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Photoexcited nitroarenes for the oxidative 
cleavage of alkenes

Alessandro Ruffoni1,3, Charlotte Hampton2,3, Marco Simonetti2 ✉ & Daniele Leonori1 ✉

The oxidative cleavage of alkenes is an integral process that converts feedstock 
materials into high-value synthetic intermediates1–3. The most viable method to 
achieve this in one chemical step is with ozone4–7; however, this poses technical  
and safety challenges owing to the explosive nature of ozonolysis products8,9. Here  
we report an alternative approach to achieve oxidative cleavage of alkenes using 
nitroarenes and purple-light irradiation. We demonstrate that photoexcited 
nitroarenes are effective ozone surrogates that undergo facile radical [3+2] 
cycloaddition with alkenes. The resulting ‘N-doped’ ozonides are safe to handle and 
lead to the corresponding carbonyl products under mild hydrolytic conditions.  
These features enable the controlled cleavage of all types of alkenes in the presence of 
a broad array of commonly used organic functionalities. Furthermore, by harnessing 
electronic, steric and mediated polar effects, the structural and functional diversity of 
nitroarenes has provided a modular platform to obtain site selectivity in substrates 
containing more than one alkene.

Alkenes are feedstock materials that are obtained on the ton scale 
from petroleum and vegetable biomass and are exploited by the bulk 
chemical industry to access oxygen-enriched synthetic intermedi-
ates1–3. Ozonolysis is a widely adopted method to achieve this and 
requires specialized apparatus for the conversion of molecular oxy-
gen (O2) into highly reactive ozone (O3)6,7. This species undergoes a 
[1,3]-dipolar cycloaddition with the alkene, converting a stable chemical  
into a high-energy 1,2,3-ozonide A from which cycloreversion is 
immediate. The consequent C–C σ-bond cleavage event generates 
carbonyl oxide B and carbonyl compound C, which recombine to give 
1,2,4-ozonide D. Depending on the reaction solvent and the work-up 
procedure, B or D can lead to aldehydes or ketones, as well as carboxylic 
acids or alcohols4,5 (Fig. 1a).

Despite its attractive synthetic versatility, ozone toxicity (lethal at 
5 ppm), explosivity and extreme oxidizing power (standard reduc-
tion potential E0 = 2.07 V) raise critical safety, technical and chemical 
concerns8,9. As a result, ozonolytic strategies are often challenging to 
translate into the fine chemical industry10–12, particularly in the dis-
covery sector, which heavily relies on parallel and high-throughput 
screening platforms13. Consequently, alternative strategies for  
alkene oxidation based on high-valent heavy-metal oxides (MO4, where 
M is a metal) have been devised14–16. However, these approaches can 
yield mixtures of products of various oxidation degrees, and cause 
trace-metal contaminations that are problematic with the stringent 
pharmaceutical sector regulations17. Oxidative cleavages using O2 and  
a suitable (photo)catalyst have also been developed, but they are  
limited to activated alkenes18,19.

Overall, there is no other type of reactivity able to mirror the unique 
ability of ozone to cleave alkenes. Here we introduce nitroarenes, a class 
of abundant feedstocks, as photoexcitable and easy-to-dose ozone 
surrogates. Upon simple purple-light absorption, these species react 

with alkenes enabling access to ‘N-doped’ ozonides, which can be accu-
mulated until a devised controlled C–C bond cleavage step takes place. 
This reactivity engages a large class of alkenes, is tolerant of the most 
used organic functionalities and allows the targeting of specific double 
bonds in molecules with multiple C–Cπ sites.

In approaching the design of an alternative method to oxidatively 
cleave alkenes, we considered the possibility of using nitroarenes N as 
ozone surrogates to access 1,3,2-dioxazolidines E (Fig. 1b). Despite the 
nitro group being isoelectronic with ozone, nitroarenes do not engage 
in thermal [1,3]-dipolar cycloadditions with alkenes owing to high 
kinetic barriers20,21. The pioneering works of refs. 22,23 demonstrated an 
opportunity to by-pass these challenging pericyclic processes through 
direct nitroarene photoexcitation. As such, intersystem crossing from 
the singlet excited nitroarene delivers the long-lived triplet state (T1) *N. 
In analogy to T1 carbonyls, *N have a (n,π*) configuration, which trans-
lates into O-radical-type reactivity. *N can intercept alkenes in radical 
[3+2]-like fashion and, via the formation of biradical F, deliver N-doped 
ozonides E. However, this chemistry necessitated high-energy irradia-
tion, utilized the alkene as the solvent, and the mechanism by which  
E evolves into the C–C cleavage products and defines their subsequent 
fate was unsolved22–25. These rather unpractical reactivity requirements 
and limited understanding have resulted in no synthetic application.

We envisaged that by tailoring the nature of the nitroarene, we would 
have been able to translate this reactivity over the broad spectrum 
of alkenes, including challenging terminal substrates, and run it in 
a stoichiometric manner, which is crucial for synthetic purposes.  
Furthermore, understanding and thereby controlling the decompo-
sition of E would be pivotal to channel its reactivity towards alkene 
cleavage.

We started our investigation evaluating the initial rates of disappear-
ance of 1 (kobs) in photocycloaddition reactions (purple light-emitting 
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diode irradiation, wavelength λ = 390 nm (refs. 26,27)) with a variety of 
electronically diverse meta- and/or para-(di)substituted nitroarenes 
N to give stable bisadamantene-containing24 E (Fig. 2a). The result-
ing Hammett plot28 showed a strong linear free-energy relationship 
between the electronic character of the nitroarene and kobs (sensitivity 
constant ρ = 0.82). This means that the reactivity profile of nitroarenes 
as photo-responsive oxidants can be easily tuned by correct placement 
of electron-withdrawing groups on their aromatic core to amplify the 
electrophilic character of their excited states. Ortho-substituted N were 
less effective, which suggests that steric hindrance can also influence 
their reactivity (Supplementary Information).

We then evaluated the reaction of unactivated 2, which is a challeng-
ing type of alkene in this chemistry. Irradiation of 2 with commercial N1 
resulted in the high-yielding formation of E1 (Fig. 2b). In contrast to the 
explosive nature of A, N-doped ozonides can be accumulated in solution 
at –30 °C and are stable in the solid state (Supplementary Information).

Subsequently, we set out to understand how to convert E into the corre-
sponding carbonyl compounds C and C′ (Fig. 2c). We speculated that two 
pathways might be operating: an ozonolysis-type cycloreversion would 
deliver C and carbonyl imine G (path a) or a different cycloreversion-mode 
could directly lead to C/C′ and nitrene I (path b). To shed light on 
this, we prepared E2 which features an ortho-3,5-dimethylpyrazole 
group as a probe for nitrene formation29,30. Simple exposure of E2 to 
CH3CN–H2O led to the almost quantitative formation of ketone 3 and 
N-arylhydroxylamine H1. Conversely, in acetonitrile (CH3CN), E2 yielded 
3 in 98% yield and 4 in 97% yield, whose structure was confirmed by X-ray 
analysis. As 4 is indicative of a [1,3]-dipolar cycloaddition between G1 
and CH3CN, these experiments rule out the intermediacy of nitrenes 
and demonstrate that E undergoes an ozonolysis-type cycloreversion 
generating C and G, which, with water (H2O), is hydrolysed to C′ and H. 
Although the generation of G was postulated by Huisgen22, its existence 
has not been demonstrated before. Related dipoles have been engaged 
in 1,3-dipolar cycloadditions only twice since Huisgen’s initial predic-
tion31,32, but never with nitrile dipolarophiles.

Next, we studied the decomposition of E1 in CH3CN–H2
18O (Fig. 2d), 

which gave 5 in 93% yield and 92% 18O-incorporation, along with H2 
(20%), azoxy derivative K1 (3%) and nitrone J1 (condensation of H2 
with formalin 6, 61%). K1 stems from disproportionation of H2 (Supple-
mentary Information). This experiment demonstrates that the cyclor-
eversion of E1 generates 6 and the more stabilized dipole G, which is 
then hydrolysed. However, when decomposition of E3 was evaluated 
in CH3CN–H2O, 7 was obtained in a decreased 71% yield, probably via 
the in situ formation of nitrone J. Indeed, when decomposition of E3 
was run with external formalin, 7 was obtained in 95% yield (Supple-
mentary Information). Despite the decomposition step being very 
effective, the equilibrium in the condensation between H and C/C′, and 
subsequent side reactions33, rendered the purification of the aldehydes 
products challenging. Thus, we developed two simple one-pot work-up 
procedures to remove H by addition of either dipotassium phosphate 
(K2HPO4) and urea (conversion of H into K) or N-phenylmaleimide 
(conversion of nitrones such as J1 into L), which eased the purification 
of the aldehydes (Fig. 4e and Supplementary Information).

Having devised conditions to accumulate and decompose N-doped 
ozonides, we decided to benchmark the synthetic utility of the process. 
Although N1 was able to engage all substrates present in Fig. 3, other 
nitroarenes (N2–N7) were evaluated to improve the yield depending on 
the alkene. We believe that this is a powerful aspect of this reactivity as 
functionalized nitroarenes are readily available and dosable reagents 
that can be evaluated in screening platforms. Exploration began with 
linear terminal alkenes 2 and 8–32 equipped with a distal functionality 
R. Several commonly encountered organic functional groups, such 
as nitrile (8), aldehyde (9), ketone (10), carboxylic acid (11), halogens  
(12–15), free (16) and protected (17–20) amines, azide (21), nitro 
group (22), free (23 also on 5-mmol scale, 27) and protected (24 and 
25) alcohols, epoxide (26), thiocyanate (28), thioethers (29 and 30), 
phosphonate (31) and boronic ester (32), proved compatible, giving the 
corresponding aldehydes in high yields. In some cases, we found that the 
use of dichloromethane (CH2Cl2) solvent with hexafluoroisopropanol 
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(HFIP) as the additive to be crucial to ensure good reactivity. As *N can  
abstract hydridic α-N/O/S C(sp3)–H bonds34,35, the inclusion of HFIP 
suppressed this unwanted process by hydrogen bonding to the 
heteroatom36 (Supplementary Information). In the case of amines, 
simple protonation was required to insulate the substrate from  
detrimental side oxidations. Disubstituted substrates reacted well, 
as demonstrated by the cleavage of several industrially relevant oleic 
acid derivatives 33–38 (Z-), as well as ether E-39 and cyclic systems 

of different size (40 and 41). Furthermore, both gem-disubstituted 
(–)-dihydrocarveol 42 and trisubstituted 43 were compatible, as well 
as diene 44. Electron-rich and -poor styrenes (45–47), (E and Z)-β-Me 
and α-Me-styrenes (48, 49 and 50), as well as (E and Z)-stilbenes 
reacted smoothly (51 and 52). Next, we explored the cleavage of 
structurally complex and densely functionalized derivatives (53–63).  
Unactivated terminal alkenes of isophytol (53), sclareol (54) and 
alibendol (55), which also features an electron-rich aromatic core, 
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could all be oxidized. The disubstituted alkenes of caryophyllene 
oxide (56) and montelukast (57), the trisubstituted alkenes of phy-
tol (58), (–)-α-cedrene (59), triprolidine (60), chlorprothixene (61) 
and lumefantrine (62), as well as the tetrasubstituted (Z)-tamoxifen 
63, were successfully engaged. Another feature of *N is their aptitude 
to act as triplet sensitizers37, which can isomerize the alkenes dur-
ing photocycloaddition. Indeed, unreacted 63 was recovered as Z/E  
mixture.

An often-encountered challenge in oxidative cleavage chemistry is 
achieving regiocontrol in substrates containing more than one C–Cπ 
site. We speculated that the inherent modularity of our approach would 
enable chemoselective differentiation through the interplay of electronic 

effects. To test this hypothesis, we prepared substrates 64–69 that con-
tain two different alkenes linked by an identical alkyl spacer and evalu-
ated them in stoichiometric reactions with N1, N2, N4 and N8 providing 
the heat map shown in Fig. 4a. These results show that site selectivity 
depends on the electronic nature of the nitroarene and that of the two 
alkenes. Specifically, the selectivity increases when using less electro-
philic nitroarenes, and when the two alkenes have substituents that make 
one C–Cπ bond increasingly more electron-rich than the other. This 
means that the reactivity of *N (ref. 23) parallels that of ozone and Huisgen 
type-III dipolar cycloadditions in general38. Consequently, modulation 
of the nitroarene electronics can be used to amplify narrow reactivity 
differences when substrate control is difficult to implement. Indeed, 
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the use of N8 and N4 enabled the fully selective cleavage of trisubsti-
tuted alkene (64) and styrene (65) in the presence of monosubstituted 
alkenes. Furthermore, striking discrimination was achieved between 
internal and terminal double bonds (66, 97%), tri-alkyl versus di-alkyl 
substituted C–Cπ sites (67, 87%), styrene versus an internal alkene (68, 

85%), as well as the two highly activated alkenes of 69 (69%). Moreover, a 
complete selectivity for the terminal alkene of 70 was obtained even with 
N1, yielding the corresponding alkyne-containing product in 82% yield.

To demonstrate reactivity control through electronic, steric and 
mediated polar effects, we evaluated several complex and bio-active 
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aCH2Cl2 with HFIP (0.5–6 equiv.). bAlkene (2 equiv.). cNMR yield. dN (2 equiv.). 
eEtOAc. fAlkene (3 equiv.). gBis-cleaved product 3% yield. hBis-cleaved product 
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molecules containing multiple C–Cπ sites (Fig. 4b and Supplemen-
tary Information). (–)-Carvone 71 and fusidic acid 72 showed regi-
ocontrol based on electronics as alkene conjugation with carbonyl 
functionalities directed the reactivity towards the other alkenes.  
In the case of polyunsaturated steroids exemestane 73 and megestrol 
acetate 74, oxidative cleavage occurred at the distal, hence less deac-
tivated, C–Cπ sites. Lynestrol 75 showcased alkene oxidation in the 
presence of alkynes, whereas allylestrenol acetate 76, linalool 77 and 
trans-caryophyllene 78 showed the selective cleavage of trisubstituted 
alkenes over terminal and gem-disubstituted ones. Geranyl acetate 79 
and perillyl acetate 80 contain trisubstituted alkenes with an allylic OAc 
group that provides weak inductive deactivation. Although this enables 
the preferential cleavage of the other C–Cπ sites, higher selectivity was 
obtained adding HFIP (hydrogen bonding with the OAc group). Analo-
gously, the presence of the electron-withdrawing ammonium group in 
cyclobenzaprine 81 allowed the disubstituted stilbene-type alkene to 
react over the trisubstituted one. We propose that steric control might 
be the main factor determining the selectivity in the oxidative cleav-
age of bisabolol acetate 82 and valencene 83 where the least hindered 
acyclic alkenes were oxidized despite their degree of substitution.

Owing to the striking functional group compatibility and levels of site 
selectivity achievable, our findings demonstrate that nitroarenes are 
tunable and easy-to-dose photo-responsive ozone surrogates, which 
have the premise to become a powerful and reliable tool to oxidatively 
cleave alkenes.
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