hiring networks analysed here, werestrict the set of nodes to, at
most, those employing universities within the AARC sample frame. This
means that nodes representing non-US universities are not included,
and therefore the edges that would link them to in-sample universities
are also not included. Without loss of generality, we now describe in
more precise detail the creation of a particular field’s faculty hiring
network, but this process applies equivalently for both domains and
academiaasawhole.

First, universities were included in a field only if they had a unit
(for example, a department, or departments) associated with that

field. As aresult, a university appears in the rankings for a field only
if it has a representative unit; without a Department of Botany, a
university cannot be ranked in Botany. Second, ranks are identifi-
able from patterns in faculty hiring only if every unit employs at
least one individual in that field who was trained at a unit that also
employs faculty in that field. Phrased from the perspective of the
faculty hiring network, this requirement amounts to ensuring that
the in-degree of every node is at least one. Because the removal of
one unit (based onthe above requirements) might cause another to
fail to meet the requirements, we applied this rule repeatedly until
it was satisfied by all units.

The outcome of this network construction process is a weighted,
directed multi-graph A% such that: (1) the set of nodesi=1,2,...represent
universities with a department or unitin field k. (2) The set of edges
represent hiring relationships, such that A is an integer count of the
number of faculty in field k who graduated from i and are employed at .
ThusA®isapositive, integer-weighted, non-symmetric, network adja-
cency matrix for field . (3) The out-degree d© = Zj APisgreater than
or equal to one for every node i, meaning that every university has
placed at least one graduate in field k. (4) Thein-degreed = ¥, Ais
greater than or equal to one for every node j, meaning that every uni-
versity has hired at least one graduate from field .

Toinfer ranksin faculty hiring networks meeting the criteria above,
we used the SpringRank algorithm*® without regularization, producing
ascalar embedding of each network’s nodes. Node that embeddings
were converted to ordinal rank percentiles. (In principle, embeddings
may produce ties requiring a rule for tie-breaking when converting
to ordinal ranks. However, no ties in SpringRanks were observed in
practice).

To determine whether properties of an empirically observed hier-
archy in a faculty hiring network could be ascribed to its in-degree
sequence (unit sizes) and out-degree sequence (faculty production
counts) alone, we generated an ensemble of n=1,000 networks
withidentical in- and out-degrees that were otherwise entirely ran-
dom, using a degree-preserving null model called the configuration
model**®°, We excluded self-hires (that is, self-loops) from randomi-
zationin the configuration model for a subtle but methodologically
important reason. We observed that self-hires occur at much higher
rates in empirical networks than expected under a configuration
model. As aresult, were we to treat self-hires as links to be randomized,
the process of randomization would, itself, increase the number of
inter-university hires from which ranks were inferred. Because of the
fact that SpringRank (or an alternative algorithm) infers ranks from
inter-university hires, but not self-hires, the act of 'randomizing away'
self-hires would thus distort ranks, as well as the number of poten-
tial edges aligned with (or aligned against) any inferred hierarchy.
In short, randomization of self-hires would, in and of itself, distort
the null distribution against which we hope to compare, dashing
any hope of valid inferences to be drawn from the exercise. We note,
with care, that when computing the fraction of hires violating the
direction of the hierarchy, either empirically or in the null model,
we neverthelessincluded self-hiresin the total number of hires—that
is, the denominator of said fraction. These methodological choices
follow the considerations of the configuration model 'graph spaces’
introduced by Fosdick et al.*¢.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All network data associated with this study and all data contained in
Extended Data tables are freely available in machine-readable format
athttps://doi.org/10.5281/zenodo0.6941651. Explorable visualizations
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of faculty hiring networks and university ranks are available at https://
larremorelab.github.io/us-faculty/. Source data are provided with
this paper.

Code availability

Open-source code related to this study is available at https://doi.org/
10.5281/zen0do.6941612.
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Extended DataFig.1|Proportions of faculty without doctoral degrees.
Eachtransparentcircle represents one of 107 fields, coloured and grouped by
domain. Filled grey circles represent domain-level estimates. A single blue
circle (left) represents U.S.academia overall. Fields for which more than 10% of
faculty donot have adoctorate are annotated.
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Extended DataFig. 2| University network centrality as afunction of
prestige. Lines are coloured by domain, and show the mean geodesic distance
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values toward the left side indicate that more prestigious universities are more
centrallylocated in each faculty hiring network; less prestigious universities
aremore peripherally positioned. All universities belong to the network’s
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Extended DataFig. 3 |Self-hirerates as afunction of prestige and career
age. Logisticregression coefficients, expressed aschangeinlog-odds of being
aself-hire foraone-decileincreasein prestige, stratified by domain (colours) or
academia (blue), and by four bins of career age as indicated. Circles, significant
by two-sided t-test, Benjamini-Hochberg corrected p <.05; crosses, not
significant.
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Extended DataFig. 4 | Effects of prestige. Logistic regression coefficients,
expressed as achangeinlog-odds of faculty being a self-hire (a), being a
non-U.S. faculty (b), orawoman (c) for aone-decileincreasein prestige,
stratified by domain (colours) and academia (blue), for newly hired faculty
(filled symbols) and for existing faculty (hollow symbols) and connected by a
line. Circles, significant (two-sided t-test, Benjamini-Hochberg corrected
p>0.05); crosses, not significant. (a) Existing faculty are more likely to be
self-hires at more prestigious universities, but this effect attenuates or

-1

disappears for new hires, indicating that the positive relationship between
self-hiring and prestige is likely driven by attrition. (b) Newly hired faculty are
more likely to hold anon-U.S. doctorate than existing faculty. This likely results
from higher rates of attrition among faculty with anon-U.S. doctorate (Fig. 1c).
(c) We observe no universal relationship across domains between prestige and
gender, butboth new and existing faculty are somewhat more likely to be men
as prestigeincreases foracademiaasawhole.
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Extended Data Table 1| Hierarchical taxonomy of academia

% of % of % of % of

Domain | Field n faculty domain academia Domain | Field n faculty domain academia
Applied Sciences 30,665 — 10.4 Medicine & Health 54,849 — 18.6
Accounting 2995 9.8 Communication Disord.& Sci. 1282 2.3
Agronomy 1119 3.6 Environmental Health Sci. 1295 2.4
Animal Sciences 1913 6.2 Epidemiology 2711 4.9
Architecture 2900 9.5 Exercise Sci., Kines., Rehab 5467 10.0
Business Administration 3175 10.4 Genetics 1266 2.3
Finance 3275 10.7 Health, Phys. Ed., Recreation 1442 2.6
Food Science 1377 4.5 Human Dev. & Family Sci. 2162 3.9
Horticulture 907 3.0 Immunology 3330 6.1
Management 5536 18.1 Nursing 7931 14.5
Management Information Sys. 1882 6.1 Nutrition Sciences 2161 3.9
Marketing 2682 8.7 Pharmaceutical Sciences 2568 4.7
Plant Sciences 1611 5.3 Pharmacology 3260 5.9
Soil Science 1235 4.0 Pharmacy 2069 3.8
Urban & Regional Planning 1369 4.5 Physiology 3601 6.6
Education 13,980 — 4.7 Public Health 5882 10.7
Counselor Education 1687 12.1 Social Work 3653 6.7
Curriculum & Instruction 3548 25.4 Speech & Hearing Sciences 992 1.8
Education 3227 23.1 Veterinary Medical Sciences 3915 7.1
Education Administration 3362 24.0 Natural Sciences 70,791 — 24.0
Special Education 1314 9.4 Anatomy 2109 3.0
Engineering 29,443 — 10.0 Astronomy 3401 4.8
Aerospace Engineering 2557 8.7 Atmosph.Sci. & Meteorology 1549 2.2
Agricultural Engineering 2598 8.8 Biochemistry 6419 9.1
Civil Engineering 4415 15.0 Biological Sciences 8641 12.2
Electrical Engineering 7404 25.1 Biomedical Engineering 2691 3.8
Environmental Engineering 3619 12.3 Biophysics 1565 2.2
Industrial Engineering 1765 6.0 Biostatistics 2069 2.9
Materials Engineering 2517 8.5 Cell Biology 4260 6.0
Mechanical Engineering 6317 21.5 Chemical Engineering 3057 4.3
Operations Research 1394 4.7 Chemistry 7043 9.9
Systems Engineering 1357 4.6 Ecology 1382 2.0
Humanities 50,610 — 17.2 Entomology 1121 1.6
Art History & Criticism 3046 6.0 Environmental Sciences 3014 4.3
Asian Languages 641 1.3 Evolutionary Biology 1020 1.4
Asian Studies 766 1.5 Forestry & Forest Resources 1444 2.0
Classics & Classical Languages 1603 3.2 Geology 4287 6.1
Comparative Literature 753 1.5 Marine Sciences 1525 2.2
English Language & Literature 8924 17.6 Microbiology 4547 6.4
French Language & Literature 820 1.6 Molecular Biology 4005 5.7
Germanic Languages & Lit. 725 1.4 Natural Resources 1821 2.6
History 7256 14.3 Neuroscience 3403 4.8
Linguistics 1191 2.4 Pathology 6530 9.2
Music 6269 12.4 Physics 7678 10.8
Near/Mid. Eastern Lang./Cultures 540 1.1 Plant Pathology 1073 1.5
Philosophy 3718 7.3 Social Sciences 38,019 — 12.9
Religious Studies 1876 3.7 Agricultural Economics 1216 3.2
Slavic Languages & Literatures 534 1.1 Anthropology 3862 10.2
Spanish Language & Literature 1191 2.4 Crim. Justice & Criminology 1585 4.2
Theatre Literature, History & Crit. 2106 4.2 Economics 6052 15.9
Theological Studies 2131 4.2 Educational Psychology 1890 5.0
Math & Computing 25,969 — 8.8 Gender Studies 648 1.7
Computer Engineering 6805 26.2 Geography 2228 5.9
Computer Science 8080 31.1 International Affairs 1717 4.5
Information Science 1915 7.4 Political Science 5710 15.0
Information Technology 1780 6.9 Psychology 8963 23.6
Mathematics 8921 34.4 Sociology 4727 12.4
Statistics 3401 13.1

Domains (e.g. Natural Sciences, or Medicine and Health; highlighted, bold italics) contain Fields (e.g. Physics, or Nutritional Sciences). Columns show the number of faculty in each field and
domain, with percentages showing the relative proportions of fields in domains, and domains in academia. We note that percentages need not sum to 100, as some faculty appear in multiple
fields or domains (Methods). See Data Availability for complete machine-readable data and taxonomy.



Extended Data Table 2 | Faculty excluded from field- and domain-level analyses

% of academia excluded

Domain % of domain excluded

Applied Sciences 10.59% (3358)
Education 16.01% (2429)
Engineering 7.7% (2331)
Humanities 19.77% (10,255)

Journalism, Media, Communication
Mathematics & Computing
Medicine & Health

Natural Sciences

Public Administration & Policy
Social Sciences

1.45% (389)
7.87% (4532)
5.47% (4026)

3.21% (1253)

1.93% (5899)

0.56% (1725)

Some fields and domains included in the original AARC data were excluded from field- or domain-level analysis due to their small size. For domains that contained at least one excluded field, a
column shows the percentage of faculty employed in that domain who were excluded from field-level analyses. For the two domains that were excluded from domain-level analyses, we show
the percentage of faculty employed in academia who were excluded from domain-level analyses (see Methods).
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Extended Data Table 3 | Faculty production ranks by university

% of faculty % of faculty

# University produced # University produced
1 UC Berkeley 3.32 51 Brown 0.61
2 Harvard 3.05 52 UMass Amherst 0.59
3 U Michigan 2.58 53 U Kentucky 0.59
4 U Wisconsin-Madison 2.41 54 Vanderbilt 0.58
5 Stanford 2.39 55 UC Santa Barbara 0.57
6 U lllinois Urbana-Champaign 217 56 Carnegie Mellon 0.57
7 MIT 2.14 57 Georgia Tech 0.57
8 UT Austin 1.96 58 University at Buffalo (SUNY) 0.54
9 Cornell 1.85 59 LSU 0.54
10 Columbia 1.79 60 U Tennessee 0.54
11 Yale 1.78 61 U Utah 0.53
12 U Chicago 1.75 62 U Nebraska-Lincoln 0.52
13 U Minnesota Twin Cities 1.7 63 SUNY Stony Brook 0.48
14 UCLA 1.68 64 Boston U 0.48
15 Ohio State U 1.64 65 U lllinois Chicago 0.46
16 UPenn 1.59 66 Case Western Reserve 0.46
17 Princeton 1.47 67 U Cincinnati 0.45
18 UW 1.45 68 UConn 0.45
19 Purdue 1.43 69 Colorado State 0.43
20 Penn State 1.43 70 UC Irvine 0.42
21 UNC 1.42 71 Emory 0.42
22 Indiana University Bloomington 1.34 72 Syracuse 0.4
23 Michigan State 1.34 73 U Oklahoma 0.39
24 Northwestern 1.17 74 U South Carolina 0.39
25 Johns Hopkins 1.16 75 Washington State 0.39
26 U Florida 1.14 76 Oklahoma State 0.37
27 Texas A\&M 1.12 77 U Oregon 0.36
28 NYU 1.08 78 Texas Tech 0.36
29 U Maryland College Park 1.05 79 Oregon State 0.35
30 U Arizona 0.98 80 U New Mexico 0.34
31 Duke 0.92 81 UC San Francisco 0.33
32 U Georgia 0.9 82 Temple 0.32
33 U Pittsburgh 0.89 83 Kansas State 0.32
34 U lowa 0.89 84 U Notre Dame 0.32
35 UC San Diego 0.84 85 Rice 0.3
36 U Southern California 0.83 86 U Houston 0.29
37 UC Davis 0.82 87 U Miami 0.28
38 U Virginia 0.8 88 Wayne State 0.28
39 Florida State 0.75 89 U South Florida 0.28
40 Virginia Tech 0.74 90 U Alabama 0.28
41 Rutgers - New Brunswick 0.72 91 U Alabama at Birmingham 0.28
42 Arizona State 0.7 92 Kent State 0.27
43 Caltech 0.67 93 Auburn 0.27
44 CU Boulder 0.67 94 Brandeis 0.26
45 U Rochester 0.64 95 U Delaware 0.25
46 U Missouri 0.64 96 George Washington 0.24
47 lowa State 0.64 97 West Virginia 0.24
48 North Carolina State 0.63 98 UC Riverside 0.23
49 Washington U in St. Louis 0.62 99 Mississippi State 0.23
50 U Kansas 0.62 100 Tulane 0.23

The 100 US universities that produced the most faculty across fields are shown in descending order, as well as the percent of all n=238,676 US-trained faculty produced by those universities.
University names are compressed to save space using common abbreviations; see Data Availability for complete machine-readable data.



Extended Data Table 4 | Prestige ranks, hiring, and placement, in US academia

faculty faculty faculty faculty

grads grads hired hired grads grads hired hired

placed placed from from placed placed from from

# University downward upward lower higher # University downward upward lower higher
1 MIT 4711 0 833 0 51 U Virginia 1416 336 409 1059
2 Caltech 1519 51 264 36 52 U Southern California 1197 398 300 1398
3 Princeton 3336 76 644 84 53 Scripps Research (California) 61 60 45 106
4 Stanford 5247 215 920 224 54 U Pittsburgh 1379 387 424 1061
5 Harvard 6260 464 1035 374 55 Rensselaer Polytechnic Institute 308 70 76 256
6 UC Berkeley 7168 447 780 579 56 Michigan State 2344 497 638 1421
7 U Chicago 3878 220 536 462 57 Penn State 2448 628 740 1652
8 Yale 3677 378 709 465 58 UMass Amherst 964 327 273 960
9 Columbia 3623 337 824 758 59 Rutgers - New Brunswick 1183 403 290 1383
10 UPenn 3330 277 741 699 60 U Oregon 657 167 122 692
11 Cornell 3889 314 877 687 61 UC Irvine 652 313 161 1057
12 U Michigan 5451 385 1150 971 62 Clark 96 26 25 84
13 Carnegie Mellon 1102 162 297 364 63 U Arizona 1599 437 458 1173
14 UCLA 3445 347 716 959 64 UT Southwestern Med. Ctr. Dallas 138 80 72 166
15 U Wisconsin-Madison 5066 375 1000 882 65 Case Western Reserve 654 268 237 568
16 Johns Hopkins 2168 346 563 624 66 Emory 668 246 190 806
17 Northwestern 2343 332 563 786 67 Smith College 15 2 6 12
18 Brown 1241 161 246 536 68 Florida State 1487 211 345 767
19 Brandeis 510 80 109 253 69 Syracuse 666 213 192 677
20 NYU 1912 472 493 1064 70 Boston U 663 320 233 1230
21 U lllinois Urbana-Champaign 4540 383 1017 1021 71 University at Buffalo (SUNY) 815 288 239 830
22 U Rochester 1215 193 321 437 72 Albert Einstein College of Med. 94 109 80 219
23 UC San Francisco 471 170 199 277 73 Wesleyan 41 15 8 84
24 Duke 1775 311 461 749 74 U Notre Dame 538 156 122 824
25 UC San Diego 1546 342 382 925 75 U lllinois Chicago 635 281 220 964
26 Bryn Mawr 104 13 19 55 76 Tufts 217 164 89 677
27 SUNY Downstate Health Sci. 67 18 21 27 77 Vanderbilt 796 360 318 1019
28 UT Austin 4099 368 769 1173 78 Boston College 311 117 62 624
29 Washington U in St. Louis 1190 212 260 619 79 Catholic University of America 185 48 48 187
30 UC Santa Barbara 1142 186 223 682 80 lowa State 1024 310 373 904
31 UwW 2475 550 662 1366 81 U Georgia 1587 387 588 1185
32 U Minnesota Twin Cities 3056 540 824 1203 82 U Missouri 1072 289 357 855
33 Union Theological Seminary 40 2 9 12 83 U Kansas 983 295 278 977
34 Indiana Univ. Bloomington 2760 284 612 884 84 U Florida 1712 637 618 1654
35 UNC 2576 502 732 1141 85 U Denver 191 45 40 212
36 SUNY Stony Brook 875 201 246 579 86 Thomas Jefferson 45 53 50 88
37 Alfred 30 16 14 10 87 Cold Spring Harbor 3 12 3 38
38 Princeton Theol. Seminary 46 11 1 28 88 Georgetown 255 149 78 672
39 U lowa 1723 234 422 665 89 New York Medical College 30 26 15 63
40 Rice 576 108 134 439 90 UC Riverside 333 194 89 765
41 U Maryland College Park 1987 358 534 1197 91 Virginia Tech 1178 396 345 1198
42 Georgia Tech 1066 212 265 740 92 DePaul 38 16 12 40
43 Jewish Theological Seminary 4 10 2 23 93 SUNY Upstate Medical 24 33 19 66
44 New School 116 23 32 90 94 U Utah 780 288 198 1144
45 Purdue 2718 368 793 1097 95 Teachers College Columbia 58 42 18 153
46 UC Davis 1409 333 433 1130 96 U Maryland Baltimore 122 71 59 152
47 UC Santa Cruz 337 152 104 524 97 Texas A\&M 1846 530 566 1704
48 Meharry Medical College 30 3 7 3 98 Rush 48 28 27 57
49 CU Boulder 1264 244 303 976 99 Claremont Graduate 139 53 25 292
50 Ohio State U 3066 507 893 1485 100 _UConn 644 319 191 1157

The 100 most prestigious universities, as inferred from patterns in faculty hiring (n=238,281 total faculty; see Methods) and shown in descending order. Columns shown the number of graduates
(grads) of each university who become faculty (are placed, i.e. network out-degrees) at lower/higher prestige universities, and the number of faculty employed by each university (i.e. network
in-degrees) who earned their degree from a lower/higher prestige university. University names are compressed to save space using common abbreviations; see Data Availability for complete
machine-readable data.
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Extended Data Table 5 | Comparison of empirical prestige hierarchies with network null model

# of null model draws
less hierarchical than

Field empirical (out of 1000)
Pharmacy 880
Immunology 763
Pathology 719
Agronomy 666
Horticulture 561
Natural Resources 540
Entomology 399
Anatomy 220
Near and Middle Eastern Languages and Cultures 152
Pharmacology 124
Plant Pathology 124
Evolutionary Biology 92
Forestry and Forest Resources 58
Biomedical Engineering 42
Comparative Literature 34
Biophysics 26
Ecology 21
Veterinary Medical Sciences 20
Germanic Languages and Literatures 16
Environmental Health Sciences 16
Animal Sciences 10
Communication Disorders and Sciences 9
Microbiology 8
Asian Studies 8
Counselor Education 6
Nutrition Sciences 5
Health, Physical Education, Recreation 4
Public Health 4
Operations Research 3
Environmental Sciences 2
Exercise Science, Kinesiology, Rehab, Health 1
Soil Science 1
Genetics 1

Hierarchies encoded in academia and in each field and domain were compared independently with a set of 1,000 hierarchies generated using a degree-preserving null model (Methods).
A column shows the number of null model draws (from a total possible 1,000) that were more hierarchical than the empirical network, as measured by the fraction of edges in each network
aligned with the direction of the hierarchy. Empirical hierarchies that were more hierarchical than all 1,000 null model hierarchies are omitted.



Extended Data Table 6 | Rank change by domain and field

moved moved avg. mvmt. avg. mvmt. moved moved avg. mvmt. avg. mvmt.
Domain | Field upward downward  self-hired upward downward Domain / Field upward downward  self-hired upward downward
Academi 18%  71% (-4%) 1% (+4%) 14% (+1%) 28% (+1%) | Medicine & Health 21% (-3%) 57% (-5%) 22% (+8%) 19% 32% (+1%)
Applied Sciences 17% 73% 9% 12% 29% Communication Disord.& Sci. 10% 64% 25% 14% 40%
Accounting 9% 85% 6% 9% 37% Environmental Health Sci. 8% 50% 42% 21% 40%
Agronomy 21% 50% 29% 26% 39% Epidemiology 12% 56% (-9%) 32% (+9%) 24% 43%
Animal Sciences 23% 57% 20% 21% 34% Exercise Sci., Kines., Rehab 16% 58% (-8%) 26% (+11%) 19% 36%
Architecture 7% 78% 15% 10% 39% Genetics 14% 59% 27% 20% 36%
Business Administration 10% 75% 14% 9% 29% Health, Phys. Ed., Recreation 9% 67% 24% 14% 41%
Finance 6% 90% 4% 11% 38% Human Dev. & Family Sci. 13% 66% 21% 18% 36%
Food Science 14% 62% (-16%) 24% (+15%) 20% 36% | Immunology 18% 60% 22% (+8%) 20% 42%
Horticulture 20% 53% 26% 25% 40% Nursing 14% (-6%) 52%  34% (+6%) 19% 36%
Management 1% 81% 8% 12% 34% Nutrition Sciences 16% 59% 25% (+9%) 17% 36%
Management Information Sys. 8% 79% 13% 12% 36% Pharmaceutical Sciences 1% 53% 36% (+11%) 19% 36%
Marketing 9% 87% 4% 9% 38% Pharmacology 20% 59% (-10%) 21% (+9%) 21% 37%
Plant Sciences 13% 59% 28% 20% 37% Pharmacy 13% 42% 45% (+10%) 20% 40%
Soil Science 16% 56% 27% 25% 36% Physiology 16% 63% 21% (+9%) 18% 36%
Urban & Regional Planning 10% 75% 15% 14% 35% Public Health 15% 58% (-7%) 27% (+7%) 19% 38%
Education 14% 70% (-4%) 15% (+5%) 15% 35% Social Work 14% 71% 14% 13% 33%
Counselor Education 14% 59%  27% (+9%) 17% 36% Speech & Hearing Sciences 10% 65% 25% 12% 36%
Curriculum & Instruction 13% 67% (-8%) 20% (+9%) 15% 38% Veterinary Medical Sciences 20% 45%  36% (+7%) 22% 32%
Education 1% 60% 29% (+7%) 15% 35% Natural Sciences 20% (+1%) 69% (-3%) 11% (+2%) 15% (+1%) 28%
Education Administration 11% 70% 19% (+6%) 15% 38% Anatomy 10% 56% 34% 20% 43%
Special Education 9% 57% (-15%) 35% (+14%) 19% 39% Astronomy 9% 82% 10% 12% 36%
Engineering 14% (+2%) 73% 13% 12%  29% (-2%) Atmosph.Sci. & Meteorology 12% 70% 18% 14% 33%
Aerospace Engineering 10% 1% 19% 13% 37% Biochemistry 15% 75% 10% 16% 36%
Agricultural Engineering 17% 66% 17% 19% 34% Biological Sciences 1% 80% 8% 14% 36%
Civil Engineering 12% 7% 12% 1% 33% Biomedical Engineering 16% 62% 22% 16% 38%
Electrical Engineering 12% 74% 14% 1% 28% Biophysics 1% 55% 34% 21% 39%
Environmental Engineering 12% 74% 13% 12% 34% Biostatistics 1% 65% 24% 15% 39%
Industrial Engineering 1% 76% 13% 14% 35% Cell Biology 17% 67% 16% 18% 36%
Materials Engineering 1% 75% 14% 13% 35% Chemical Engineering 1% 81% 8% 11% 34%
Mechanical Engineering 1% 78% 1% 12% 34% Chemistry 1% 83% 6% (+3%) 1% 33%
Operations Research 13% 73% 14% 13% 36% Ecology 16% 67% 16% 19% 38%
Systems Engineering 8% 66% 26% 16% 35% Entomology 21% 61% 18% 22% 39%
Humanities 12% (+1%) 82% 6% 10% 31% Environmental Sciences 12% 68% 20% 15% 38%
Art History & Criticism 7% 88% 5% 8% 39% Evolutionary Biology 16% 71% 14% 14% 38%
Asian Languages 1% 80% 9% 12% 39% Forestry & Forest Resources 17% 51% 33% 23% 36%
Asian Studies 14% 78% 8% 11% 37% Geology 12% 80% 9% 12% 33%
Classics & Classical Languages 5% 92% 3% 8% 46% Marine Sciences 13% 62% 25% 18% 35%
Comparative Literature 9% 84% 7% 16% 44% Microbiology 17% 66% (-8%) 17% (+8%) 20% 40%
English Language & Literature 10% 86% 4% (+2%) 12% 36% Molecular Biology 12% 74% 14% 16% 37%
French Language & Literature 8% 86% 6% 12% 39% Natural Resources 14% 54% 32% 20% 39%
Germanic Languages & Lit. 12% 84% 4% 11% 40% Neuroscience 16% 68% 17% (+6%) 18% 36%
History 8% 89% 4% 7% 35% Pathology 23% 52%  25% (+5%) 26% 39%
Linguistics 12% 78% 10% 14% 38% Physics 10% 81% 8% 9% 31%
Music 8% 85% 7% 9% 38% Plant Pathology 19% 62% 19% 23% 40%
Near/Mid. Eastern Lang./Cultures 17% 72% 12% 12% 38% Social Sciences 14%  79% (-2%) 7% (+1%) 12% 29%
Philosophy 8% 88% 4% 8% 36% Agricultural Economics 13% 69% 18% 14% 36%
Religious Studies 5% 80% 15% 13% 41% Anthropology 11% 84% 5% 10% 36%
Slavic Languages & Literatures 7% 88% 6% 1% 44% Crim. Justice & Criminology 8% 80% 1% 1% 36%
Spanish Language & Literature 1% 82% 7% 13% 38% Economics 6% 91% 3% 6% 31%
Theatre Literature, History & Crit. 7% 78% 15% 12% 38% Educational Psychology 13% 64% 23% 18% 39%
Theological Studies 11% 53%  36% (-9%) 14% 31% Gender Studies 8% 79% 12% 15% 37%
Math & Computing 13% (+2%) 79% (-4%) 8% (+1%) 11% (+1%) 28% | Geography 12% 79% 9% 14% 37%
Computer Engineering 13% 71% 16% 12% 32% International Affairs 7% 75% 17% 17% 42%
Computer Science 12% 80% 8% 9% 29% Political Science 10% 86% 4% 6% 32%
Information Science 14% 69% 17% 12% 34% Psychology 15% 7% 8% 13% 32%
Information Technology 7% 70% 23% 15% 38% Sociology 9% 86% 5% 9% 34%
Mathematics 9% 87% (-5%) 4% (+4%) 10% 33%
Statistics 7% 86% 7% (+4%) 10% 36%

Faculty movements within the prestige hierarchies are shown for academia (blue, bold italics), domains (highlighted, bold italics) and fields (e.g. Physics, or Nutritional Sciences); total
n=238,281. Three columns show how faculty flows break down by movement up the hierarchy, movement down the hierarchy, or self-hiring. In instances in which rates vary significantly by gender
(two-sided z-test for proportions, Benjamini-Hochberg corrected, p<0.05), values in parentheses show the difference in rates between women vs men, such that positive values indicate larger
percentages for women. Two columns show the average movement distance (avg. mvmt.) upward for those moving up, and downward for those moving down. In instances in which distances
vary significantly by gender (K.S. test for difference in distance distributions; Benjamini-Hochberg corrected p <0.05), values in parentheses show the difference in distances between women
versus men, such that positive values indicate larger movements for women. Statistical tests for differences by gender apply to only those n=204,330 faculty with gender annotations (Methods).
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Reporting on sex and gender This manuscript discusses gender, but not sex. As stated in Methods, we used self-identified genders when possible, and

Population characteristics

Recruitment

Ethics oversight

machine-annotated genders otherwise:

Self-identified gender annotations were provided for 6% of faculty in the unprocessed dataset. In order to annotate the
remaining faculty with gender estimates, we used a two-step process based on first and last name. First, complete names
were passed to two offline dictionaries: a hand-annotated list of faculty employed at Business, Computer Science, and
History departments (corresponding to data used in Ref. [27]), and the open-source python package gender-guesser [58].
Both dictionaries responded with one of the following classifications: female, male, or unable to classify. Second, for the
cases where the dictionaries either disagreed or agreed but were unable to assign a gender to the name, we queried Ethnea
[59] and used the gender they assigned the name (if any). Using this approach we were able to annotate 85% of faculty with
man or woman labels. Faculty whose names could not be associated with a gender were excluded from analyses of gender
but included in other analyses. This methodology associates names with binary (man/woman) labels because of technical
limitations inherent to name-based gendering methodologies, but we recognize that gender is nonbinary. The use of these
binary gender labels is not intended to reinforce the gender binary.

Our analysis examines tenured or tenure-track faculty employed in the years spanning 2011 and 2020 at 368 PhD-granting
universities in the U.S., each of whom is annotated by their doctoral institution, year of doctorate, faculty rank, and faculty
gender. To be included in our analysis, a professor must be a member of the tenured or tenure-track faculty at a department
that appears in the majority of sampled years, which yields n = 295, 089 faculty in 10,612 departments.

This dataset resulted from cleaning and preprocessing a larger U.S. faculty census obtained under a Data Use Agreement
with the Academic Analytics Research Center (AARC). This dataset spanned all tenure-track and tenured faculty at U.S. PhD-
granting institutions, between 2011-2020.

After consultation with the University of Colorado Boulder IRB, protocol submission and approval was deemed unnecessary
for the present study, due to is secondary use of publicly available data.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Behavioural & social sciences study design

All studies must disclose on

Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

these points even when the disclosure is negative.

This study quantitatively analyzes patterns found in qualitative data, namely the records of individual tenure-track or tenured faculty
at U.S. PhD-granting institutions between 2011-2020. Namely, we analyze PhD institution, current department and institution, faculty
rank, and gender. By observing new entrants to the dataset over time, or departures over time, we also analyze hiring and attrition of
said U.S. tenured or tenure-track faculty.

All tenure-track and tenured faculty at U.S. PhD-granting institutions, except for faculty of Law and Medical schools. This sample
represents a ten-year annual census of these faculty and is representative due to its complete coverage; this is not a random
subsample of the population being studied.

Census sampling was used by the original data providers (AARC). In some cases, data were reported to the AARC directly by
institutions themselves. In all other cases, the AARC (or their affiliates) collected faculty rosters and doctoral degree information from
public-facing university webpages, annually. The data provided to the research team spanned only 2011-2020, though the sampling
strategy has been in use by the AARC or their affiliates for years prior to our sample frame.

Our data resulted from cleaning and preprocessing the larger academic census dataset obtained under a Data Use Agreement with
the Academic Analytics Research Center (AARC), who collected the original dataset as described above. Please see Methods for
detailed descriptions of the nine key cleaning steps, and two key annotation steps that were used prior to the manuscript's analyses.

2011 to 2020

A complete description of data exclusions and cleaning — and which data were excluded or included for each analysis — is included
in Methods.
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